Research Article
BibTex RIS Cite

Synthesis and Characterization of Pr3+doped ZnO Nanoparticles by Hydrothermal Method

Year 2021, Volume: 9 Issue: 3 - Additional Issue, 393 - 405, 29.05.2021
https://doi.org/10.29130/dubited.816181

Abstract

In this study, Pr dopedZnO [Zn1-x PrxO (where x = 0.01,0.02,0.03,0.04,0.05)] nanoparticles with praseodymium (Pr3+) doped were synthesized by hydrothermal technique. The hydrothermal technique for the preparation of Pr doped ZnO nanostructures at different concentrationsis to an easy, fast and efficient method. The crystal structures, crystal morphologies and optical properties of synthesized nanoparticles were characterized by X-ray diffraction (XRD), Energy dispersive X-ray (EDX), surface morphology scanning electronmicroscope (SEM) and DiffusereflactanceUV-VIS spectroscopy.XRD studies showed that all Pr doped ZnO samples had hexagona lcrystal structure and Pr3+ ions were successfully incorporated into ZnO nanostructures, and there were nopeaks of Pr or praseodymiumoxide diffraction peaks in the pattern. From the SEM images, it was seen that ZnO becomes denser and more compact as the Pr concentrationin creases in the crystal structure. In the EDX results, the presence of Zn, O and Pr peaks in the composition of the synthesized samples were detected. Energy band gaps were calculated from the optical measurements of all samples and it was observed that the calculated energy band gap values increased with the praseodymium concentration.

