Review
BibTex RIS Cite

Perovskit Güneş Pilleri ve Kararsızlık Problemleri Üzerine Bir Araştırma

Year 2021, Volume: 9 Issue: 3 - Additional Issue, 158 - 171, 29.05.2021
https://doi.org/10.29130/dubited.836702

Abstract

Günümüzde yaygın olarak kullanılan yenilenemeyen enerji kaynaklarının (kömür, doğalgaz, petrol vb.) çevre üzerinde zararlı etkileri bulunmaktadır. Ayrıca bu tür kaynaklar kullanıldıkça tükenme sorunuyla karşılaşmaktadırlar. Dünyanın enerji ihtiyacını, doğaya zarar vermeden ve sürdürülebilir bir formda üretebilmek için yenilenemeyen enerji kaynakları yerine yenilenebilir enerji kaynaklarının kullanımı yaygınlaştırılmalıdır. Potansiyeli en yüksek olan yenilenebilir enerji kaynağı güneştir. Bu bağlamda güneşten enerji elde edebilmek için de güneş pilleri kullanılmaktadır. Literatürde güneş enerjisinden enerji elde edebilmek için çoğunlukla silisyum bazlı güneş pillerinin kullanıldığı belirtilmektedir. Ama bu silisyum bazlı güneş pillerinin üretimi oldukça zor ve maliyetlidir. Bu güneş pillerinin olumsuzluklarını ortadan kaldırmak için literatürde güneş pilleri üzerine çalışmaların yapıldığı görülmektedir. Bu bağlamda organik güneş pillerinden biri olan perovskit güneş pilleri üzerinde birçok araştırma yapılmıştır. Perovskit güneş pillerinin verimi, ilk üretimlerinden çok kısa bir süre sonra diğer güneş pilleri ile rekabet edebilecek seviyeye çıkmıştır. Ayrıca bu güneş pillerinin maliyeti de oldukça düşüktür. Ancak perovskit güneş pilleri üretildikten sonra kararsızlık problemleri ile karşılaşmaktadırlar. Bu makalede, güneş enerjisi ve güneş pilleri ile ilgili literatürdeki makalelerin derlemesi ve değerlendirilmesi yapılmıştır.

References

  • [1] T. Jia, Y. Dai, ve R. Wang, “Refining energy sources in winemaking industry by using solar energy as alternatives for fosil fuels: A review and perspective,” Renewable and Sustainable Energy Reviews, vol. 88, pp.278-296, 2018.
  • [2] A. C. Marques, J. A. Fuinhas, ve D. A. Pereira, “Have fossil fuels been substituted by renewables? An empirical assessment for 10 European countries,” Energy Policy, vol.116, pp.257-265, 2018.
  • [3] A. Çiğan, ve R. Yamaçlı, “Doğal enerji, sürdürülebilir kalkınma ve mimarlık politikaları,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.8, s.1, ss.554-571, 2020.
  • [4] Z. Ö. Özdemir ve K. Günduğar, ‘‘Birinci, ikinci nesil biyoetanol üretimi ve Türkiye’deki biyoetanol üretiminin durumu & kapasitesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.7, s.3, ss.1290-1298, 2019
  • [5] Z. Zhang, Z. Li, L. Meng, S.Y. Lien, ve P. Gao, “Perovskite based tandem solar cells: get the most out of the Sun,” Advanced Functional Materials, c. 30, s. 38, ss. 2001904, 2020.
  • [6] A. Khare, “A critical review on the efficiency improvement of upconversion assisted solar cells,” Journal of Alloys and Compounds, vol. 82, pp.153214, 2020.
  • [7] S. B. Darling, F. You, T. Veselka, ve A. Velosa, “Assumptions and the levelized cost of energy for photovoltaics,” Energy & Environmental Science, vol. 4, no. 9, pp.3133-3139, 2011.
  • [8] K. Boran, “Sezgisel Bulanık TOPSIS Yöntemi Kullanarak Türkiye’nin Yenilenebilir Enerji Kaynaklarının Değerlendirilmesi,” Politeknik Dergisi, vol.20, no.3, pp.629-637, 2017.
