Research Article
BibTex RIS Cite

Ekzojen Salisilik Asit Uygulamalarının Tuz Stresi Altındaki Hıyar Bitkilerinde Fotosistem II Aktivitesi Üzerindeki Etkileri

Year 2021, Volume: 9 Issue: 1, 418 - 429, 31.01.2021
https://doi.org/10.29130/dubited.746811

Abstract

Tuz stresi (100 mM NaCl) altındaki hıyar (Cucumis sativus L.) genotipinde (Beith Alpha F1) ekzojen salisilik asit uygulamasının fotosistem II aktivitesi üzerindeki etkileri klorofil a fluoresansı tekniği yardımıyla araştırılmıştır. 10 günlük hıyar fidelerine 100 mM tuza karşı 50 µM salisilik asit 5 gün süreyle uygulanmıştır. 5. günün sonunda yapılan klorofil a fluoresansı ölçümleri değerlendirilmiştir. Tuz stresi hıyar yapraklarında fotosistem II’nin hem donör hem de akseptör bölgesindeki elektron hareketlerini inhibe etmiştir. Ayrıca tuz stresinin hıyar bitkisinde aktif reaksiyon merkezi miktarını ve kinonA ile plastokinonun indirgenme yeteneğini azalttığı, indirgenmiş reaksiyon merkezlerinin birikimini ve ısı enerjisi kaybını artırdığı belirlenmiştir. Salisilik asit uygulaması ise hıyar bitkilerinde tuz stresinin fotosistem II’nin donör ve akseptör bölgesindeki elektron hareketleri üzerindeki olumsuz etkisini ortadan kaldırmıştır. Ek olarak salisilik asit uygulaması hıyar yapraklarındaki aktif reaksiyon merkezi miktarını ve kinonA ile plastokinonun indirgenme yeteneğini artırırken, indirgenmiş reaksiyon merkezi miktarını ve ısı enerjisi kaybını azaltmıştır. Sonuç olarak salisilik asidin hıyar yapraklarında tuz toleransını artırdığı ve bu yaklaşımın tarımsal amaçlarla kullanılabileceği söylenebilir.

References

  • [1] O.A. El-Shihaby, M.M.N. Alla, M.E. Younis, Z.M. El-Bastawisy, “Effect of kinetin on photosynthetic activity and carbohydrate content in waterlogged or sea-water treated Vigna sinensis and Zea mays plants,” Plant Biosyst., vol. 136, pp. 277–90, 2002.
  • [2] T. Janda, E. Horváth, G. Szalaı, E. Páldı, “Role of salicylic acid in the induction of abiotic stress tolerance,” in Salicylic Acid-A Plant Hormone, S. Hayat and A. Ahmad, Eds., Dordrecht, Netherlands: Springer, 2007, pp. 91–150. [3] A. Larque-Saavedra, “The antitranspirant effect of acetylsalicylic acid on Phaseolus vulgaris L.,” Physiol. Plant., vol. 43, pp. 126-128, 1978.
  • [4] A. Larque-Saavedra, “Stomatal closure in response to acetylsalicylic acid treatments,” Z. Pflanzenphysiol., vol. 93, pp. 371-375, 1979.
  • [5] V. K. Rai, S. S. Sharma, S. Sharma, “Reversal of ABA-induced stomatal closure by phenolic compounds,” J. Exp. Bot., vol. 37, pp. 129-134, 1986.
  • [6] S. Hayat, B Ali, A. Ahmad, “Salicylic acid: Biosynthesis, metabolism and physiological role in plants,” in Salicylic Acid-A Plant Hormone, S. Hayat and A. Ahmad, Eds., Dordrecht, Netherlands: Springer, 2007, pp. 1–14.
  • [7] M. Yusuf, S. Hayat, M.N. Alyemeni, Q. Fariduddin, A. Ahmad, “Salicylic acid: Physiological roles in plants,” in Salicylic Acid, S. Hayat et. al., Eds., Dordrecht, Netherlands: Springer, 2013, pp. 15–30.