References

  • [1] R. S. Sreedharan, R. Vinokumar, I. Navas, R. Prabhu ve V. P. MahadevanPillai, “Influence of Pr doping on thestructural, morphological, optical, luminescentandnon-linearopticalproperties of RF-sputtered ZnO films,” The Minerals, Metals and Mater. Society c. 68, s.1, ss. 341-350, 2016.
  • [1] R. S. Sreedharan, R. Vinokumar, I. Navas, R. Prabhu ve V. P. MahadevanPillai, “Influence of Pr doping on thestructural, morphological, optical, luminescentandnon-linearopticalproperties of RF-sputtered ZnO films,” The Minerals, Metals and Mater. Society c. 68, s.1, ss. 341-350, 2016.
  • [2] D. Kouyate, J. C. R. Haret ve J. Kossanyi “Electroluminescence of rareearths-doped semi conducting zincoxide electrodes: Kinetic aspects of the energy transfer between Sm3+and Eu3+”J. Lumin., c. 55, ss. 209-216,1993.
  • [2] D. Kouyate, J. C. R. Haret ve J. Kossanyi “Electroluminescence of rareearths-doped semi conducting zincoxide electrodes: Kinetic aspects of the energy transfer between Sm3+and Eu3+”J. Lumin., c. 55, ss. 209-216,1993.
  • [3] Y. Hayashi, H. Narahara, T. Uchida, T. Noguchi ve S. Ibuki, “Photoluminescence of Eu-doped znophosphors,” Jpn. J. Appl. Phys., c. 34, ss. 1878, 1995.
  • [3] Y. Hayashi, H. Narahara, T. Uchida, T. Noguchi ve S. Ibuki, “Photoluminescence of Eu-doped znophosphors,” Jpn. J. Appl. Phys., c. 34, ss. 1878, 1995.
  • [4] S. Bachir, K. Azuma, J. Kossanyi, P. Valat ve J.C.R. Haret, “Photoluminescence of polycrystalline zincoxideco-activated with trivalent rare earth ion sandlithium. Insertion of rare-earthionsintozincoxide,” J. Lumin., c. 75, ss. 35, 1997.
  • [4] S. Bachir, K. Azuma, J. Kossanyi, P. Valat ve J.C.R. Haret, “Photoluminescence of polycrystalline zincoxideco-activated with trivalent rare earth ion sandlithium. Insertion of rare-earthionsintozincoxide,” J. Lumin., c. 75, ss. 35, 1997.
  • [5] S. Bhushan, A. N. Pandey ve B. R. Kaza, “Photo- and electroluminescence of undoped and rare earth doped ZnO electroluminors,” J. Lumin., c. 20, ss. 29, 1979.
  • [5] S. Bhushan, A. N. Pandey ve B. R. Kaza, “Photo- and electroluminescence of undoped and rare earth doped ZnO electroluminors,” J. Lumin., c. 20, ss. 29, 1979.
  • [6] K. Yu, J. Shi, Z. Zhang, Y. Liang ve W. Liu, “Synthesis, characterization, and photocatalysis of ZnO and Er-Doped ZnO,” J. of Nanomaterials, c. 2013, ss. 1-5, 2013.
  • [6] K. Yu, J. Shi, Z. Zhang, Y. Liang ve W. Liu, “Synthesis, characterization, and photocatalysis of ZnO and Er-Doped ZnO,” J. of Nanomaterials, c. 2013, ss. 1-5, 2013.
  • [7] R. Zamiri, A. Kaushal, A. Rebelo ve J. M. F. Ferreira,“Er doped ZnO nanoplates: Synthesis, optical and dielectricproperties,” Ceramics International, c. 40, s. 1B, ss.1635-1639, 2014.
  • [7] R. Zamiri, A. Kaushal, A. Rebelo ve J. M. F. Ferreira,“Er doped ZnO nanoplates: Synthesis, optical and dielectricproperties,” Ceramics International, c. 40, s. 1B, ss.1635-1639, 2014.
  • [8] R. Zamiri, A. F. Lemos, A. Rebelo, H. A. Ahangarb ve J. M. F. Ferreiraa, “Effects of rare-earth (Er, La and Yb) doping on morphology and structureproperties of ZnO nanostructures prepared by wetchemical method,” Ceramics International, c. 40, s. 1A, ss. 523-529, 2014.
  • [8] R. Zamiri, A. F. Lemos, A. Rebelo, H. A. Ahangarb ve J. M. F. Ferreiraa, “Effects of rare-earth (Er, La and Yb) doping on morphology and structureproperties of ZnO nanostructures prepared by wetchemical method,” Ceramics International, c. 40, s. 1A, ss. 523-529, 2014.
  • [9] S. D. Senol, “Hydrothermal derived nanostructure rare earth (Er, Yb)-doped ZnO: structural, optical and electrical properties,” Journal of Materials Science: Materials in Electronics, c. 27, ss. 7767–7775, 2016.
  • [9] S. D. Senol, “Hydrothermal derived nanostructure rare earth (Er, Yb)-doped ZnO: structural, optical and electrical properties,” Journal of Materials Science: Materials in Electronics, c. 27, ss. 7767–7775, 2016.
  • [10] G. Zhengguang, C. Shouhong ve Y. Ping, “Electronic and optical Properties of Al, EuSingle-Doped and Al-EuCo-Doped ZnO,” Jom, c. 73, s. 1, ss. 373-379, ‏2021
  • [10] G. Zhengguang, C. Shouhong ve Y. Ping, “Electronic and optical Properties of Al, EuSingle-Doped and Al-EuCo-Doped ZnO,” Jom, c. 73, s. 1, ss. 373-379, ‏2021
  • [11] J. L. Frieiro, C. Guillaume, J. Lopez-Vidrier, O Blázquez, S. González-Torres, C. Labbé, S .Hernández, X. Portier ve B. Garrido, “Toward RGB LEDs based on rareearth-doped ZnO,” Nanotechnology, c. 31, s. 46, ss. 465207, 2020.
  • [11] J. L. Frieiro, C. Guillaume, J. Lopez-Vidrier, O Blázquez, S. González-Torres, C. Labbé, S .Hernández, X. Portier ve B. Garrido, “Toward RGB LEDs based on rareearth-doped ZnO,” Nanotechnology, c. 31, s. 46, ss. 465207, 2020.
  • [12] S. Fuentes, R. Espinoza-Gonzalez, M. Rosales, J.León, “Effects of Eu3+ on the morphological, structural and optical properties of BaTiO3@ZnO:Eunanoparticles,”Journal of Alloys and Compounds, c. 846, ss. 156452, 2020.
  • [12] S. Fuentes, R. Espinoza-Gonzalez, M. Rosales, J.León, “Effects of Eu3+ on the morphological, structural and optical properties of BaTiO3@ZnO:Eunanoparticles,”Journal of Alloys and Compounds, c. 846, ss. 156452, 2020.
  • [13] L. Arda, “The effects of Tb doped ZnO nanorod: An EPR study,” J. Of Magnetism and Magnetic Materials, c. 475, ss. 93-501, 2019.
  • [13] L. Arda, “The effects of Tb doped ZnO nanorod: An EPR study,” J. Of Magnetism and Magnetic Materials, c. 475, ss. 93-501, 2019.
  • [14] S. Kaya, D. Akcan, O. Ozturk ve L. Arda,“Enhanced mechanical properties of yttriumdoped ZnO nanoparticles as determined by instrument edindentation technique,” Ceramic Int., c. 44, s. 9, ss.10306-10314, 2018
  • [14] S. Kaya, D. Akcan, O. Ozturk ve L. Arda,“Enhanced mechanical properties of yttriumdoped ZnO nanoparticles as determined by instrument edindentation technique,” Ceramic Int., c. 44, s. 9, ss.10306-10314, 2018
  • [15] E. Asikuzun, O. Ozturk, L. Arda ve C. Terzioğlu, “Microstructural and electrical characterizations of transparent Er-doped ZnO nanothin films prepared by sol-gel process,” Journal of Materials Science: Materials in Electronics, c. 28, s. 19, ss.14314-14322, 2017.
  • [15] E. Asikuzun, O. Ozturk, L. Arda ve C. Terzioğlu, “Microstructural and electrical characterizations of transparent Er-doped ZnO nanothin films prepared by sol-gel process,” Journal of Materials Science: Materials in Electronics, c. 28, s. 19, ss.14314-14322, 2017.
  • [16] E. Asikuzun ve O. Ozturk, “Comparison of theoretical and experimental microhardness of tetrahedralbinary Zn1-xErxO semiconductor polycrystalline nanoparticles,” CeramicInt., c.45, s.4, ss.4176-4183, 2019.
  • [16] E. Asikuzun ve O. Ozturk, “Comparison of theoretical and experimental microhardness of tetrahedralbinary Zn1-xErxO semiconductor polycrystalline nanoparticles,” CeramicInt., c.45, s.4, ss.4176-4183, 2019.
  • [17] J. L. Chen, N. Devi, N. Li, D. J. Fuand ve X. W. Ke, “Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties,” Chin. Phys. B, c. 27, s.8, ss.086102, 2018.
  • [17] J. L. Chen, N. Devi, N. Li, D. J. Fuand ve X. W. Ke, “Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties,” Chin. Phys. B, c. 27, s.8, ss.086102, 2018.
  • [18] V. Bhardwaj, A. Kumar, R. Chowdhury ve R. Jayaganthan, “Nanoindentation and nanoscratch behavior of ZnO: Pr thin films deposited by DC sputtering,” Journal of Materials Research, c. 33, s.17, ss. 2533-2544, 2018.
  • [18] V. Bhardwaj, A. Kumar, R. Chowdhury ve R. Jayaganthan, “Nanoindentation and nanoscratch behavior of ZnO: Pr thin films deposited by DC sputtering,” Journal of Materials Research, c. 33, s.17, ss. 2533-2544, 2018.
  • [19] I. Ahmad, M. S. Akhtar, E. Ahmed ve M. Ahmad, “Facile synthesis of Pr-doped ZnO photocatalyst using sol–gel method and its visible light photo catalytic activity,” Journal of Materials Science: Materials in Electronics, c. 31, ss. 1084–1093, 2020.
