Research Article
BibTex RIS Cite

Bazı Pestisitlerin Lipaz Enzimi Üzerine Etkisinin In vitro Koşullarda İncelenmesi

Year 2021, Volume: 9 Issue: 3 - Additional Issue, 273 - 279, 29.05.2021
https://doi.org/10.29130/dubited.772498

Abstract

Tarım alanında daha yüksek verimde ürün elde etmek için kullanılan pestisitlerin in vivo veya in vitro koşullarda hedef olmayan organizmaların enzim aktivitelerini etkilediği bilinmektedirler. Hedef olmayan organizmaya etki eden pestisitlerin sindirim sistemi enzimi olan lipaz enzimini olumsuz şekilde etkileyebileceği öngörülmüştür. Bu nedenle bu çalışmada tarım alanında yaygın kullanıldıkları bilinen diazinon (organofosfat sınıfı) ve karbaril (karbamat sınıfı) pestisitlerinin lipaz enzimi aktivitesi üzerine in vitro etkisi araştırıldı ve bu pestisitlerin lipaz enzimi üzerine etkili dozaj aralığı tespit edildi. 100-2500 ppm konsantrasyon aralığında diazinon ve karbaril ile muamele edien lipaz enziminin inhibe olduğu gözlemlendi. Maksimum Diazinon konsantrasyonunda lipaz enzim aktivitesi %2,05 olarak hesaplandı. Karbaril ise lipazı maksimum konsantrasyonda tamamen inhibe etti. Diazinon ve karbaril ile muamele edilen lipaz enzimi için Michaelis-Menten ve Lineweaver-Burk grafiği çizildi. Karbarilin, diazinon ile karşılaştırıldığında lipaz enzimi (Ki: 460.96 ± 28.25 mM; IC50: 2.5 ± 1.3 uM) için daha güçlü inhibitör etki gösterdiği belirlendi. Diazinon ile muamele edilen lipaz enziminin Ki ve IC50 değeri sırasıyla 481,32 ± 45,18mM ve 3,6 ± 0,9 uM olarak bulundu. Sonuçlar, C. rugosa lipazının in vitro olarak diazinon ve carbryl tarafından inhibe edildiğini gösterdi. C. rugosa lipazının katalitik aktivitesinin karbaril tarafından yarışmalı bir şekilde, ancak diazinon tarafından yarışmasız bir şekilde inhibe edildiği gösterildi.

Anahtar Kelimeler: Lipaz, Diazinon, Karbaril, Pestisit, İnhibisyon kinetiği

References

  • [1]. K. Gangadhara Reddya, G. Madhavia, B.E. Kumara Swamyb, S. Reddy, A. Vijaya Bhaskar Reddya,V. Madhavi, “Electrochemical investigations of lipase enzyme activity inhibition by methylparathion pesticide: Voltammetric studies”, Journal of Molecular Liquids, c. 180, 26–30, 2013. [2]. H. Paluzar, A. Sagiroglu, “In vitro effects of pesticide exposure on Bovine liver catalase activity”, Bulgarian Chemical Communications, c. 48, s. 4, 720-724, 2016.
  • [3]. K.H. Buchel, “Chemistry of Pesticides”, John Wiley & Sons, Inc. New York, USA; 1983.
  • [4]. B.F. Eldridge, “Pesticide application and safety training for applicators of public health pesticides”, California Department of Public Health, Vector-Borne Disease Section, Sacramento, CA, 2008.
  • [5]. A.M. Blacker, C. Lunchick, D.L. Bigot, V. Payraudeau, M.E. Krolski, “Toxicological Profile of Carbaryl”, Chapter 74 - Hayes' Handbook of Pesticide Toxicology (Third Edition), 2010.
  • [6]. N. Zehani, R. Kherrat, N. Jaffrezic-Renault, “Immobilization of Candida Rugosa Lipase on Aluminosilicate Incorporated in a Polymeric Membrane for the Elaboration of an Impedimetric Biosensor”, Sensors & Transducers, c. 27, 371-373, 2014.
  • [7]. D.B. Barr, B. Buckley, “In vivo biomarkers and biomonitoring in reproductive and development toxicity”, Reproductive and development toxicology, 253-265, 2011.
  • [8]. K.T. Kitchin, “An enzymatic approach to biotransformation”, Melth find exptl. Clin. pharmacol. C. 6, 303-310, 1984.
  • [9]. C. Barata, A. Solayen, C. Porte, “Role of B esterases in assessing toxicity of organophosphourus (clorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna”, Aquat. Toxicol. c. 66, 15-139, 2014.
  • [10]. H. Toumi, M. Boumaiza, M. Millet, C.M. Radetski, B.I. Camara, V. Felten, J.F. Ferard, “Investigation of differences in sensitivity between 3 strains of Daphnia magna (crustacean cladocera) exposed to malathion (organophosphorous pesticide)”, J.Environmental Sci. Health, Part B, c. 50, 34-44, 2015.
  • [11]. B.T. Burlingham, T.S. Widlanski, “An Intuitive Look at the Relationship of Ki and IC50: A More General Use for the Dixon Plot”, J. Chem. Educ., c. 80, s. 2, 214-218, 2003.
  • [12]. K.F. Tipton, “Patterns of enzyme inhibition”. In: Engel PC, editor. Enzymology Labfax. Oxford, UK, 1996.
  • [13]. M. Bradford, “A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”, Anal Biochem. 248-354, 1976.
  • [14]. M. Saadati,M. Mirzaei, “Insecticide-Enzyme Interaction: Cypermethrin, Chlorpyrifos, Diazinon and Deltamethrin with α-Amylase and Lipase in the Gut of Sunn Pest, Eurygaster Integriceps”, Biol Syst., c. 5, 2-6, 2016.
  • [15]. T.P. Dinh, “Functional role of monoglyceride lipase in endocannabinoid inactivation”, Phd Thesis, University of California, Irvine, 2004.
  • [16]. Y. Narita, K. Inouye, “Inhibitory effects of chlorogenic acids from green coffee beans and cinnamate derivatives on the activity of porcine pancreas α-amylase isozyme I”, Food Chem. c. 127, 1532-1539, 2011.