  • [8] A. Mateo, P. Muhlenbock, C. Rusterucci, C.C. Chang, Z. Miszalski, B. Karpinska, J.E. Parker, P.M. Mullineaux, S. Karpinski, “Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy,” Plant Physiol., vol. 136, pp. 2818-2830, 2004.
  • [9] M. Melotto, W. Underwood, J. Koczan, K. Nomura, S.Y. He, “Plant stomata function 568 in innate immunity against bacterial invasion,” Cell, vol. 126, pp. 969–980, 2006.
  • [10] S. Hayat, P. Maheshwari, A.S. Wani, M. Irfan, M.N. Alyemeni, A. Ahmad, “Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L.,” Plant Physiol Biochem., vol. 53, pp. 61–68, 2012.
  • [11] M. Yusuf, Q. Fariduddin, P. Varshney, A. Ahmad, “Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system,” Environ. Sci. Pollut. Res., vol. 19, pp. 8–18, 2012.
  • [12] A.N. Uzunova, L.P. Popova, “Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants,” Photosynthetica, vol. 38, pp. 243-250, 2000.
  • [13] Q. Fariduddin, S. Hayat, A. Ahmad, “Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea,” Photosynthetica, vol. 41, pp. 281-284, 2003.
  • [14] T. Janda, I. Majláth, G. Szalai, “Interaction of temperature and light in the development of freezing tolerance in plants,” J. Plant Growth. Regul., vol. 33, pp. 460–469, 2014.
  • [15] L.J. Wang, L. Fan, W. Loescher, W. Duan, G.J. Liu, J.S. Cheng, “Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves,” BMC Plant Biol., vol. 10, pp. 34–40, 2010.
  • [16] S. Hayat, Q. Fariduddin, B. Ali, A. Ahmad, “Effect of salicylic acid on growth and enzyme activities of wheat seedlings,” Acta Agron. Hung., vol. 53, pp. 433-437, 2005.
  • [17] N. Ghai, R.C. Setia, N. Setia, “Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1),” Phytomorphol., vol. 52, pp. 83-87, 2002.
  • [18] S. F. A. Khodary, “Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants,” Int. J. Agric. Biol., vol. 6, pp. 5-8, 2004.
  • [19] T. V. Pancheva, L. P. Popova, A. M. Uzunova, “Effect of salicylic acid on growth and photosynthesis in barley plants,” J. Plant Physiol., vol. 149, pp. 57-63, 1996.
  • [20] P. Kumar, N.J. Lakshmi, V. P. Mani, “Interactive effects of salicylic acid and phytohormones on photosynthesis and grain yield of soybean (Glycine max L. Merrill),” Physiol. Mol. Biol. Plants, vol. 6, pp. 179-186, 2000.
  • [21] W. Khan, B. Prithiviraj, D. L. Smith, “Photosynthetic responses of corn and soybean to foliar application of salicylates,” J. Plant Physiol., vol. 160, pp. 485-492, 2003.
  • [22] B. Singh, K. Usha, “Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress,” Plant Growth Regul., vol. 39, pp. 137-141, 2003.
  • [23] M. A. El Tayeb, “Response of barley grains to the interactive effect of salinity and salicylic acid,” Plant Growth Regul., vol. 45, pp. 215-224, 2005.
  • [24] R. Nazar, N. Iqbal, S. Syeed, N.A. Khan, “Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars,” J. Plant Physiol., vol. 168, pp. 807–815, 2011.
  • [25] J. Stevens, T. Senaratna, K. Sivasithamparam, “Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilisation,” Plant Growth Regul., vol. 49, pp. 77–83, 2006.
  • [26] P. Poór, K. Gémes, F. Horváth, A. Szepesi, M.L. Simon, I. Tari, “Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress,” Plant Biol., vol. 13, pp. 105–114, 2011.
  • [27] C. A. Leslie, R. J. Romani, “Inhibition of ethylene biosynthesis by salicylic acid,” Plant Physiol., vol. 88, pp. 833-837, 1988.
  • [28] H. J. Zhao, X. W. Lin, H. Z. Shi, S. M. Chang, “The regulating effects of phenolic compounds on the physiological characteristics and yield of soybeans,” Acta Agronomica Sinica, vol. 21, pp. 351–355, 1995.
