Research Article
BibTex RIS Cite

Güneş Enerjili Kurutma Sistemlerinde Parafin Kullanılarak Boya Çamurunun Kurutulması

Year 2021, Volume: 9 Issue: 1, 231 - 241, 31.01.2021
https://doi.org/10.29130/dubited.787257

Abstract

Güneş kurutucu sistemi, ileri bir doğal güneş kurutma teknolojisi olarak geniş alanlardada kullanılmaktadır. Bu çalışmanın amacı; atık boya çamurunun yönetimi sürecinde güneşle kurutmayı alternatif bir proses olarak incelemektir. Çalışmada faz değiştirme malzemesi olarak parafin içeren bir güneş kurutma sistemi tasarlanarak kurutma verimliliği araştırılmıştır. Kurutulan çamur kalınlığının düşük olması sebebiyle kurutma sırasında karıştırmanın etkisi gözlenememiştir. Kurutma işlemi 8 saatte 1849 Wh/m2 kümülatif güneş radyasyonu ile yapılmıştır. İç sıcaklık, nem, güneş radyasyonu, zaman, çamur kütlesi ve hacmini azaltmanın yanı sıra kurutucuda kullanılan ekipmanlar ısı transferini güçlendirmek için önemli faktörler olarak belirlenmiştir. Sistemde fan ile oluşturulan hava sirkülasyonunun yetersiz olduğu hesaplamalı akışkanlar dinamiği (HAD) ile tespit edilmiştir, ve simülasyon modeli kurutma sisteminin optimize edilmesi için kullanılmıştır. Gözenekli yapının oluşumu, bir tarama elektron mikroskobu (SEM) kullanılarak kurutulmuş çamurda gözlenmiştir. Atık boya çamurunun yönetiminde güneş kurutucusunun geliştirilmeler sonrası kullanılabilecek bir alternatif olduğu sonucuna varılmıştır.