  • [9] M. Bilgin ve K. Çelebi, “Autonomous photovoltaic solar cell using tracking system design and ımplementation,” Honorary Editor, c. 9, s. 2, ss. 1669-1676, 2019.
  • [10] M.O. Karaağaç, H. Oğul ve S. Bardak, “Kanatlı hayvan çiftliği için güneş enerji sisteminin tasarımı ve maliyet hesabı,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.8, s.1, ss.711-722, 2020.
  • [11] B.P. Kafle, B.R. Pokhrel, R. Gyawali, A. Kafle, T. M. Shrestha, R. Shrestha ve R. M. Adhikari, “Absorbance of natural and synthetic dyes: Prospect of application as sensitizers in dye sensitized solar cell,” Advances in Applied Science Research, c. 5, s. 1, ss. 8-12, 2014.
  • [12] A. K. Jena, A. Kulkarni, ve T. Miyasaka, “Halide perovskite photovoltaics: background, status, and future prospects,” Chemical Reviews, c.119, s. 5, ss. 3036-3103, 2019.
  • [13] M. Ç. Çadırcı, V. Y. Oğuz ve S. ertan, “Numerical Analysis and Optimization of CH3NH3PbI3-xCIx Based Perovskite Solar Cells,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.9, s.1, ss.28-39, 2021.
  • [14] Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. L. Seok, ve H. Han, “Challenges for commercializing perovskite solar cells,” Science, c. 361, ss. 6408, 2018.
  • [15] W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, G. Fang ve Y. Yan, “Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers,” Journal of Materials Chemistry A, c. 3, s. 47, ss. 23888-23894, 2015.
  • [16] Grätzel, M. (2014). The light and shade of perovskite solar cells. Nature materials, 13(9), 838-842.
  • [17] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, ve M. Grätzel, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific Reports, c. 2, s.1, ss. 1-7, 2012.
  • [18] Z. Wu, M. Jiang, Z. Liu, A. Jamshaid, L.K. Ono, ve Y.Qi, “Highly efficient perovskite solar cells enabled by multiple ligand passivation.” Advanced Energy Materials, c.10, s.10, ss.1903696, 2020.
  • [19] S. Akyürekli, M. Kaleli, M. Koç ve D. A. Aldemir, “Ultrasonik sprey piroliz yöntemi ile üretilen güneş soğurucu CH3NH3PbI3-xClx perovskit yapısının optik, morfolojik ve yapısal özelliklerinin incelenmesi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, c. 15, s. 2, ss. 253-263, 2020.
  • [20] T. J. Jacobsson, J. P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel ve A. Hagfeldt, “Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells,” Energy & Environmental Science, c. 9, s. 5, ss. 1706-1724, 2016.
  • [21] W. S. Yang, B.W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee ve S. I. Seok, “Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells,” Science, c. 356, s. 6345, ss. 1376-1379, 2017.
  • [22] H. Li, C. Cui, X. Xu, S. Bian, C. Ngaojampa, P. Ruankham, ve A.P. Jaroenjittchai,“A review of characterization of perovskite film in solar cells by spectroscopic ellipsometry,” Solar Energy, c. 212, ss. 48-61, 2020.
  • [23] Srivastava, S., Singh, S., & Singh, V. K. (2021). Bulk and interface defects analysis of n-CdS/p-Si heterojunction solar cell. Optical Materials, 111, 110687.
  • [24] Shin, D. Y., Lim, J. R., Shin, W. G., Lee, C. G., & Kang, G. H. (2021). Layup-only modulization for low-stress fabrication of a silicon solar module with 100 μm thin silicon solar cells. Solar Energy Materials and Solar Cells, 221, 110903.
  • [25] P. Roy, N. K. Sinha, S. Tiwari ve A. Khare, “A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status,” Solar Energy, c. 198, ss. 665-688, 2020.