  • [29] https://www.biotektohum.com.tr/index.php?route=modules/products&product_id=89 (Erişim Traihi: 10.11.2020)
  • [30] F. Bussotti, R. J. Strasser, M. Schaub, “Photosynthetic behavior of woody species under high ozone exposure probed with the JIP-test: A review,” Environmental Pollution, vol. 147, no. 3, pp. 430-437, 2007.
  • [31] A. Doğru, “Bazı arpa genotiplerinde kurşun toleransının klorofil a floresansı ile değerlendirilmesi,” Bartın University International Journal of Natural and Applied Science, c. 2, s. 2, ss. 228-238, 2019.
  • [32] V.N. Goltsev, H.M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, S.I. Allakhverdiev, “Variable Chlorophyll Fluorescence and Its Use for Assessing Physiological Condition of Plant Photosynthetic Apparatus”, Russian Journal of Plant Physiology, c. 63, s. 6, ss. 881-907, 2016.
  • [33] A. Doğru, S. Canavar, “Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri,” Academic Platform Journal of Engineering and Science, c. 8, s. 1, ss. 155-174, 2020.
  • [34] C. L. Noble, G. M. Halloran, D. W. West, “Identification and selection for salt tolerance in lucerne (Medicado sativa L.),” Australian Journal of Agricultural Research, vol. 35, pp. 239-252, 1984.
  • [35] M. Ashraf, “Breeding for salinity tolerance in plants,” Critical Reviews in Plant Science, vol. 13, pp. 17-42, 1994.
  • [36] M.C. Shannon, “Adaptation of plants to salinity,” Advances in Agronomy, vol. 60, pp. 75-119, 1998.
  • [37] M. Ashraf, “Salt tolerance of cotton: some new advances,” Critical Reviews in Plant Sciences, vol. 21, pp. 1-30, 2002.
  • [38] A. Doğru, M. Yılmaz Kaçar, “A preliminary study on salt tolerance of some barley genotypes,” SAU Journal of Science, vol. 23, pp. 755-762, 2019.
  • [39] M. H. Kalaji, S. Pietkiewicz, “Salinity effects on plant growth and other physiological processes,” Acta Physiologia Plantarum, vol. 143, pp. 89-124, 1993.
  • [40] G. C. Papageorgiou, N. Murata, “The unusually stron stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem complex,” Photosynthesis Research, vol. 44, pp. 243-252, 1995.
  • [41] M. H. Kalaji, P. Guo, “Chlorophyll fluorescence: A useful tool in barley plant breeding programs,” in Photochemistry Research Progress, A. Sanchez and S.J. Gutıerrez, Eds., New York, NY, USA: Nova Publishers, 2008, pp. 439-463.
  • [42] Y. Tanaka, T. Hibino, Y. Hayashi, A. Tanaka, S. Kishitani, T. Takabe, S. Yokota, T. Takabe, “Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts,” Plant Science, vol. 148, pp. 131-138, 1999.
  • [43] K. Maxwell, N. G. Johnson, “Chlorophyll fluorescence-a practical guide,” Journal of Experimental Botany, vol. 51, pp. 659-668, 2000.
  • [44] A. Doğru, H. Çakırlar, “Is leaf age a predictor for cold tolerance in winter oilseed rape plants?,” Functional Plant Biology, vol. 47, pp. 250-262, 2020.
  • [45] A. Doğru, H. Çakırlar, “Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes in winter rapeseeds leaves under cold acclimation conditions,” Brazilian Journal of Botany, vol. 43, pp. 11-20, 2020.
  • [46] O. Björkman, B. Demmig, “Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins,” Planta, vol. 170, pp. 489–504, 1987.
  • [47] K. Georgieva, H. L. Lichtenthaler, “Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence,” Journal of Plant Physiology, vol. 155, pp. 416-423, 1999.
  • [48] M. Ashraf, H. R. Athar, P. J. C. Harris, T. R. Kwon, “Some prospective strategies for improving crop salt tolerance,” Advances in Agronomy, vol. 97, pp. 45-110, 2008.