  • [19] I. Ahmad, M. S. Akhtar, E. Ahmed ve M. Ahmad, “Facile synthesis of Pr-doped ZnO photocatalyst using sol–gel method and its visible light photo catalytic activity,” Journal of Materials Science: Materials in Electronics, c. 31, ss. 1084–1093, 2020.
  • [20] M. H. Wang, Z. Y. Zhao ve T. T.Liu, “Synthesis of Pr-doped ZnO nanoparticles by sol–gel method and varistor properties study,” Journal of Alloys and Compounds, c. 621, s. 5, ss. 220-224, 2015.
  • [20] M. H. Wang, Z. Y. Zhao ve T. T.Liu, “Synthesis of Pr-doped ZnO nanoparticles by sol–gel method and varistor properties study,” Journal of Alloys and Compounds, c. 621, s. 5, ss. 220-224, 2015.
  • [21] W. R. W. Abdullah, A. Zakaria ve M. S. M. Ghazali, “Synthesis mechanism of low-voltage praseodymium oxide doped zincoxide varistor ceramics prepared through modified citrate gel coating,” Int. J. Mol. Sci, c. 13, ss. 5278-5289, 2012.
  • [21] W. R. W. Abdullah, A. Zakaria ve M. S. M. Ghazali, “Synthesis mechanism of low-voltage praseodymium oxide doped zincoxide varistor ceramics prepared through modified citrate gel coating,” Int. J. Mol. Sci, c. 13, ss. 5278-5289, 2012.
  • [22] Y. Inoue, M. Okamoto, T. Kawahara ve J. Morimoto, “Photoacoustic spectra on Pr doped ZnO powders,” Journal of Alloys and Compounds, c. 408–412, s. 9, ss. 1234-1237, 2006.
  • [22] Y. Inoue, M. Okamoto, T. Kawahara ve J. Morimoto, “Photoacoustic spectra on Pr doped ZnO powders,” Journal of Alloys and Compounds, c. 408–412, s. 9, ss. 1234-1237, 2006.
  • [23] P. Ilanchezhiyan, G. M. Kumar, M. Subramanian ve R. Jayavel, “Effect of Pr doping on the structural and optical properties of ZnO nanorods,” Mater. Sci. Eng. B, c. 175, ss. 238–242, 2010.
  • [23] P. Ilanchezhiyan, G. M. Kumar, M. Subramanian ve R. Jayavel, “Effect of Pr doping on the structural and optical properties of ZnO nanorods,” Mater. Sci. Eng. B, c. 175, ss. 238–242, 2010.
  • [24] S. M. C. Miranda, M. Peres, T. Monteiro, E. Alves, H. D. Sun, T. Geruschke, R. Vianden ve K. Lorenz, “Rapid thermal annealing of rare earth implanted ZnO epitaxial layers,” Opt.Mater., c. 33, ss. 1139–1142, 2011.
  • [24] S. M. C. Miranda, M. Peres, T. Monteiro, E. Alves, H. D. Sun, T. Geruschke, R. Vianden ve K. Lorenz, “Rapid thermal annealing of rare earth implanted ZnO epitaxial layers,” Opt.Mater., c. 33, ss. 1139–1142, 2011.
  • [25] M. Balestrieri, M. Gallart, M. Ziegler, P. F. Bazylewski, G. Ferblantier, G. Schmerber, G. S. Chang, P. Gilliot, D. Muller, A. Slaoui, S. Colis ve A. Dinia, “Luminescent propertiesand energy transfer in Pr3+ doped and Pr3+-Yb3+ co-doped ZnO thin films,” J. Phys. Chem.C, c. 118, ss. 13775–13780, 2014.
  • [25] M. Balestrieri, M. Gallart, M. Ziegler, P. F. Bazylewski, G. Ferblantier, G. Schmerber, G. S. Chang, P. Gilliot, D. Muller, A. Slaoui, S. Colis ve A. Dinia, “Luminescent propertiesand energy transfer in Pr3+ doped and Pr3+-Yb3+ co-doped ZnO thin films,” J. Phys. Chem.C, c. 118, ss. 13775–13780, 2014.
  • [26] K. Mukae, A. Ohi ve A. Tanaka, “Electronic interface states at grain boundaries in ZnO:Pr varistors by single grain boundary measurements,” J. Eur. Ceram. Soc.,c. 2, ss.1871–1874, 2001.
  • [26] K. Mukae, A. Ohi ve A. Tanaka, “Electronic interface states at grain boundaries in ZnO:Pr varistors by single grain boundary measurements,” J. Eur. Ceram. Soc.,c. 2, ss.1871–1874, 2001.
  • [27] W. J. Sun, R. Yang, X. Qu, M. H. Wang ve H. P. Zhang, “Microstructure and varistor properties of Pr–Coco-doped ZnO ceramics obtained by sol–gel method,” Journal of MaterialsScience: Materials in Electronics, c. 28, ss.10166–10172, 2017.
  • [27] W. J. Sun, R. Yang, X. Qu, M. H. Wang ve H. P. Zhang, “Microstructure and varistor properties of Pr–Coco-doped ZnO ceramics obtained by sol–gel method,” Journal of MaterialsScience: Materials in Electronics, c. 28, ss.10166–10172, 2017.
  • [28] F. I. H. Rhouma, F. Belkhiria, E. Bouzaiene, M. Daoudi, K. Taibi, J. Dhahrib ve R. Chtouroua, “The structure and photoluminescence of a ZnO phosphor synthesized by the sol gel method underpraseodymium doping,” RSC Adv., c. 9, ss. 5206–5217, 2019.
  • [28] F. I. H. Rhouma, F. Belkhiria, E. Bouzaiene, M. Daoudi, K. Taibi, J. Dhahrib ve R. Chtouroua, “The structure and photoluminescence of a ZnO phosphor synthesized by the sol gel method underpraseodymium doping,” RSC Adv., c. 9, ss. 5206–5217, 2019.
  • [29] K. Deva, A. Kumar, R. Thomas, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify ve J. Thirumalai, “Analysis of Pr co-doped Al:ZnO thin films using feasible nebulizer spray technique foropto electronic technology,” Applied Physics A, c. 125, ss. 712, 2019.
  • [29] K. Deva, A. Kumar, R. Thomas, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify ve J. Thirumalai, “Analysis of Pr co-doped Al:ZnO thin films using feasible nebulizer spray technique foropto electronic technology,” Applied Physics A, c. 125, ss. 712, 2019.
  • [30] N. K. Divya ve P. P. Pradyumnan, “Photoluminescence quenching and photo catalytic enhancement of Pr-doped ZnO nanocrystals,” Bull. Mater. Sci.,c. 40, s. 7, ss.1405–1413,2017.
  • [30] N. K. Divya ve P. P. Pradyumnan, “Photoluminescence quenching and photo catalytic enhancement of Pr-doped ZnO nanocrystals,” Bull. Mater. Sci.,c. 40, s. 7, ss.1405–1413,2017.
  • [31] A. Khataee, A. Karimi, S. Arefi-Oskoui, R. Darvishi Cheshmeh Soltani, Y. Hanifehpour, B . Soltani ve S. W. Joo, “Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of AcidRed 17,” Ultrasonic Sonochem.,c. 22, ss. 371-381, 2015.
  • [31] A. Khataee, A. Karimi, S. Arefi-Oskoui, R. Darvishi Cheshmeh Soltani, Y. Hanifehpour, B . Soltani ve S. W. Joo, “Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of AcidRed 17,” Ultrasonic Sonochem.,c. 22, ss. 371-381, 2015.
  • [32] K. Summaiyya; K. Amit, A. A.Khan, T. Athar, H. Fouad, Z. A. Ansari, S. H. Kee ve S. G. Ansari, “Electrochemical nanodevice based on Praseodymium doped zinc oxide synthesized by hydrothermal method,” Journal of Nanoelectronics and Optoelectronics, c. 12, s. 3, ss. 236-241, 2017.
  • [32] K. Summaiyya; K. Amit, A. A.Khan, T. Athar, H. Fouad, Z. A. Ansari, S. H. Kee ve S. G. Ansari, “Electrochemical nanodevice based on Praseodymium doped zinc oxide synthesized by hydrothermal method,” Journal of Nanoelectronics and Optoelectronics, c. 12, s. 3, ss. 236-241, 2017.
  • [33] M. İmamoglu,“Synthesis and characterization of ZnO based semiconductors with doped rare earth metals,” Yüksek lisans tezi, Kimya, Fen bilimleri Enstitüsü, Bolu Abant İzzet Baysal Üniversitesi, Bolu, Türkiye, 2019.
  • [33] M. İmamoglu,“Synthesis and characterization of ZnO based semiconductors with doped rare earth metals,” Yüksek lisans tezi, Kimya, Fen bilimleri Enstitüsü, Bolu Abant İzzet Baysal Üniversitesi, Bolu, Türkiye, 2019.
  • [34] V. Petricek, M. Dusek ve L. Palatinus, “JANA2006, the crystallographic computing system” Z. Kristallogr., c. 229, s. 5, ss.345, 2014.
  • [34] V. Petricek, M. Dusek ve L. Palatinus, “JANA2006, the crystallographic computing system” Z. Kristallogr., c. 229, s. 5, ss.345, 2014.
  • [35] V. Biju, N. Sugathan, V. Vrinda ve S. L. Salini, “Estimation of latticestrain in anocrystalline Silver from X-ray diffractionline broadening,” J. Mater. Sci., c. 43, ss. 1175–1179, 2008.
  • [35] V. Biju, N. Sugathan, V. Vrinda ve S. L. Salini, “Estimation of latticestrain in anocrystalline Silver from X-ray diffractionline broadening,” J. Mater. Sci., c. 43, ss. 1175–1179, 2008.
  • [36] V.Vaiano, M. Matarangolo, O.Sacco ve D. Sannino,“Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts,” Appl. Catal. B., c. 209, ss. 621, 2017.
  • [36] V.Vaiano, M. Matarangolo, O.Sacco ve D. Sannino,“Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts,” Appl. Catal. B., c. 209, ss. 621, 2017.
  • [37] E. Burnstein,“Anomalous optical absorption limit in InSb,” Physics Review, c. 93, ss. 632, 1954.
  • [37] E. Burnstein,“Anomalous optical absorption limit in InSb,” Physics Review, c. 93, ss. 632, 1954.