  • [26] A. Kojima, K. Teshima, Y. Shirai, & T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol 31, no.17, ss.6050-6051,2009.
  • [27] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park ve N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, c. 3, s. 10, ss. 4088-4093, 2011.
  • [28] M. A. Green, A. Ho-Baillie ve H. J. Snaith, “The emergence of perovskite solar cells,” Nature Photonics, c. 8, s. 7, ss. 506-514, 2014.
  • [29] S. Yang, W. Fu, Z. Zhang, H. Chen, ve C. Z. Li, “Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite,” Journal of Materials Chemistry, c. 5, s. 23, ss. 11462-11482, 2017.
  • [30] S. Sharma, K. K. Jain ve A. Sharma, “Solar cells: in research and applications-a review,” Materials Sciences and Applications, c. 6, s. 12, ss. 1145, 2015.
  • [31] T. B. Song, Q. Chen, H. Zhou, C. Jiang, H. H. Wang, Y. M. Yang ve Y. Yang, “Perovskite solar cells: film formation and properties,” Journal of Materials Chemistry A, c. 3, s. 17, ss. 9032-9050, 2015.
  • [32] N. L. Panwar, S. C. Kaushik & S. Kothari, “Role of renewable energy sources in environmental protection: A review,” Renewable And Sustainable Energy Reviews, c. 15, s. 3, ss. 1513-1524, 2011.
  • [33] Y. Zhang, N.G. Park, “A thin film (< 200 nm) perovskite solar cell with 18% efficiency.” Journal of Materials Chemistry A, c.8, s.34, ss.17420-17428,2020.
  • [34] Q. Wali, F. J. Iftikhar, M. E. Khan, A. Ullah, Y. Iqbal ve R. Jose, “Advances in stability of perovskite solar cells,” Organic Electronics, c. 78, ss. 105590, 2020.
  • [35] M. Abd Mutalib, F. Aziz, A. F. Ismail, W. N. W. Salleh, N. Yusof, J. Jaafar, ve N. A. Ludin, “Towards high performance perovskite solar cells: A review of morphological control and HTM development,” Applied Materials Today, c.13, ss.69-82, 2018.
  • [36] S. Yurtdaş, C. A. N. Mustafa, M. Karaman ve C. Tozlu, “Polimerik güneş hücrelerinde ag nanopartikül katkılı TiO2 tampon tabakasının kendiliğinden organize olan tek tabaka moleküller (SAM) ile modifiye edilmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.8, s.1, ss.1058-1071, 2020.
  • [37] B. Kılıç, “Yeni nesil güneş hücrelerinde hibrit nano-yarıiletkenlerin sentezlenerek optoelektronik özelliklerinin incelenmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.9, s.1, ss.51-59, 2021.
  • [38] Y. Ma, S. Wang, L. Zheng, Z. Lu, D. Zhang, Z. Bian ve L. Xiao. “Recent research developments of perovskite solar cells,” Chinese Journal of Chemistry, c. 32, s. 10, ss. 957-963, 2014.
  • [39] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang ve Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” Journal of the American Chemical Society, c. 136, s. 2, ss. 622-625, 2014.
  • [40] S. Razza, F. Di Giacomo, F. Matteocci, L. Cin Ó, A. L. Palma, S. Casaluc ve A. Di Carlo, “Perovskite solar cells and large area modules (100ácm2) based on an air flow-assisted PbI2 blade coating deposition process,” Journal of Power Sources, c. 277, ss. 286-291, 2015.
  • [41] G. Yılmaz ve Ç. Özkök, “Perovskit Güneş Hücreleri ve Kararsızlık Problemleri,” Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 9, s. 1, ss. 297-304, 2019.
  • [42] M. Liu, M. B. Johnston ve H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, c. 501, s.7467, ss. 395-398, 2013.
  • [43] D. B. Mitzi, C. A. Feild, W. T. A. Harrison ve A.M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature, c. 369, s. 6480, ss. 467-469, 1994.