  • [49] C. A. Vlot, M. A. Dempsey, D. F. Klessig, “Salicylic acid, a multifaceted hormone to Combat disease,” Annual Review of Phytopathology, vol. 47, pp. 177–206, 2009.
  • [50] M. Arfan, H.R. Athar, M. Ashraf, “Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?,” J. Plant Physiol., vol. 6, no. 4, pp. 685-694, 2007.
  • [51] M. Iqbal, R. Khan , M. Asgher, Nafees A. Khan, “Alleviation of salt-induced photosynthesis and growth inhi bition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.),” Plant Physiology and Biochemistry, vol. 80, pp. 67-74, 2014.
  • [52] F. Palma, M. López-Gómez, N.A. Tejera, C. Lluch, “Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition,” Plant Sci., vol. 208, pp. 75-82, 2013.
  • [53] S. Yazdanpanah, A. Baghizadeh, F. Abbassi, “The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis,” Afr. J. Agric. Res., vol. 6, pp. 798-807, 2011.
  • [54] M.I.R. Khan, N. Iqbal, A. Masood, T.S. Per, N.A. Khan, “Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation,” Plant Signal. Behav., vol. 8, pp. 263-274, 2013.
  • [55] W. E. Pereira, D. L. de Siqueira, C. A. Martinez, M. Puiatti, “Gas exchange and chlorphyll fluorescence in four citrus rootstocks under aluminum stress,” Journal of Plant Physiology, vol. 157, pp. 513-520, 2000.
  • [56] W. Fricke, W. S. Peters, “The biophysics of leaf growth in salt-stressed barley a study at the cell level,” Plant Physiology, vol. 129, pp. 374-388, 2002.
  • [57] M. H. Kalaji, B. Govindjee, K. Bosa, J. Koscielniak, K. Z. Golaszewska, “Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces,” Environmental and Experimental Botany, vol. 73, pp. 64-72, 2011.
  • [58] N. Çiçek, H. Çakırlar, R. T. Strasser, “Arpa bitkisınde ultravıyole-B stresinin fotosistem II etkinliği üzerine etkisi”, Anadolu Üniversitesi Bilim ve Teknoloji Dergisi –C Yaşam Bilimleri ve Biyoteknoloji, c. 2, s. 1, ss. 9-19, 2012.
  • [59] R.J. Strasser, A. Srivastava, and K. B. Govindjee, “Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria”, Photochemistry and Photobiology, c. 61, ss. 32-42, 1995.
  • [60] G. Schansker, S.Z. Toth, R.J. Strasser, “Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of nonphotochemical quenching is related to an activated photosystem I acceptor side”, Biochimica et Biophysica Acta, c. 1757, ss. 787-797, 2006.
  • [61] C.B. Osmond, J. Ramus, G. Levavasseur, L.A. Franklin, W.J. Henley, “Fluorescence quenching during photosynthesis and photoinhibition of Ulva rotundata Blid”, Planta, c. 190, ss. 97-106, 1993.
  • [62] M. Tsimilli-Michael, P. Eggenberg, B. Biro, K. Köves-Pechy, I. Vörös, R. Strasser, “Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient OJIP”, Applied Soil Ecology, c. 15, s. 2, ss. 169-182, 2000.
  • [63] Ş. Çulha Erdal, “Aspir genotiplerinde kuraklığa dayanıklılığın fizyolojik, biyokimyasal ve moleküler düzeyde incelenmesi”, Doktora Tezi, Biyoloji Bölümü, Hacettepe Üniversitesi, Ankara, Türkiye, 2017.
Year 2021, Volume: 9 Issue: 1, 418 - 429, 31.01.2021
https://doi.org/10.29130/dubited.746811

Abstract

References

  • [1] O.A. El-Shihaby, M.M.N. Alla, M.E. Younis, Z.M. El-Bastawisy, “Effect of kinetin on photosynthetic activity and carbohydrate content in waterlogged or sea-water treated Vigna sinensis and Zea mays plants,” Plant Biosyst., vol. 136, pp. 277–90, 2002.