Pr3+ Katkılı ZnO Nanoparçacıkların Hidrotermal Yöntemle Sentezi ve Karakterizasyonu

Year 2021, Volume: 9 Issue: 3 - Additional Issue, 393 - 405, 29.05.2021
https://doi.org/10.29130/dubited.816181

Abstract

Bu çalışmada Praseodimyum(Pr3+) katkılı ZnO [Zn1-xPrxO(x=0.01,0.02,0.03,0.04,0.05)] nanoparçacıklar kolay, hızlı ve verimli bir yöntem olan hidrotermal yöntem ile sentezlenmiştir. Sentezlenen nanoparçacıkların, kristal yapıları X-ışını kırınımıyla (XRD), yüzey morfolojileri taramalı elektron mikroskobu (SEM) ve enerji dağıtıcı X-ışını dağılımlarıyla (EDX), optik özellikleri ise dağılma yansıma (DRS UV-VIS) spektroskopisi kullanılarak karakterize edilmiştir. XRD karakterizasyonunda tüm Pr3+katkılı ZnO örneklerinin hekzagonal (wurzite) yapıda oluştuğu, praseodimyum veya praseodimyumoksit’e ait herhangi bir kırınım pikinin oluşmadığı gözlemlenmiştir. SEM görüntülerinden ZnO'in kristal yapısında Pr konsantrasyonu arttıkça daha yoğun ve daha kompakt halde olduğu görülmüştür. EDX sonuçlarından ise, sentezlenen örneklerin bileşiminde Zn, O ve Pr piklerinin varlığı tespit edilmiştir. Tüm numunelerin optik ölçümlerinden enerji bant aralıkları hesaplanmış ve hesaplanan enerji bant aralığı değerlerinin, praseodimyum konsantrasyonu ile arttığı görülmüştür.