  • [44] B. Dwi, “Comparison of SnO 2/Si-n thin films deposited by pneumatic spray pyrolysis technique with that deposited by ultrasonic spray Pyrolysis Technique,” Indonesian Journal of Materials Science, c. 43, ss. 241-245, 2008.
  • [45] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin ve M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, c. 499, s. 7458, ss. 316-319, 2013.
  • [46] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens ve H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, c. 342, s. 6156, ss. 341-344, 2013.
  • [47] E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks ve D. Cahen, “Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor),” Nano Letters, c. 14, s. 2, ss. 1000-1004, 2014.
  • [48] Y. Shi, Y. Xing, Y. Li, Q. Dong, K. Wang, Y. Du ve T. Ma, “CH3NH3PbI3 and CH3NH3PbI3–xClx in planar or mesoporous perovskite solar cells: comprehensive ınsight into the dependence of performance on architecture,” The Journal of Physical Chemistry C, c. 119, s. 28, ss. 15868-15873, 2015.
  • [49] A. Listorti, E. J. Juarez-Perez, C. Frontera, V. Roiati, L. Garcia-Andrade, S. Colella ve I. Mora-Sero, “Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells,” The Journal Of Physical Chemistry Letters, c. 6, s. 9, ss. 1628-1637, 2015.
  • [50] J. G. Bednorz ve K. A. Müller, “Possible highT c superconductivity in the Ba− La− Cu− O system,” Zeitschrift für Physik B Condensed Matter, c. 64, s. 2, ss. 189-193, 1986.
  • [51] D. B. Mitzi, K. Chondroudis, ve C. R. Kagan, “Organic-inorganic electronics,” IBM Journal Of Research And Development, c. 45, s.1, ss. 29-45, 2001.
  • [52] C. C. Stoumpos, C. D. Malliakas, ve M. G. Kanatzidis, “Semiconducting tin and lead iodide perovsk ites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorganic Chemistry, c. 52, s. 15, ss. 9019-9038, 2013.
  • [53] S. Sharma, N. Weiden, ve A.Weiss, “Phase diagrams of quasibinary systems of the type: ABX3—A′ BX3; ABX3—AB′ X3, and ABX3—ABX′ 3; X= halogen,” Zeitschrift für Physikalische Chemie, c.175, s.1, ss. 63-80, 1992.
  • [54] D. Zhou, T. Zhou, Y. Tian, X. Zhu, ve Y. Tu, “Perovskite-based solar cells: materials, methods, and future perspectives,” Journal of Nanomaterials, c. 2018, 2018.
  • [55] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. W. Wang, S. D. Stranks, ve R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites,” Nature Physics, c. 11, s. 7, ss. 582-587, 2015.
  • [56] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. Lam, M. Grätzel, ve T. C. Sum, “Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science, c. 342, s. 6156, ss. 344-347, 2013.
  • [57] T. A. Berhe, W. N. Su, C. H. Chen, C. J. Pan, J. H. Cheng, H. M. Chen, ve B. J. Hwang, “Organometal halide perovskite solar cells: degradation and stability,” Energy & Environmental Science, c. 9, s. 2, ss. 323-356, 2016.
  • [58] M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, ve N. Miura, “Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3) PbI3,” Physica B: Condensed Matter, c. 201, ss. 427-430, 1994.
  • [59] T. Minemoto, ve M. Murata, “Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells,” Journal of Applied Physics, c. 116, s. 5, ss. 054505, 2014.
  • [60] D. Wang, M. Wright, N. K. Elumalai, ve A. Uddin, “Stability of perovskite solar cells,” Solar Energy Materials and Solar Cells, c. 147, ss. 255-275, 2016.
  • [61] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal ve S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Letters, c. 13, s. 4, ss. 1764-1769, 2013
  • [62] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee ve H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells,” Nature Communications, c. 4, s. 1, ss. 1-8, 2013.
  • [63] A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, ve H. Han, “A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability,” Science, c. 345, s. 6194, ss. 295-298, 2014.