References

  • [1] D. M. Parikh. (2014, April 1). Solids Drying: Basics and Applications [Online]. Available: https://www.chemengonline.com
  • [2] A. Murray, A. Horvath, K.L. Nelson, “Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: A case study from China,” Environmental Science and Technology, c. 42, s. 9, ss. 3163–3169, 2008.
  • [3] A. J. Perea-Moreno, A. Juaidi, F. Manzano-Agugliaro, “Solar greenhouse dryer system for wood chips improvement as biofuel,” Journal of Cleaner Production, c. 135, ss. 1233–1241, 2016.
  • [4] A. Fernández-García, E. Rojas, M. Pérez, R. Silva, Q. Hernández-Escobedo, F. Manzano-Agugliaro, “A parabolic-trough collector for cleaner industrial process heat,” Journal of Cleaner Production, c. 89, ss. 272–285, 2015.
  • [5] F. Rovense, “A case of study of a concentrating solar power plant with unfired Joule-Brayton cycle,” Energy Procedia, c. 82, ss. 978–985, 2015.
  • [6] X. Tong, Z. Sun, N. Sigrimis, T. Li, “Energy sustainability performance of a sliding cover solar greenhouse: Solar energy capture aspects,” Biosystems Engineering, c. 176, ss. 88–102, 2018.
  • [7] B. Nastasi, U. Di Matteo, “Solar Energy Technologies in Sustainable Energy Action Plans of Italian Big Cities,” Energy Procedia, c. 101, ss. 1064–1071, 2016.
  • [8] IEA International Energy Agency, World energy balances - Database documentation, Iea, ss. 793, 2019.
  • [9] S. Dharma, H.H. Masjuki, H.C. Ong, A.H. Sebayang, A.S. Silitonga, F. Kusumo, T.M.I. Mahlia, “Optimization of biodiesel production process for mixed Jatropha curcas-Ceiba pentandra biodiesel using response surface methodology,” Energy Conversion and Management, c. 115, ss. 178–190, 2016.
  • [10] A. S. Silitonga, H. H. Masjuki, H. C. Ong, A. H. Sebayang, S. Dharma, F. Kusumo, J. Siswantoro, J. Milano, K. Daud, T. M. I. Mahlia, W. H. Chen, B. Sugiyanto, “Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine,” Energy, c. 159, ss. 1075–1087, 2018.
  • [11] M. N. Uddin, K. Techato, J. Taweekun, M. M. Rahman, M.G. Rasul, T. M. I. Mahlia, S.M. Shrafur, “An overview of recent developments in biomass pyrolysis technologies,” Energy, c. 11, ss. 1–24, 2018.
  • [12] A. S. Silitonga, A.E. Atabani, T.M.I. Mahlia, H.H. Masjuki, I.A. Badruddin, S. Mekhilef, “A review on prospect of Jatropha curcas for biodiesel in Indonesia,” Renewable and Sustainable Energy Reviews, c. 15, s. 8, ss. 3733–3756, 2011.
  • [13] H.C. Ong, H.H. Masjuki, T.M.I. Mahlia, A.S. Silitonga, W.T. Chong, K.Y. Leong, “Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine,” Energy Conversion and Management, c. 81, ss. 30–40, 2014.
  • [14] European Council, “Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air C directive,” Official Journal of the European Commission, c. 163, ss. 41–60, 1999.
  • [15] L.E.I. Daud, I.N. Simate, “Drying Kinetics of Sliced Pineapples in a Solar Conduction Dryer,” Energy and Environment Research, c. 7, s. 2, ss. 14–26, 2017.
  • [16] J. Vaxelaire, P. Cézac, “Moisture distribution in activated sludges: A review,” Water Research, c. 38, s. 9, ss. 2214–2229, 2004.
  • [17] J. Kopp, N. Dichtl, “Influence of the free water content on the dewater ability of sewage sludges,” Water Science Technology, c. 44, s. 2, ss. 177–180, 2001.
  • [18] M. Bux, R. Baumann, S. Quadt, J. Pinnekamp, W. Mühlbauer, “Volume reduction and biological stabilization of sludge in small sewage plants by solar drying,” Drying Technology, c. 20, s. 4-5, ss. 829–837, 2002.
  • [19] V.K. Sharma, A. Colangelo, G. Spagna, “Experimental investigation of different solar dryers suitable for fruit and vegetable drying,” Renewable Energy, c. 6, s. 4, ss. 413–424, 1995.