Investigation of Some Pesticides’s Effects on Lipase Under In vitro Conditions

Year 2021, Volume: 9 Issue: 3 - Additional Issue, 273 - 279, 29.05.2021
https://doi.org/10.29130/dubited.772498

Abstract

It is known that the enzyme activities of non-target organisms are influenced in vivo or in vitro by pesticides that play a major role to obtain higher yields in the field of agriculture. It is foreseen that the pesticides used for various purposes may negatively affect lipase, an enzyme of the digestive system, of the non target organisms. Therefore, in this study, in vitro effect of diazinon (organophosphate class) and carbaryl (carbamate class) pesticides, which are known to be widely used in agriculture, was investigated and an effective dosage range of these pesticides on lipase enzyme was determined. It was observed that the lipase enzyme treated with diazinon and carbaryl in the concentration range of 100-2500 ppm was inhibited. Lipase enzyme activity at maximum diazinon concentration was calculated as 2.05%. Carbaryl completely inhibited lipase at maximum concentration The Kinetics conformed to the Michaelis-Menten model and a Lineweaver-Burk graph of the lipase was drawn. Carbaryl showed the strongest inhibitory effect against lipase (Ki: 460.96±28.25 mM; IC50: 2.5±1.3 µM) in comparison to diazinon. In the case of diazinon, Ki and IC50 value were found as 481.32±45.18mM and 3.6±0.9 µM for the lipase, respectively. The results showed that C. rugosa lipase are inhibited by diazinon and carbryl in vitro. It was shown that the catalytic activity of C. rugosa lipase is inhibited competitively by carbaryl but noncompetitively by diazinon.
Keywords: Lipase, Diazinon, Carbaryl, Pesticide, Inhibition kinetics