  • [64] M. Salado, L. Contreras-Bernal, L. Caliò, A. Todinova, C. López-Santos, S. Ahmad, J. A. Anta, “Impact of moisture on efficiency-determining electronic processes in perovskite solar cells,” Journal of Materials Chemistry A, c. 5, s. 22, ss. 10917-10927, 2017.
  • [65] M. Jørgensen, K. Norrman, ve F. C. Krebs, “Stability/degradation of polymer solar cells,” Solar Energy Materials And Solar Cells, c. 92, s. 7, ss. 686-714, 2008.
  • [66] G. Niu, X. Guo, ve L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” Journal of Materials Chemistry A, c. 3, s. 17, ss. 8970-8980, 2015.
  • [67] H. S. Kim, S. H. Im, ve N. G. Park, “Organolead halide perovskite: new horizons in solar cell research,” The Journal of Physical Chemistry C, c. 118, s.11, ss. 5615-5625, 2014.
  • [68] S. Bai, Z. Wu, X. Wu, Y. Jin, N. Zhao, Z. Chen ve B. Sun, “High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial Engineering,” Nano Research, c. 7, s. 12, ss. 1749-1758, 2014.
  • [69] W. Li, J. Li, L. Wang, G. Niu, R. Gao ve Y. Qiu, “Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance,” Journal of Materials Chemistry A, c. 1, s. 38, ss. 11735-11740, 2013.
  • [70] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro ve N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific Reports, c. 2, s.1, ss. 1-7, 2012.
  • [71] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami ve H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science, c. 338, s. 6107, ss. 643-647, 2012.
  • [72] B. Suarez, V. Gonzalez-Pedro, T.S. Ripolles, R. S. Sanchez, L. Otero ve I. Mora-Sero, “Recombination study of combined halides (Cl, Br, I) perovskite solar cells,” The Journal Of Physical Chemistry Letters, c. 5, s. 10, ss. 1628-1635, 2014.
  • [73] J. A. Christians, P. A. Miranda Herrera ve P. V. Kamat, “Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air,” Journal of the American Chemical Society, c. 137, s. 4, ss. 1530-1538, 2015.
  • [74] J. Yang, B. D. Siempelkamp, D. Liu ve T. L. Kelly, “Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques,” ACS Nano, c. 9, s. 2, ss. 1955-1963, 2015.
  • [75] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde ve A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Letters, c. 14, s. 5, ss. 2584-2590, 2014.
  • [76] A. Hinsch, J. M. Kroon, R. Kern, I, Uhlendorf, J. Holzbock, A. Meyer ve J. Ferber, “Long term stability of dye sensitised solar cells,” Progress in Photovoltaics: Research and Applications, c. 9, s. 6, ss. 425-438, 2001.
  • [77] J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, E. M. Barea, ve E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorganica Chimica Acta, c. 361, s. 3, ss. 684-698, 2008.
  • [78] K. Schwanitz, U. Weiler, R. Hunger, T. Mayer ve W. Jaegermann, “Synchrotron-induced photoelectron spectroscopy of the dye-sensitized nanocrystalline TiO2/electrolyte interface: band gap states and their interaction with dye and solvent molecules,” The Journal of Physical Chemistry C, c. 111, s. 2, ss. 849-854, 2007.
  • [79] Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen ve Y. Chen, “Recent progress on the long term stability of perovskite solar cells,” Advanced Science, c. 5, s. 5, ss. 1700387, 2018. [80] W. Nie, J. C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, ve A. D. Mohite, “Light-activated photocurrent degradation and self-healing in perovskite solar cells,” Nature Communications, c. 7, s. 1, ss. 1-9, 2016.
  • [81] J. Su, W. F. Wang, Y. Lei, L. Zhang, L. H. Xu, D. Wang ve Y. Bai, “On the growth of CH3NH3PbI3-xClx single crystal and characterization,” Physica B: Condensed Matter, c. 537, ss. 7-11, 2018. [82] B. Kim, G. H. Moon, S. C. Park, J. Jang ve Y. S. Kang, “Effects of crystal size and surface coverage of perovskites on electron recombination in solar cells,” Materials Letters, c. 242, ss. 191-194, 2019.