References

  • [1] R. S. Sreedharan, R. Vinokumar, I. Navas, R. Prabhu ve V. P. MahadevanPillai, “Influence of Pr doping on thestructural, morphological, optical, luminescentandnon-linearopticalproperties of RF-sputtered ZnO films,” The Minerals, Metals and Mater. Society c. 68, s.1, ss. 341-350, 2016.
  • [1] R. S. Sreedharan, R. Vinokumar, I. Navas, R. Prabhu ve V. P. MahadevanPillai, “Influence of Pr doping on thestructural, morphological, optical, luminescentandnon-linearopticalproperties of RF-sputtered ZnO films,” The Minerals, Metals and Mater. Society c. 68, s.1, ss. 341-350, 2016.
  • [2] D. Kouyate, J. C. R. Haret ve J. Kossanyi “Electroluminescence of rareearths-doped semi conducting zincoxide electrodes: Kinetic aspects of the energy transfer between Sm3+and Eu3+”J. Lumin., c. 55, ss. 209-216,1993.
  • [2] D. Kouyate, J. C. R. Haret ve J. Kossanyi “Electroluminescence of rareearths-doped semi conducting zincoxide electrodes: Kinetic aspects of the energy transfer between Sm3+and Eu3+”J. Lumin., c. 55, ss. 209-216,1993.
  • [3] Y. Hayashi, H. Narahara, T. Uchida, T. Noguchi ve S. Ibuki, “Photoluminescence of Eu-doped znophosphors,” Jpn. J. Appl. Phys., c. 34, ss. 1878, 1995.
  • [3] Y. Hayashi, H. Narahara, T. Uchida, T. Noguchi ve S. Ibuki, “Photoluminescence of Eu-doped znophosphors,” Jpn. J. Appl. Phys., c. 34, ss. 1878, 1995.
  • [4] S. Bachir, K. Azuma, J. Kossanyi, P. Valat ve J.C.R. Haret, “Photoluminescence of polycrystalline zincoxideco-activated with trivalent rare earth ion sandlithium. Insertion of rare-earthionsintozincoxide,” J. Lumin., c. 75, ss. 35, 1997.
  • [4] S. Bachir, K. Azuma, J. Kossanyi, P. Valat ve J.C.R. Haret, “Photoluminescence of polycrystalline zincoxideco-activated with trivalent rare earth ion sandlithium. Insertion of rare-earthionsintozincoxide,” J. Lumin., c. 75, ss. 35, 1997.
  • [5] S. Bhushan, A. N. Pandey ve B. R. Kaza, “Photo- and electroluminescence of undoped and rare earth doped ZnO electroluminors,” J. Lumin., c. 20, ss. 29, 1979.
  • [5] S. Bhushan, A. N. Pandey ve B. R. Kaza, “Photo- and electroluminescence of undoped and rare earth doped ZnO electroluminors,” J. Lumin., c. 20, ss. 29, 1979.
  • [6] K. Yu, J. Shi, Z. Zhang, Y. Liang ve W. Liu, “Synthesis, characterization, and photocatalysis of ZnO and Er-Doped ZnO,” J. of Nanomaterials, c. 2013, ss. 1-5, 2013.
  • [6] K. Yu, J. Shi, Z. Zhang, Y. Liang ve W. Liu, “Synthesis, characterization, and photocatalysis of ZnO and Er-Doped ZnO,” J. of Nanomaterials, c. 2013, ss. 1-5, 2013.
  • [7] R. Zamiri, A. Kaushal, A. Rebelo ve J. M. F. Ferreira,“Er doped ZnO nanoplates: Synthesis, optical and dielectricproperties,” Ceramics International, c. 40, s. 1B, ss.1635-1639, 2014.
  • [7] R. Zamiri, A. Kaushal, A. Rebelo ve J. M. F. Ferreira,“Er doped ZnO nanoplates: Synthesis, optical and dielectricproperties,” Ceramics International, c. 40, s. 1B, ss.1635-1639, 2014.
  • [8] R. Zamiri, A. F. Lemos, A. Rebelo, H. A. Ahangarb ve J. M. F. Ferreiraa, “Effects of rare-earth (Er, La and Yb) doping on morphology and structureproperties of ZnO nanostructures prepared by wetchemical method,” Ceramics International, c. 40, s. 1A, ss. 523-529, 2014.
  • [8] R. Zamiri, A. F. Lemos, A. Rebelo, H. A. Ahangarb ve J. M. F. Ferreiraa, “Effects of rare-earth (Er, La and Yb) doping on morphology and structureproperties of ZnO nanostructures prepared by wetchemical method,” Ceramics International, c. 40, s. 1A, ss. 523-529, 2014.
  • [9] S. D. Senol, “Hydrothermal derived nanostructure rare earth (Er, Yb)-doped ZnO: structural, optical and electrical properties,” Journal of Materials Science: Materials in Electronics, c. 27, ss. 7767–7775, 2016.
  • [9] S. D. Senol, “Hydrothermal derived nanostructure rare earth (Er, Yb)-doped ZnO: structural, optical and electrical properties,” Journal of Materials Science: Materials in Electronics, c. 27, ss. 7767–7775, 2016.
  • [10] G. Zhengguang, C. Shouhong ve Y. Ping, “Electronic and optical Properties of Al, EuSingle-Doped and Al-EuCo-Doped ZnO,” Jom, c. 73, s. 1, ss. 373-379, ‏2021
  • [10] G. Zhengguang, C. Shouhong ve Y. Ping, “Electronic and optical Properties of Al, EuSingle-Doped and Al-EuCo-Doped ZnO,” Jom, c. 73, s. 1, ss. 373-379, ‏2021
  • [11] J. L. Frieiro, C. Guillaume, J. Lopez-Vidrier, O Blázquez, S. González-Torres, C. Labbé, S .Hernández, X. Portier ve B. Garrido, “Toward RGB LEDs based on rareearth-doped ZnO,” Nanotechnology, c. 31, s. 46, ss. 465207, 2020.
  • [11] J. L. Frieiro, C. Guillaume, J. Lopez-Vidrier, O Blázquez, S. González-Torres, C. Labbé, S .Hernández, X. Portier ve B. Garrido, “Toward RGB LEDs based on rareearth-doped ZnO,” Nanotechnology, c. 31, s. 46, ss. 465207, 2020.
  • [12] S. Fuentes, R. Espinoza-Gonzalez, M. Rosales, J.León, “Effects of Eu3+ on the morphological, structural and optical properties of BaTiO3@ZnO:Eunanoparticles,”Journal of Alloys and Compounds, c. 846, ss. 156452, 2020.
  • [12] S. Fuentes, R. Espinoza-Gonzalez, M. Rosales, J.León, “Effects of Eu3+ on the morphological, structural and optical properties of BaTiO3@ZnO:Eunanoparticles,”Journal of Alloys and Compounds, c. 846, ss. 156452, 2020.
  • [13] L. Arda, “The effects of Tb doped ZnO nanorod: An EPR study,” J. Of Magnetism and Magnetic Materials, c. 475, ss. 93-501, 2019.