  • [20] A. Bakhshipour, A. Jafari, A. Zomorodian, “Vision based features in moisture content measurement during raisin production,” World Applied Sciences Journal, c. 17, s. 7, ss. 860–869, 2012.
  • [21] Z. Chen, M.T. Afzal, A.A. Salema, “Microwave Drying of Wastewater Sewage Sludge,” Journal of Clean Energy Technologies, c. 2, s. 3, ss. 282–286, 2014.
  • [22] F.K. Forson, M.A.A. Nazha, H. Rajakaruna, “Modelling and experimental studies on a mixed-mode natural convection solar crop-dryer,” Solar Energy, c. 81, s. 3, ss. 346–357, 2007.
  • [23] P. Singh Chauhan, A. Kumar, P. Tekasakul, “Applications of software in solar drying systems: A review,” Renewable and Sustainable Energy Reviews, c. 51, ss. 1326–1337, 2015.
  • [24] E. K. Akpinar, “Experimental Investigation of Convective Heat Transfer Coefficient of Various Agricultural Products Under Open Sun Drying,” International Journal of Green Energy, c. 1, s. 4, ss. 429–440, 2005.
  • [25] K.N. Çerçi, M. Daş, “Modeling of heat transfer coefficient in solar greenhouse type drying systems,” Sustainability, c. 11, s. 18, ss. 1–16, 2019.
  • [26] S. Misha, A. Alqadhi, M.A.M. Rosli, A.A. Yusof, “Experimental investigation on indirect, natural and forced convection mixed mode solar dryer,” International Journal of Mechanical and Mechatronics Engineering, c. 18, s. 2, ss. 87–96, 2018.
  • [27] J.T. Kim, H.T. Ahn, H. Han, H.T. Kim, W. Chun, “The performance simulation of all-glass vacuum tubes with coaxial fluid conduit,” International Communications in Heat and Mass Transfer, c. 34, s. 5, ss. 587–597, 2007.
  • [28] R.S. Norhasyima, T.M.I. Mahlia, “Advances in CO2 utilization technology: A patent landscape review,” Journal of CO2 Utilization, c. 26, ss. 323–335, 2018.
  • [29] M.S. Ismail, M. Moghavvemi, T.M.I. Mahlia, “Characterization of PV panel and global optimization of its model parameters using genetic algorithm,” Energy Conversion and Management, c. 73, ss. 10–25, 2013.
  • [30] Y. Jin, Q. Wan, Y. Ding, “PCMs heat transfer performance enhancement with expanded graphite and its thermal stability,” Procedia Engineering, c. 102, ss. 1877–1884, 2015.
  • [31] S.S. Rokade, M.M. Wagh, J.S. Bagi, “A review of solar air dryers based on phase change materials as thermal storage,” Energy Safety and Energy Economy, c. 5, ss. 42–44, 2018.
  • [32] A. Agarwal, R.M. Sarviya, “Characterization of Commercial Grade Paraffin wax as Latent Heat Storage material for Solar dryers,” Materials Today: Proceedings, c. 4, s. 2, ss. 779–789, 2017.
  • [33] G. Salihoglu, N.K. Salihoglu, “A review on paint sludge from automotive industries: Generation, characteristics and management,” Journal of Environmental Management, c. 169, ss. 223–235, 2016.
  • [34] G. Osvaldo, “Solar Sludge Drying Technology and Dried Sludge as Renewable Energy Closing the Loop,” Journal of Traffic and Transportation Engineering, c. 4, s. 4, ss. 221–229, 2016.
  • [35] A. O. Adelaja, B. I. Babatope, “Analysis and Testing of a Natural Convection Solar Dryer for the Tropics,” Journal of Energy, c. 2013, s. 4, ss. 1–8, 2013.
  • [36] B.M.A. Amer, M.A. Hossain, K. Gottschalk, “Design and performance evaluation of a new hybrid solar dryer for banana,” Energy Conversion and Management, c. 51, ss. 813–820, 2010.
  • [37] M.Lalit Bal, S. SantoshSatya, S. N. Naik, M. Venkatesh, “Review of solar dryers with latent heat storage systems for agricultural products,” Renewable and Sustainable Energy Reviews, c. 15, ss. 876- 880, 2011.
  • [38] M. Song, Y. Songlin, Z. Biguang, Z. Dong, “Experimental Research of Grape Drying Using Solar Dryer with Latent Heat Storage System,” International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2011, ss. 740–742.
  • [39] TMMOB Makina Muhendisleri Odasi, Enerji Ekipmanları Yerli Üretimi Durum Değerlendirmesi ve Öneriler, MMO/621, 2014.