  • [2] T. Janda, E. Horváth, G. Szalaı, E. Páldı, “Role of salicylic acid in the induction of abiotic stress tolerance,” in Salicylic Acid-A Plant Hormone, S. Hayat and A. Ahmad, Eds., Dordrecht, Netherlands: Springer, 2007, pp. 91–150. [3] A. Larque-Saavedra, “The antitranspirant effect of acetylsalicylic acid on Phaseolus vulgaris L.,” Physiol. Plant., vol. 43, pp. 126-128, 1978.
  • [4] A. Larque-Saavedra, “Stomatal closure in response to acetylsalicylic acid treatments,” Z. Pflanzenphysiol., vol. 93, pp. 371-375, 1979.
  • [5] V. K. Rai, S. S. Sharma, S. Sharma, “Reversal of ABA-induced stomatal closure by phenolic compounds,” J. Exp. Bot., vol. 37, pp. 129-134, 1986.
  • [6] S. Hayat, B Ali, A. Ahmad, “Salicylic acid: Biosynthesis, metabolism and physiological role in plants,” in Salicylic Acid-A Plant Hormone, S. Hayat and A. Ahmad, Eds., Dordrecht, Netherlands: Springer, 2007, pp. 1–14.
  • [7] M. Yusuf, S. Hayat, M.N. Alyemeni, Q. Fariduddin, A. Ahmad, “Salicylic acid: Physiological roles in plants,” in Salicylic Acid, S. Hayat et. al., Eds., Dordrecht, Netherlands: Springer, 2013, pp. 15–30.
  • [8] A. Mateo, P. Muhlenbock, C. Rusterucci, C.C. Chang, Z. Miszalski, B. Karpinska, J.E. Parker, P.M. Mullineaux, S. Karpinski, “Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy,” Plant Physiol., vol. 136, pp. 2818-2830, 2004.
  • [9] M. Melotto, W. Underwood, J. Koczan, K. Nomura, S.Y. He, “Plant stomata function 568 in innate immunity against bacterial invasion,” Cell, vol. 126, pp. 969–980, 2006.
  • [10] S. Hayat, P. Maheshwari, A.S. Wani, M. Irfan, M.N. Alyemeni, A. Ahmad, “Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L.,” Plant Physiol Biochem., vol. 53, pp. 61–68, 2012.
  • [11] M. Yusuf, Q. Fariduddin, P. Varshney, A. Ahmad, “Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system,” Environ. Sci. Pollut. Res., vol. 19, pp. 8–18, 2012.
  • [12] A.N. Uzunova, L.P. Popova, “Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants,” Photosynthetica, vol. 38, pp. 243-250, 2000.
  • [13] Q. Fariduddin, S. Hayat, A. Ahmad, “Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea,” Photosynthetica, vol. 41, pp. 281-284, 2003.
  • [14] T. Janda, I. Majláth, G. Szalai, “Interaction of temperature and light in the development of freezing tolerance in plants,” J. Plant Growth. Regul., vol. 33, pp. 460–469, 2014.
  • [15] L.J. Wang, L. Fan, W. Loescher, W. Duan, G.J. Liu, J.S. Cheng, “Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves,” BMC Plant Biol., vol. 10, pp. 34–40, 2010.
  • [16] S. Hayat, Q. Fariduddin, B. Ali, A. Ahmad, “Effect of salicylic acid on growth and enzyme activities of wheat seedlings,” Acta Agron. Hung., vol. 53, pp. 433-437, 2005.
  • [17] N. Ghai, R.C. Setia, N. Setia, “Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1),” Phytomorphol., vol. 52, pp. 83-87, 2002.
  • [18] S. F. A. Khodary, “Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants,” Int. J. Agric. Biol., vol. 6, pp. 5-8, 2004.
  • [19] T. V. Pancheva, L. P. Popova, A. M. Uzunova, “Effect of salicylic acid on growth and photosynthesis in barley plants,” J. Plant Physiol., vol. 149, pp. 57-63, 1996.