  • [13] L. Arda, “The effects of Tb doped ZnO nanorod: An EPR study,” J. Of Magnetism and Magnetic Materials, c. 475, ss. 93-501, 2019.
  • [14] S. Kaya, D. Akcan, O. Ozturk ve L. Arda,“Enhanced mechanical properties of yttriumdoped ZnO nanoparticles as determined by instrument edindentation technique,” Ceramic Int., c. 44, s. 9, ss.10306-10314, 2018
  • [14] S. Kaya, D. Akcan, O. Ozturk ve L. Arda,“Enhanced mechanical properties of yttriumdoped ZnO nanoparticles as determined by instrument edindentation technique,” Ceramic Int., c. 44, s. 9, ss.10306-10314, 2018
  • [15] E. Asikuzun, O. Ozturk, L. Arda ve C. Terzioğlu, “Microstructural and electrical characterizations of transparent Er-doped ZnO nanothin films prepared by sol-gel process,” Journal of Materials Science: Materials in Electronics, c. 28, s. 19, ss.14314-14322, 2017.
  • [15] E. Asikuzun, O. Ozturk, L. Arda ve C. Terzioğlu, “Microstructural and electrical characterizations of transparent Er-doped ZnO nanothin films prepared by sol-gel process,” Journal of Materials Science: Materials in Electronics, c. 28, s. 19, ss.14314-14322, 2017.
  • [16] E. Asikuzun ve O. Ozturk, “Comparison of theoretical and experimental microhardness of tetrahedralbinary Zn1-xErxO semiconductor polycrystalline nanoparticles,” CeramicInt., c.45, s.4, ss.4176-4183, 2019.
  • [16] E. Asikuzun ve O. Ozturk, “Comparison of theoretical and experimental microhardness of tetrahedralbinary Zn1-xErxO semiconductor polycrystalline nanoparticles,” CeramicInt., c.45, s.4, ss.4176-4183, 2019.
  • [17] J. L. Chen, N. Devi, N. Li, D. J. Fuand ve X. W. Ke, “Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties,” Chin. Phys. B, c. 27, s.8, ss.086102, 2018.
  • [17] J. L. Chen, N. Devi, N. Li, D. J. Fuand ve X. W. Ke, “Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties,” Chin. Phys. B, c. 27, s.8, ss.086102, 2018.
  • [18] V. Bhardwaj, A. Kumar, R. Chowdhury ve R. Jayaganthan, “Nanoindentation and nanoscratch behavior of ZnO: Pr thin films deposited by DC sputtering,” Journal of Materials Research, c. 33, s.17, ss. 2533-2544, 2018.
  • [18] V. Bhardwaj, A. Kumar, R. Chowdhury ve R. Jayaganthan, “Nanoindentation and nanoscratch behavior of ZnO: Pr thin films deposited by DC sputtering,” Journal of Materials Research, c. 33, s.17, ss. 2533-2544, 2018.
  • [19] I. Ahmad, M. S. Akhtar, E. Ahmed ve M. Ahmad, “Facile synthesis of Pr-doped ZnO photocatalyst using sol–gel method and its visible light photo catalytic activity,” Journal of Materials Science: Materials in Electronics, c. 31, ss. 1084–1093, 2020.
  • [19] I. Ahmad, M. S. Akhtar, E. Ahmed ve M. Ahmad, “Facile synthesis of Pr-doped ZnO photocatalyst using sol–gel method and its visible light photo catalytic activity,” Journal of Materials Science: Materials in Electronics, c. 31, ss. 1084–1093, 2020.
  • [20] M. H. Wang, Z. Y. Zhao ve T. T.Liu, “Synthesis of Pr-doped ZnO nanoparticles by sol–gel method and varistor properties study,” Journal of Alloys and Compounds, c. 621, s. 5, ss. 220-224, 2015.
  • [20] M. H. Wang, Z. Y. Zhao ve T. T.Liu, “Synthesis of Pr-doped ZnO nanoparticles by sol–gel method and varistor properties study,” Journal of Alloys and Compounds, c. 621, s. 5, ss. 220-224, 2015.
  • [21] W. R. W. Abdullah, A. Zakaria ve M. S. M. Ghazali, “Synthesis mechanism of low-voltage praseodymium oxide doped zincoxide varistor ceramics prepared through modified citrate gel coating,” Int. J. Mol. Sci, c. 13, ss. 5278-5289, 2012.
  • [21] W. R. W. Abdullah, A. Zakaria ve M. S. M. Ghazali, “Synthesis mechanism of low-voltage praseodymium oxide doped zincoxide varistor ceramics prepared through modified citrate gel coating,” Int. J. Mol. Sci, c. 13, ss. 5278-5289, 2012.
  • [22] Y. Inoue, M. Okamoto, T. Kawahara ve J. Morimoto, “Photoacoustic spectra on Pr doped ZnO powders,” Journal of Alloys and Compounds, c. 408–412, s. 9, ss. 1234-1237, 2006.
  • [22] Y. Inoue, M. Okamoto, T. Kawahara ve J. Morimoto, “Photoacoustic spectra on Pr doped ZnO powders,” Journal of Alloys and Compounds, c. 408–412, s. 9, ss. 1234-1237, 2006.
  • [23] P. Ilanchezhiyan, G. M. Kumar, M. Subramanian ve R. Jayavel, “Effect of Pr doping on the structural and optical properties of ZnO nanorods,” Mater. Sci. Eng. B, c. 175, ss. 238–242, 2010.
  • [23] P. Ilanchezhiyan, G. M. Kumar, M. Subramanian ve R. Jayavel, “Effect of Pr doping on the structural and optical properties of ZnO nanorods,” Mater. Sci. Eng. B, c. 175, ss. 238–242, 2010.
  • [24] S. M. C. Miranda, M. Peres, T. Monteiro, E. Alves, H. D. Sun, T. Geruschke, R. Vianden ve K. Lorenz, “Rapid thermal annealing of rare earth implanted ZnO epitaxial layers,” Opt.Mater., c. 33, ss. 1139–1142, 2011.
  • [24] S. M. C. Miranda, M. Peres, T. Monteiro, E. Alves, H. D. Sun, T. Geruschke, R. Vianden ve K. Lorenz, “Rapid thermal annealing of rare earth implanted ZnO epitaxial layers,” Opt.Mater., c. 33, ss. 1139–1142, 2011.
  • [25] M. Balestrieri, M. Gallart, M. Ziegler, P. F. Bazylewski, G. Ferblantier, G. Schmerber, G. S. Chang, P. Gilliot, D. Muller, A. Slaoui, S. Colis ve A. Dinia, “Luminescent propertiesand energy transfer in Pr3+ doped and Pr3+-Yb3+ co-doped ZnO thin films,” J. Phys. Chem.C, c. 118, ss. 13775–13780, 2014.