Drying of Paint Sludge Using Paraffin in Solar Drying Systems

Year 2021, Volume: 9 Issue: 1, 231 - 241, 31.01.2021
https://doi.org/10.29130/dubited.787257

Abstract

Solar dryers are widely used as an advanced natural drying technology. The purpose of this study is to examine the solar drying as an alternative step in the process of waste paint sludge management. In the study, a solar drying system containing paraffin as phase change material was designed. The drying efficiency of sludge was investigated. Due to the lower sludge thickness, the effect of mixing during drying was not observed. Drying was conducted for 8 hours with 1849Wh/m2 cumulative solar radiation. The indoor temperature, humidity, cumulative solar radiation, and time were determined as important parameters to be evaluated. Sludge mass and volume, equipment used in the dryer have been identified as other factors to strengthen heat transfer. It has been determined with the computational fluid dynamics (CFD) that the air circulation created by the fan is insufficient and simulation model was used to optimize the drying system. The formation of the porous structure was observed in dried sludge using a scanning electron microscope (SEM). It is concluded that the solar drying process is an alternative method that can be applied in the management of waste paint sludge if the solar dryer is developed.

References

  • [1] D. M. Parikh. (2014, April 1). Solids Drying: Basics and Applications [Online]. Available: https://www.chemengonline.com
  • [2] A. Murray, A. Horvath, K.L. Nelson, “Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: A case study from China,” Environmental Science and Technology, c. 42, s. 9, ss. 3163–3169, 2008.
  • [3] A. J. Perea-Moreno, A. Juaidi, F. Manzano-Agugliaro, “Solar greenhouse dryer system for wood chips improvement as biofuel,” Journal of Cleaner Production, c. 135, ss. 1233–1241, 2016.
  • [4] A. Fernández-García, E. Rojas, M. Pérez, R. Silva, Q. Hernández-Escobedo, F. Manzano-Agugliaro, “A parabolic-trough collector for cleaner industrial process heat,” Journal of Cleaner Production, c. 89, ss. 272–285, 2015.
  • [5] F. Rovense, “A case of study of a concentrating solar power plant with unfired Joule-Brayton cycle,” Energy Procedia, c. 82, ss. 978–985, 2015.
  • [6] X. Tong, Z. Sun, N. Sigrimis, T. Li, “Energy sustainability performance of a sliding cover solar greenhouse: Solar energy capture aspects,” Biosystems Engineering, c. 176, ss. 88–102, 2018.
  • [7] B. Nastasi, U. Di Matteo, “Solar Energy Technologies in Sustainable Energy Action Plans of Italian Big Cities,” Energy Procedia, c. 101, ss. 1064–1071, 2016.
  • [8] IEA International Energy Agency, World energy balances - Database documentation, Iea, ss. 793, 2019.
  • [9] S. Dharma, H.H. Masjuki, H.C. Ong, A.H. Sebayang, A.S. Silitonga, F. Kusumo, T.M.I. Mahlia, “Optimization of biodiesel production process for mixed Jatropha curcas-Ceiba pentandra biodiesel using response surface methodology,” Energy Conversion and Management, c. 115, ss. 178–190, 2016.
  • [10] A. S. Silitonga, H. H. Masjuki, H. C. Ong, A. H. Sebayang, S. Dharma, F. Kusumo, J. Siswantoro, J. Milano, K. Daud, T. M. I. Mahlia, W. H. Chen, B. Sugiyanto, “Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine,” Energy, c. 159, ss. 1075–1087, 2018.
  • [11] M. N. Uddin, K. Techato, J. Taweekun, M. M. Rahman, M.G. Rasul, T. M. I. Mahlia, S.M. Shrafur, “An overview of recent developments in biomass pyrolysis technologies,” Energy, c. 11, ss. 1–24, 2018.
  • [12] A. S. Silitonga, A.E. Atabani, T.M.I. Mahlia, H.H. Masjuki, I.A. Badruddin, S. Mekhilef, “A review on prospect of Jatropha curcas for biodiesel in Indonesia,” Renewable and Sustainable Energy Reviews, c. 15, s. 8, ss. 3733–3756, 2011.
  • [13] H.C. Ong, H.H. Masjuki, T.M.I. Mahlia, A.S. Silitonga, W.T. Chong, K.Y. Leong, “Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine,” Energy Conversion and Management, c. 81, ss. 30–40, 2014.
  • [14] European Council, “Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air C directive,” Official Journal of the European Commission, c. 163, ss. 41–60, 1999.
  • [15] L.E.I. Daud, I.N. Simate, “Drying Kinetics of Sliced Pineapples in a Solar Conduction Dryer,” Energy and Environment Research, c. 7, s. 2, ss. 14–26, 2017.
  • [16] J. Vaxelaire, P. Cézac, “Moisture distribution in activated sludges: A review,” Water Research, c. 38, s. 9, ss. 2214–2229, 2004.