  • [20] P. Kumar, N.J. Lakshmi, V. P. Mani, “Interactive effects of salicylic acid and phytohormones on photosynthesis and grain yield of soybean (Glycine max L. Merrill),” Physiol. Mol. Biol. Plants, vol. 6, pp. 179-186, 2000.
  • [21] W. Khan, B. Prithiviraj, D. L. Smith, “Photosynthetic responses of corn and soybean to foliar application of salicylates,” J. Plant Physiol., vol. 160, pp. 485-492, 2003.
  • [22] B. Singh, K. Usha, “Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress,” Plant Growth Regul., vol. 39, pp. 137-141, 2003.
  • [23] M. A. El Tayeb, “Response of barley grains to the interactive effect of salinity and salicylic acid,” Plant Growth Regul., vol. 45, pp. 215-224, 2005.
  • [24] R. Nazar, N. Iqbal, S. Syeed, N.A. Khan, “Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars,” J. Plant Physiol., vol. 168, pp. 807–815, 2011.
  • [25] J. Stevens, T. Senaratna, K. Sivasithamparam, “Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilisation,” Plant Growth Regul., vol. 49, pp. 77–83, 2006.
  • [26] P. Poór, K. Gémes, F. Horváth, A. Szepesi, M.L. Simon, I. Tari, “Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress,” Plant Biol., vol. 13, pp. 105–114, 2011.
  • [27] C. A. Leslie, R. J. Romani, “Inhibition of ethylene biosynthesis by salicylic acid,” Plant Physiol., vol. 88, pp. 833-837, 1988.
  • [28] H. J. Zhao, X. W. Lin, H. Z. Shi, S. M. Chang, “The regulating effects of phenolic compounds on the physiological characteristics and yield of soybeans,” Acta Agronomica Sinica, vol. 21, pp. 351–355, 1995.
  • [29] https://www.biotektohum.com.tr/index.php?route=modules/products&product_id=89 (Erişim Traihi: 10.11.2020)
  • [30] F. Bussotti, R. J. Strasser, M. Schaub, “Photosynthetic behavior of woody species under high ozone exposure probed with the JIP-test: A review,” Environmental Pollution, vol. 147, no. 3, pp. 430-437, 2007.
  • [31] A. Doğru, “Bazı arpa genotiplerinde kurşun toleransının klorofil a floresansı ile değerlendirilmesi,” Bartın University International Journal of Natural and Applied Science, c. 2, s. 2, ss. 228-238, 2019.
  • [32] V.N. Goltsev, H.M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, S.I. Allakhverdiev, “Variable Chlorophyll Fluorescence and Its Use for Assessing Physiological Condition of Plant Photosynthetic Apparatus”, Russian Journal of Plant Physiology, c. 63, s. 6, ss. 881-907, 2016.
  • [33] A. Doğru, S. Canavar, “Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri,” Academic Platform Journal of Engineering and Science, c. 8, s. 1, ss. 155-174, 2020.
  • [34] C. L. Noble, G. M. Halloran, D. W. West, “Identification and selection for salt tolerance in lucerne (Medicado sativa L.),” Australian Journal of Agricultural Research, vol. 35, pp. 239-252, 1984.
  • [35] M. Ashraf, “Breeding for salinity tolerance in plants,” Critical Reviews in Plant Science, vol. 13, pp. 17-42, 1994.
  • [36] M.C. Shannon, “Adaptation of plants to salinity,” Advances in Agronomy, vol. 60, pp. 75-119, 1998.
  • [37] M. Ashraf, “Salt tolerance of cotton: some new advances,” Critical Reviews in Plant Sciences, vol. 21, pp. 1-30, 2002.
  • [38] A. Doğru, M. Yılmaz Kaçar, “A preliminary study on salt tolerance of some barley genotypes,” SAU Journal of Science, vol. 23, pp. 755-762, 2019.
  • [39] M. H. Kalaji, S. Pietkiewicz, “Salinity effects on plant growth and other physiological processes,” Acta Physiologia Plantarum, vol. 143, pp. 89-124, 1993.
  • [40] G. C. Papageorgiou, N. Murata, “The unusually stron stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem complex,” Photosynthesis Research, vol. 44, pp. 243-252, 1995.