  • [25] M. Balestrieri, M. Gallart, M. Ziegler, P. F. Bazylewski, G. Ferblantier, G. Schmerber, G. S. Chang, P. Gilliot, D. Muller, A. Slaoui, S. Colis ve A. Dinia, “Luminescent propertiesand energy transfer in Pr3+ doped and Pr3+-Yb3+ co-doped ZnO thin films,” J. Phys. Chem.C, c. 118, ss. 13775–13780, 2014.
  • [26] K. Mukae, A. Ohi ve A. Tanaka, “Electronic interface states at grain boundaries in ZnO:Pr varistors by single grain boundary measurements,” J. Eur. Ceram. Soc.,c. 2, ss.1871–1874, 2001.
  • [26] K. Mukae, A. Ohi ve A. Tanaka, “Electronic interface states at grain boundaries in ZnO:Pr varistors by single grain boundary measurements,” J. Eur. Ceram. Soc.,c. 2, ss.1871–1874, 2001.
  • [27] W. J. Sun, R. Yang, X. Qu, M. H. Wang ve H. P. Zhang, “Microstructure and varistor properties of Pr–Coco-doped ZnO ceramics obtained by sol–gel method,” Journal of MaterialsScience: Materials in Electronics, c. 28, ss.10166–10172, 2017.
  • [27] W. J. Sun, R. Yang, X. Qu, M. H. Wang ve H. P. Zhang, “Microstructure and varistor properties of Pr–Coco-doped ZnO ceramics obtained by sol–gel method,” Journal of MaterialsScience: Materials in Electronics, c. 28, ss.10166–10172, 2017.
  • [28] F. I. H. Rhouma, F. Belkhiria, E. Bouzaiene, M. Daoudi, K. Taibi, J. Dhahrib ve R. Chtouroua, “The structure and photoluminescence of a ZnO phosphor synthesized by the sol gel method underpraseodymium doping,” RSC Adv., c. 9, ss. 5206–5217, 2019.
  • [28] F. I. H. Rhouma, F. Belkhiria, E. Bouzaiene, M. Daoudi, K. Taibi, J. Dhahrib ve R. Chtouroua, “The structure and photoluminescence of a ZnO phosphor synthesized by the sol gel method underpraseodymium doping,” RSC Adv., c. 9, ss. 5206–5217, 2019.
  • [29] K. Deva, A. Kumar, R. Thomas, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify ve J. Thirumalai, “Analysis of Pr co-doped Al:ZnO thin films using feasible nebulizer spray technique foropto electronic technology,” Applied Physics A, c. 125, ss. 712, 2019.
  • [29] K. Deva, A. Kumar, R. Thomas, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify ve J. Thirumalai, “Analysis of Pr co-doped Al:ZnO thin films using feasible nebulizer spray technique foropto electronic technology,” Applied Physics A, c. 125, ss. 712, 2019.
  • [30] N. K. Divya ve P. P. Pradyumnan, “Photoluminescence quenching and photo catalytic enhancement of Pr-doped ZnO nanocrystals,” Bull. Mater. Sci.,c. 40, s. 7, ss.1405–1413,2017.
  • [30] N. K. Divya ve P. P. Pradyumnan, “Photoluminescence quenching and photo catalytic enhancement of Pr-doped ZnO nanocrystals,” Bull. Mater. Sci.,c. 40, s. 7, ss.1405–1413,2017.
  • [31] A. Khataee, A. Karimi, S. Arefi-Oskoui, R. Darvishi Cheshmeh Soltani, Y. Hanifehpour, B . Soltani ve S. W. Joo, “Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of AcidRed 17,” Ultrasonic Sonochem.,c. 22, ss. 371-381, 2015.
  • [31] A. Khataee, A. Karimi, S. Arefi-Oskoui, R. Darvishi Cheshmeh Soltani, Y. Hanifehpour, B . Soltani ve S. W. Joo, “Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of AcidRed 17,” Ultrasonic Sonochem.,c. 22, ss. 371-381, 2015.
  • [32] K. Summaiyya; K. Amit, A. A.Khan, T. Athar, H. Fouad, Z. A. Ansari, S. H. Kee ve S. G. Ansari, “Electrochemical nanodevice based on Praseodymium doped zinc oxide synthesized by hydrothermal method,” Journal of Nanoelectronics and Optoelectronics, c. 12, s. 3, ss. 236-241, 2017.
  • [32] K. Summaiyya; K. Amit, A. A.Khan, T. Athar, H. Fouad, Z. A. Ansari, S. H. Kee ve S. G. Ansari, “Electrochemical nanodevice based on Praseodymium doped zinc oxide synthesized by hydrothermal method,” Journal of Nanoelectronics and Optoelectronics, c. 12, s. 3, ss. 236-241, 2017.
  • [33] M. İmamoglu,“Synthesis and characterization of ZnO based semiconductors with doped rare earth metals,” Yüksek lisans tezi, Kimya, Fen bilimleri Enstitüsü, Bolu Abant İzzet Baysal Üniversitesi, Bolu, Türkiye, 2019.
  • [33] M. İmamoglu,“Synthesis and characterization of ZnO based semiconductors with doped rare earth metals,” Yüksek lisans tezi, Kimya, Fen bilimleri Enstitüsü, Bolu Abant İzzet Baysal Üniversitesi, Bolu, Türkiye, 2019.
  • [34] V. Petricek, M. Dusek ve L. Palatinus, “JANA2006, the crystallographic computing system” Z. Kristallogr., c. 229, s. 5, ss.345, 2014.
  • [34] V. Petricek, M. Dusek ve L. Palatinus, “JANA2006, the crystallographic computing system” Z. Kristallogr., c. 229, s. 5, ss.345, 2014.
  • [35] V. Biju, N. Sugathan, V. Vrinda ve S. L. Salini, “Estimation of latticestrain in anocrystalline Silver from X-ray diffractionline broadening,” J. Mater. Sci., c. 43, ss. 1175–1179, 2008.
  • [35] V. Biju, N. Sugathan, V. Vrinda ve S. L. Salini, “Estimation of latticestrain in anocrystalline Silver from X-ray diffractionline broadening,” J. Mater. Sci., c. 43, ss. 1175–1179, 2008.
  • [36] V.Vaiano, M. Matarangolo, O.Sacco ve D. Sannino,“Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts,” Appl. Catal. B., c. 209, ss. 621, 2017.
  • [36] V.Vaiano, M. Matarangolo, O.Sacco ve D. Sannino,“Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts,” Appl. Catal. B., c. 209, ss. 621, 2017.
  • [37] E. Burnstein,“Anomalous optical absorption limit in InSb,” Physics Review, c. 93, ss. 632, 1954.
  • [37] E. Burnstein,“Anomalous optical absorption limit in InSb,” Physics Review, c. 93, ss. 632, 1954.
There are 74 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sevim Demirözü Şenol 0000-0002-5322-963X