References

  • [1]. K. Gangadhara Reddya, G. Madhavia, B.E. Kumara Swamyb, S. Reddy, A. Vijaya Bhaskar Reddya,V. Madhavi, “Electrochemical investigations of lipase enzyme activity inhibition by methylparathion pesticide: Voltammetric studies”, Journal of Molecular Liquids, c. 180, 26–30, 2013. [2]. H. Paluzar, A. Sagiroglu, “In vitro effects of pesticide exposure on Bovine liver catalase activity”, Bulgarian Chemical Communications, c. 48, s. 4, 720-724, 2016.
  • [3]. K.H. Buchel, “Chemistry of Pesticides”, John Wiley & Sons, Inc. New York, USA; 1983.
  • [4]. B.F. Eldridge, “Pesticide application and safety training for applicators of public health pesticides”, California Department of Public Health, Vector-Borne Disease Section, Sacramento, CA, 2008.
  • [5]. A.M. Blacker, C. Lunchick, D.L. Bigot, V. Payraudeau, M.E. Krolski, “Toxicological Profile of Carbaryl”, Chapter 74 - Hayes' Handbook of Pesticide Toxicology (Third Edition), 2010.
  • [6]. N. Zehani, R. Kherrat, N. Jaffrezic-Renault, “Immobilization of Candida Rugosa Lipase on Aluminosilicate Incorporated in a Polymeric Membrane for the Elaboration of an Impedimetric Biosensor”, Sensors & Transducers, c. 27, 371-373, 2014.
  • [7]. D.B. Barr, B. Buckley, “In vivo biomarkers and biomonitoring in reproductive and development toxicity”, Reproductive and development toxicology, 253-265, 2011.
  • [8]. K.T. Kitchin, “An enzymatic approach to biotransformation”, Melth find exptl. Clin. pharmacol. C. 6, 303-310, 1984.
  • [9]. C. Barata, A. Solayen, C. Porte, “Role of B esterases in assessing toxicity of organophosphourus (clorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna”, Aquat. Toxicol. c. 66, 15-139, 2014.
  • [10]. H. Toumi, M. Boumaiza, M. Millet, C.M. Radetski, B.I. Camara, V. Felten, J.F. Ferard, “Investigation of differences in sensitivity between 3 strains of Daphnia magna (crustacean cladocera) exposed to malathion (organophosphorous pesticide)”, J.Environmental Sci. Health, Part B, c. 50, 34-44, 2015.
  • [11]. B.T. Burlingham, T.S. Widlanski, “An Intuitive Look at the Relationship of Ki and IC50: A More General Use for the Dixon Plot”, J. Chem. Educ., c. 80, s. 2, 214-218, 2003.
  • [12]. K.F. Tipton, “Patterns of enzyme inhibition”. In: Engel PC, editor. Enzymology Labfax. Oxford, UK, 1996.
  • [13]. M. Bradford, “A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”, Anal Biochem. 248-354, 1976.
  • [14]. M. Saadati,M. Mirzaei, “Insecticide-Enzyme Interaction: Cypermethrin, Chlorpyrifos, Diazinon and Deltamethrin with α-Amylase and Lipase in the Gut of Sunn Pest, Eurygaster Integriceps”, Biol Syst., c. 5, 2-6, 2016.
  • [15]. T.P. Dinh, “Functional role of monoglyceride lipase in endocannabinoid inactivation”, Phd Thesis, University of California, Irvine, 2004.
  • [16]. Y. Narita, K. Inouye, “Inhibitory effects of chlorogenic acids from green coffee beans and cinnamate derivatives on the activity of porcine pancreas α-amylase isozyme I”, Food Chem. c. 127, 1532-1539, 2011.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hatice Palüzar 0000-0001-9232-8748

Publication Date May 29, 2021
Published in Issue Year 2021 Volume: 9 Issue: 3 - Additional Issue

Cite

APA Palüzar, H. (2021). Investigation of Some Pesticides’s Effects on Lipase Under In vitro Conditions. Duzce University Journal of Science and Technology, 9(3), 273-279. https://doi.org/10.29130/dubited.772498
AMA Palüzar H. Investigation of Some Pesticides’s Effects on Lipase Under In vitro Conditions. DUBİTED. May 2021;9(3):273-279. doi:10.29130/dubited.772498
Chicago Palüzar, Hatice. “Investigation of Some Pesticides’s Effects on Lipase Under In Vitro Conditions”. Duzce University Journal of Science and Technology 9, no. 3 (May 2021): 273-79. https://doi.org/10.29130/dubited.772498.
EndNote Palüzar H (May 1, 2021) Investigation of Some Pesticides’s Effects on Lipase Under In vitro Conditions. Duzce University Journal of Science and Technology 9 3 273–279.
IEEE H. Palüzar, “Investigation of Some Pesticides’s Effects on Lipase Under In vitro Conditions”, DUBİTED, vol. 9, no. 3, pp. 273–279, 2021, doi: 10.29130/dubited.772498.
ISNAD Palüzar, Hatice. “Investigation of Some Pesticides’s Effects on Lipase Under In Vitro Conditions”. Duzce University Journal of Science and Technology 9/3 (May 2021), 273-279. https://doi.org/10.29130/dubited.772498.
JAMA Palüzar H. Investigation of Some Pesticides’s Effects on Lipase Under In vitro Conditions. DUBİTED. 2021;9:273–279.
MLA Palüzar, Hatice. “Investigation of Some Pesticides’s Effects on Lipase Under In Vitro Conditions”. Duzce University Journal of Science and Technology, vol. 9, no. 3, 2021, pp. 273-9, doi:10.29130/dubited.772498.
Vancouver Palüzar H. Investigation of Some Pesticides’s Effects on Lipase Under In vitro Conditions. DUBİTED. 2021;9(3):273-9.