  • [41] M. H. Kalaji, P. Guo, “Chlorophyll fluorescence: A useful tool in barley plant breeding programs,” in Photochemistry Research Progress, A. Sanchez and S.J. Gutıerrez, Eds., New York, NY, USA: Nova Publishers, 2008, pp. 439-463.
  • [42] Y. Tanaka, T. Hibino, Y. Hayashi, A. Tanaka, S. Kishitani, T. Takabe, S. Yokota, T. Takabe, “Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts,” Plant Science, vol. 148, pp. 131-138, 1999.
  • [43] K. Maxwell, N. G. Johnson, “Chlorophyll fluorescence-a practical guide,” Journal of Experimental Botany, vol. 51, pp. 659-668, 2000.
  • [44] A. Doğru, H. Çakırlar, “Is leaf age a predictor for cold tolerance in winter oilseed rape plants?,” Functional Plant Biology, vol. 47, pp. 250-262, 2020.
  • [45] A. Doğru, H. Çakırlar, “Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes in winter rapeseeds leaves under cold acclimation conditions,” Brazilian Journal of Botany, vol. 43, pp. 11-20, 2020.
  • [46] O. Björkman, B. Demmig, “Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins,” Planta, vol. 170, pp. 489–504, 1987.
  • [47] K. Georgieva, H. L. Lichtenthaler, “Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence,” Journal of Plant Physiology, vol. 155, pp. 416-423, 1999.
  • [48] M. Ashraf, H. R. Athar, P. J. C. Harris, T. R. Kwon, “Some prospective strategies for improving crop salt tolerance,” Advances in Agronomy, vol. 97, pp. 45-110, 2008.
  • [49] C. A. Vlot, M. A. Dempsey, D. F. Klessig, “Salicylic acid, a multifaceted hormone to Combat disease,” Annual Review of Phytopathology, vol. 47, pp. 177–206, 2009.
  • [50] M. Arfan, H.R. Athar, M. Ashraf, “Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?,” J. Plant Physiol., vol. 6, no. 4, pp. 685-694, 2007.
  • [51] M. Iqbal, R. Khan , M. Asgher, Nafees A. Khan, “Alleviation of salt-induced photosynthesis and growth inhi bition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.),” Plant Physiology and Biochemistry, vol. 80, pp. 67-74, 2014.
  • [52] F. Palma, M. López-Gómez, N.A. Tejera, C. Lluch, “Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition,” Plant Sci., vol. 208, pp. 75-82, 2013.
  • [53] S. Yazdanpanah, A. Baghizadeh, F. Abbassi, “The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis,” Afr. J. Agric. Res., vol. 6, pp. 798-807, 2011.
  • [54] M.I.R. Khan, N. Iqbal, A. Masood, T.S. Per, N.A. Khan, “Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation,” Plant Signal. Behav., vol. 8, pp. 263-274, 2013.
  • [55] W. E. Pereira, D. L. de Siqueira, C. A. Martinez, M. Puiatti, “Gas exchange and chlorphyll fluorescence in four citrus rootstocks under aluminum stress,” Journal of Plant Physiology, vol. 157, pp. 513-520, 2000.
  • [56] W. Fricke, W. S. Peters, “The biophysics of leaf growth in salt-stressed barley a study at the cell level,” Plant Physiology, vol. 129, pp. 374-388, 2002.
  • [57] M. H. Kalaji, B. Govindjee, K. Bosa, J. Koscielniak, K. Z. Golaszewska, “Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces,” Environmental and Experimental Botany, vol. 73, pp. 64-72, 2011.
  • [58] N. Çiçek, H. Çakırlar, R. T. Strasser, “Arpa bitkisınde ultravıyole-B stresinin fotosistem II etkinliği üzerine etkisi”, Anadolu Üniversitesi Bilim ve Teknoloji Dergisi –C Yaşam Bilimleri ve Biyoteknoloji, c. 2, s. 1, ss. 9-19, 2012.
  • [59] R.J. Strasser, A. Srivastava, and K. B. Govindjee, “Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria”, Photochemistry and Photobiology, c. 61, ss. 32-42, 1995.