Melike İmamoğlu This is me 0000-0001-8489-976X

Publication Date May 29, 2021
Published in Issue Year 2021 Volume: 9 Issue: 3 - Additional Issue

Cite

APA Demirözü Şenol, S., & İmamoğlu, M. (2021). Pr3+ Katkılı ZnO Nanoparçacıkların Hidrotermal Yöntemle Sentezi ve Karakterizasyonu. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 9(3), 393-405. https://doi.org/10.29130/dubited.816181
AMA Demirözü Şenol S, İmamoğlu M. Pr3+ Katkılı ZnO Nanoparçacıkların Hidrotermal Yöntemle Sentezi ve Karakterizasyonu. DUBİTED. May 2021;9(3):393-405. doi:10.29130/dubited.816181
Chicago Demirözü Şenol, Sevim, and Melike İmamoğlu. “Pr3+ Katkılı ZnO Nanoparçacıkların Hidrotermal Yöntemle Sentezi Ve Karakterizasyonu”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 9, no. 3 (May 2021): 393-405. https://doi.org/10.29130/dubited.816181.
EndNote Demirözü Şenol S, İmamoğlu M (May 1, 2021) Pr3+ Katkılı ZnO Nanoparçacıkların Hidrotermal Yöntemle Sentezi ve Karakterizasyonu. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9 3 393–405.
IEEE S. Demirözü Şenol and M. İmamoğlu, “Pr3+ Katkılı ZnO Nanoparçacıkların Hidrotermal Yöntemle Sentezi ve Karakterizasyonu”, DUBİTED, vol. 9, no. 3, pp. 393–405, 2021, doi: 10.29130/dubited.816181.
ISNAD Demirözü Şenol, Sevim - İmamoğlu, Melike. “Pr3+ Katkılı ZnO Nanoparçacıkların Hidrotermal Yöntemle Sentezi Ve Karakterizasyonu”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9/3 (May 2021), 393-405. https://doi.org/10.29130/dubited.816181.
JAMA Demirözü Şenol S, İmamoğlu M. Pr3+ Katkılı ZnO Nanoparçacıkların Hidrotermal Yöntemle Sentezi ve Karakterizasyonu. DUBİTED. 2021;9:393–405.
MLA Demirözü Şenol, Sevim and Melike İmamoğlu. “Pr3+ Katkılı ZnO Nanoparçacıkların Hidrotermal Yöntemle Sentezi Ve Karakterizasyonu”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 9, no. 3, 2021, pp. 393-05, doi:10.29130/dubited.816181.
Vancouver Demirözü Şenol S, İmamoğlu M. Pr3+ Katkılı ZnO Nanoparçacıkların Hidrotermal Yöntemle Sentezi ve Karakterizasyonu. DUBİTED. 2021;9(3):393-405.