  • [83] Z. Cheng ve J. Lin, “Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating Engineering,” CrystEngComm, c. 12, s. 10, ss. 2646-2662, 2010.
  • [84] A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaál, L. Forró ve E. Horváth, “Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3,” The Journal Of Physical Chemistry Letters, c. 5, s. 14, ss. 2488-2492, 2014.
  • [85] R. K. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar ve E. A. Katz, “Temperature-and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight,” The Journal Of Physical Chemistry Letters, c. 6, s. 3, ss. 326-330, 2015.
  • [86] C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao ve J. Huang, “Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing,” Journal of Materials Chemistry A, c. 2, s. 43, ss. 18508-18514, 2014.
Year 2021, Volume: 9 Issue: 3 - Additional Issue, 158 - 171, 29.05.2021
https://doi.org/10.29130/dubited.836702

Abstract

References

  • [1] T. Jia, Y. Dai, ve R. Wang, “Refining energy sources in winemaking industry by using solar energy as alternatives for fosil fuels: A review and perspective,” Renewable and Sustainable Energy Reviews, vol. 88, pp.278-296, 2018.
  • [2] A. C. Marques, J. A. Fuinhas, ve D. A. Pereira, “Have fossil fuels been substituted by renewables? An empirical assessment for 10 European countries,” Energy Policy, vol.116, pp.257-265, 2018.
  • [3] A. Çiğan, ve R. Yamaçlı, “Doğal enerji, sürdürülebilir kalkınma ve mimarlık politikaları,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.8, s.1, ss.554-571, 2020.
  • [4] Z. Ö. Özdemir ve K. Günduğar, ‘‘Birinci, ikinci nesil biyoetanol üretimi ve Türkiye’deki biyoetanol üretiminin durumu & kapasitesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.7, s.3, ss.1290-1298, 2019
  • [5] Z. Zhang, Z. Li, L. Meng, S.Y. Lien, ve P. Gao, “Perovskite based tandem solar cells: get the most out of the Sun,” Advanced Functional Materials, c. 30, s. 38, ss. 2001904, 2020.
  • [6] A. Khare, “A critical review on the efficiency improvement of upconversion assisted solar cells,” Journal of Alloys and Compounds, vol. 82, pp.153214, 2020.
  • [7] S. B. Darling, F. You, T. Veselka, ve A. Velosa, “Assumptions and the levelized cost of energy for photovoltaics,” Energy & Environmental Science, vol. 4, no. 9, pp.3133-3139, 2011.
  • [8] K. Boran, “Sezgisel Bulanık TOPSIS Yöntemi Kullanarak Türkiye’nin Yenilenebilir Enerji Kaynaklarının Değerlendirilmesi,” Politeknik Dergisi, vol.20, no.3, pp.629-637, 2017.
  • [9] M. Bilgin ve K. Çelebi, “Autonomous photovoltaic solar cell using tracking system design and ımplementation,” Honorary Editor, c. 9, s. 2, ss. 1669-1676, 2019.
  • [10] M.O. Karaağaç, H. Oğul ve S. Bardak, “Kanatlı hayvan çiftliği için güneş enerji sisteminin tasarımı ve maliyet hesabı,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.8, s.1, ss.711-722, 2020.
  • [11] B.P. Kafle, B.R. Pokhrel, R. Gyawali, A. Kafle, T. M. Shrestha, R. Shrestha ve R. M. Adhikari, “Absorbance of natural and synthetic dyes: Prospect of application as sensitizers in dye sensitized solar cell,” Advances in Applied Science Research, c. 5, s. 1, ss. 8-12, 2014.
  • [12] A. K. Jena, A. Kulkarni, ve T. Miyasaka, “Halide perovskite photovoltaics: background, status, and future prospects,” Chemical Reviews, c.119, s. 5, ss. 3036-3103, 2019.