  • [60] G. Schansker, S.Z. Toth, R.J. Strasser, “Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of nonphotochemical quenching is related to an activated photosystem I acceptor side”, Biochimica et Biophysica Acta, c. 1757, ss. 787-797, 2006.
  • [61] C.B. Osmond, J. Ramus, G. Levavasseur, L.A. Franklin, W.J. Henley, “Fluorescence quenching during photosynthesis and photoinhibition of Ulva rotundata Blid”, Planta, c. 190, ss. 97-106, 1993.
  • [62] M. Tsimilli-Michael, P. Eggenberg, B. Biro, K. Köves-Pechy, I. Vörös, R. Strasser, “Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient OJIP”, Applied Soil Ecology, c. 15, s. 2, ss. 169-182, 2000.
  • [63] Ş. Çulha Erdal, “Aspir genotiplerinde kuraklığa dayanıklılığın fizyolojik, biyokimyasal ve moleküler düzeyde incelenmesi”, Doktora Tezi, Biyoloji Bölümü, Hacettepe Üniversitesi, Ankara, Türkiye, 2017.
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sezen Toksoy 0000-0002-1564-9465

Ali Doğru 0000-0003-0060-4691

Publication Date January 31, 2021
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Toksoy, S., & Doğru, A. (2021). Ekzojen Salisilik Asit Uygulamalarının Tuz Stresi Altındaki Hıyar Bitkilerinde Fotosistem II Aktivitesi Üzerindeki Etkileri. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 9(1), 418-429. https://doi.org/10.29130/dubited.746811
AMA Toksoy S, Doğru A. Ekzojen Salisilik Asit Uygulamalarının Tuz Stresi Altındaki Hıyar Bitkilerinde Fotosistem II Aktivitesi Üzerindeki Etkileri. DUBİTED. January 2021;9(1):418-429. doi:10.29130/dubited.746811
Chicago Toksoy, Sezen, and Ali Doğru. “Ekzojen Salisilik Asit Uygulamalarının Tuz Stresi Altındaki Hıyar Bitkilerinde Fotosistem II Aktivitesi Üzerindeki Etkileri”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 9, no. 1 (January 2021): 418-29. https://doi.org/10.29130/dubited.746811.
EndNote Toksoy S, Doğru A (January 1, 2021) Ekzojen Salisilik Asit Uygulamalarının Tuz Stresi Altındaki Hıyar Bitkilerinde Fotosistem II Aktivitesi Üzerindeki Etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9 1 418–429.
IEEE S. Toksoy and A. Doğru, “Ekzojen Salisilik Asit Uygulamalarının Tuz Stresi Altındaki Hıyar Bitkilerinde Fotosistem II Aktivitesi Üzerindeki Etkileri”, DUBİTED, vol. 9, no. 1, pp. 418–429, 2021, doi: 10.29130/dubited.746811.
ISNAD Toksoy, Sezen - Doğru, Ali. “Ekzojen Salisilik Asit Uygulamalarının Tuz Stresi Altındaki Hıyar Bitkilerinde Fotosistem II Aktivitesi Üzerindeki Etkileri”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9/1 (January 2021), 418-429. https://doi.org/10.29130/dubited.746811.
JAMA Toksoy S, Doğru A. Ekzojen Salisilik Asit Uygulamalarının Tuz Stresi Altındaki Hıyar Bitkilerinde Fotosistem II Aktivitesi Üzerindeki Etkileri. DUBİTED. 2021;9:418–429.
MLA Toksoy, Sezen and Ali Doğru. “Ekzojen Salisilik Asit Uygulamalarının Tuz Stresi Altındaki Hıyar Bitkilerinde Fotosistem II Aktivitesi Üzerindeki Etkileri”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 9, no. 1, 2021, pp. 418-29, doi:10.29130/dubited.746811.
Vancouver Toksoy S, Doğru A. Ekzojen Salisilik Asit Uygulamalarının Tuz Stresi Altındaki Hıyar Bitkilerinde Fotosistem II Aktivitesi Üzerindeki Etkileri. DUBİTED. 2021;9(1):418-29.