  • [17] J. Kopp, N. Dichtl, “Influence of the free water content on the dewater ability of sewage sludges,” Water Science Technology, c. 44, s. 2, ss. 177–180, 2001.
  • [18] M. Bux, R. Baumann, S. Quadt, J. Pinnekamp, W. Mühlbauer, “Volume reduction and biological stabilization of sludge in small sewage plants by solar drying,” Drying Technology, c. 20, s. 4-5, ss. 829–837, 2002.
  • [19] V.K. Sharma, A. Colangelo, G. Spagna, “Experimental investigation of different solar dryers suitable for fruit and vegetable drying,” Renewable Energy, c. 6, s. 4, ss. 413–424, 1995.
  • [20] A. Bakhshipour, A. Jafari, A. Zomorodian, “Vision based features in moisture content measurement during raisin production,” World Applied Sciences Journal, c. 17, s. 7, ss. 860–869, 2012.
  • [21] Z. Chen, M.T. Afzal, A.A. Salema, “Microwave Drying of Wastewater Sewage Sludge,” Journal of Clean Energy Technologies, c. 2, s. 3, ss. 282–286, 2014.
  • [22] F.K. Forson, M.A.A. Nazha, H. Rajakaruna, “Modelling and experimental studies on a mixed-mode natural convection solar crop-dryer,” Solar Energy, c. 81, s. 3, ss. 346–357, 2007.
  • [23] P. Singh Chauhan, A. Kumar, P. Tekasakul, “Applications of software in solar drying systems: A review,” Renewable and Sustainable Energy Reviews, c. 51, ss. 1326–1337, 2015.
  • [24] E. K. Akpinar, “Experimental Investigation of Convective Heat Transfer Coefficient of Various Agricultural Products Under Open Sun Drying,” International Journal of Green Energy, c. 1, s. 4, ss. 429–440, 2005.
  • [25] K.N. Çerçi, M. Daş, “Modeling of heat transfer coefficient in solar greenhouse type drying systems,” Sustainability, c. 11, s. 18, ss. 1–16, 2019.
  • [26] S. Misha, A. Alqadhi, M.A.M. Rosli, A.A. Yusof, “Experimental investigation on indirect, natural and forced convection mixed mode solar dryer,” International Journal of Mechanical and Mechatronics Engineering, c. 18, s. 2, ss. 87–96, 2018.
  • [27] J.T. Kim, H.T. Ahn, H. Han, H.T. Kim, W. Chun, “The performance simulation of all-glass vacuum tubes with coaxial fluid conduit,” International Communications in Heat and Mass Transfer, c. 34, s. 5, ss. 587–597, 2007.
  • [28] R.S. Norhasyima, T.M.I. Mahlia, “Advances in CO2 utilization technology: A patent landscape review,” Journal of CO2 Utilization, c. 26, ss. 323–335, 2018.
  • [29] M.S. Ismail, M. Moghavvemi, T.M.I. Mahlia, “Characterization of PV panel and global optimization of its model parameters using genetic algorithm,” Energy Conversion and Management, c. 73, ss. 10–25, 2013.
  • [30] Y. Jin, Q. Wan, Y. Ding, “PCMs heat transfer performance enhancement with expanded graphite and its thermal stability,” Procedia Engineering, c. 102, ss. 1877–1884, 2015.
  • [31] S.S. Rokade, M.M. Wagh, J.S. Bagi, “A review of solar air dryers based on phase change materials as thermal storage,” Energy Safety and Energy Economy, c. 5, ss. 42–44, 2018.
  • [32] A. Agarwal, R.M. Sarviya, “Characterization of Commercial Grade Paraffin wax as Latent Heat Storage material for Solar dryers,” Materials Today: Proceedings, c. 4, s. 2, ss. 779–789, 2017.
  • [33] G. Salihoglu, N.K. Salihoglu, “A review on paint sludge from automotive industries: Generation, characteristics and management,” Journal of Environmental Management, c. 169, ss. 223–235, 2016.
  • [34] G. Osvaldo, “Solar Sludge Drying Technology and Dried Sludge as Renewable Energy Closing the Loop,” Journal of Traffic and Transportation Engineering, c. 4, s. 4, ss. 221–229, 2016.
  • [35] A. O. Adelaja, B. I. Babatope, “Analysis and Testing of a Natural Convection Solar Dryer for the Tropics,” Journal of Energy, c. 2013, s. 4, ss. 1–8, 2013.
  • [36] B.M.A. Amer, M.A. Hossain, K. Gottschalk, “Design and performance evaluation of a new hybrid solar dryer for banana,” Energy Conversion and Management, c. 51, ss. 813–820, 2010.
  • [37] M.Lalit Bal, S. SantoshSatya, S. N. Naik, M. Venkatesh, “Review of solar dryers with latent heat storage systems for agricultural products,” Renewable and Sustainable Energy Reviews, c. 15, ss. 876- 880, 2011.
  • [38] M. Song, Y. Songlin, Z. Biguang, Z. Dong, “Experimental Research of Grape Drying Using Solar Dryer with Latent Heat Storage System,” International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2011, ss. 740–742.
  • [39] TMMOB Makina Muhendisleri Odasi, Enerji Ekipmanları Yerli Üretimi Durum Değerlendirmesi ve Öneriler, MMO/621, 2014.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zeinab Amin 0000-0002-2284-3899

Görkem Yüksel 0000-0001-9513-2126

Güray Salihoğlu 0000-0003-0714-048X

N. Kamil Salihoğlu 0000-0002-7730-776X

Publication Date January 31, 2021
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Amin, Z., Yüksel, G., Salihoğlu, G., Salihoğlu, N. K. (2021). Güneş Enerjili Kurutma Sistemlerinde Parafin Kullanılarak Boya Çamurunun Kurutulması. Duzce University Journal of Science and Technology, 9(1), 231-241. https://doi.org/10.29130/dubited.787257
AMA Amin Z, Yüksel G, Salihoğlu G, Salihoğlu NK. Güneş Enerjili Kurutma Sistemlerinde Parafin Kullanılarak Boya Çamurunun Kurutulması. DUBİTED. January 2021;9(1):231-241. doi:10.29130/dubited.787257
Chicago Amin, Zeinab, Görkem Yüksel, Güray Salihoğlu, and N. Kamil Salihoğlu. “Güneş Enerjili Kurutma Sistemlerinde Parafin Kullanılarak Boya Çamurunun Kurutulması”. Duzce University Journal of Science and Technology 9, no. 1 (January 2021): 231-41. https://doi.org/10.29130/dubited.787257.
EndNote Amin Z, Yüksel G, Salihoğlu G, Salihoğlu NK (January 1, 2021) Güneş Enerjili Kurutma Sistemlerinde Parafin Kullanılarak Boya Çamurunun Kurutulması. Duzce University Journal of Science and Technology 9 1 231–241.
IEEE Z. Amin, G. Yüksel, G. Salihoğlu, and N. K. Salihoğlu, “Güneş Enerjili Kurutma Sistemlerinde Parafin Kullanılarak Boya Çamurunun Kurutulması”, DUBİTED, vol. 9, no. 1, pp. 231–241, 2021, doi: 10.29130/dubited.787257.
ISNAD Amin, Zeinab et al. “Güneş Enerjili Kurutma Sistemlerinde Parafin Kullanılarak Boya Çamurunun Kurutulması”. Duzce University Journal of Science and Technology 9/1 (January 2021), 231-241. https://doi.org/10.29130/dubited.787257.
JAMA Amin Z, Yüksel G, Salihoğlu G, Salihoğlu NK. Güneş Enerjili Kurutma Sistemlerinde Parafin Kullanılarak Boya Çamurunun Kurutulması. DUBİTED. 2021;9:231–241.
MLA Amin, Zeinab et al. “Güneş Enerjili Kurutma Sistemlerinde Parafin Kullanılarak Boya Çamurunun Kurutulması”. Duzce University Journal of Science and Technology, vol. 9, no. 1, 2021, pp. 231-4, doi:10.29130/dubited.787257.
Vancouver Amin Z, Yüksel G, Salihoğlu G, Salihoğlu NK. Güneş Enerjili Kurutma Sistemlerinde Parafin Kullanılarak Boya Çamurunun Kurutulması. DUBİTED. 2021;9(1):231-4.