  • [13] M. Ç. Çadırcı, V. Y. Oğuz ve S. ertan, “Numerical Analysis and Optimization of CH3NH3PbI3-xCIx Based Perovskite Solar Cells,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.9, s.1, ss.28-39, 2021.
  • [14] Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. L. Seok, ve H. Han, “Challenges for commercializing perovskite solar cells,” Science, c. 361, ss. 6408, 2018.
  • [15] W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, G. Fang ve Y. Yan, “Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers,” Journal of Materials Chemistry A, c. 3, s. 47, ss. 23888-23894, 2015.
  • [16] Grätzel, M. (2014). The light and shade of perovskite solar cells. Nature materials, 13(9), 838-842.
  • [17] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, ve M. Grätzel, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific Reports, c. 2, s.1, ss. 1-7, 2012.
  • [18] Z. Wu, M. Jiang, Z. Liu, A. Jamshaid, L.K. Ono, ve Y.Qi, “Highly efficient perovskite solar cells enabled by multiple ligand passivation.” Advanced Energy Materials, c.10, s.10, ss.1903696, 2020.
  • [19] S. Akyürekli, M. Kaleli, M. Koç ve D. A. Aldemir, “Ultrasonik sprey piroliz yöntemi ile üretilen güneş soğurucu CH3NH3PbI3-xClx perovskit yapısının optik, morfolojik ve yapısal özelliklerinin incelenmesi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, c. 15, s. 2, ss. 253-263, 2020.
  • [20] T. J. Jacobsson, J. P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel ve A. Hagfeldt, “Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells,” Energy & Environmental Science, c. 9, s. 5, ss. 1706-1724, 2016.
  • [21] W. S. Yang, B.W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee ve S. I. Seok, “Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells,” Science, c. 356, s. 6345, ss. 1376-1379, 2017.
  • [22] H. Li, C. Cui, X. Xu, S. Bian, C. Ngaojampa, P. Ruankham, ve A.P. Jaroenjittchai,“A review of characterization of perovskite film in solar cells by spectroscopic ellipsometry,” Solar Energy, c. 212, ss. 48-61, 2020.
  • [23] Srivastava, S., Singh, S., & Singh, V. K. (2021). Bulk and interface defects analysis of n-CdS/p-Si heterojunction solar cell. Optical Materials, 111, 110687.
  • [24] Shin, D. Y., Lim, J. R., Shin, W. G., Lee, C. G., & Kang, G. H. (2021). Layup-only modulization for low-stress fabrication of a silicon solar module with 100 μm thin silicon solar cells. Solar Energy Materials and Solar Cells, 221, 110903.
  • [25] P. Roy, N. K. Sinha, S. Tiwari ve A. Khare, “A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status,” Solar Energy, c. 198, ss. 665-688, 2020.
  • [26] A. Kojima, K. Teshima, Y. Shirai, & T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol 31, no.17, ss.6050-6051,2009.
  • [27] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park ve N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, c. 3, s. 10, ss. 4088-4093, 2011.
  • [28] M. A. Green, A. Ho-Baillie ve H. J. Snaith, “The emergence of perovskite solar cells,” Nature Photonics, c. 8, s. 7, ss. 506-514, 2014.
  • [29] S. Yang, W. Fu, Z. Zhang, H. Chen, ve C. Z. Li, “Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite,” Journal of Materials Chemistry, c. 5, s. 23, ss. 11462-11482, 2017.
  • [30] S. Sharma, K. K. Jain ve A. Sharma, “Solar cells: in research and applications-a review,” Materials Sciences and Applications, c. 6, s. 12, ss. 1145, 2015.
  • [31] T. B. Song, Q. Chen, H. Zhou, C. Jiang, H. H. Wang, Y. M. Yang ve Y. Yang, “Perovskite solar cells: film formation and properties,” Journal of Materials Chemistry A, c. 3, s. 17, ss. 9032-9050, 2015.
  • [32] N. L. Panwar, S. C. Kaushik & S. Kothari, “Role of renewable energy sources in environmental protection: A review,” Renewable And Sustainable Energy Reviews, c. 15, s. 3, ss. 1513-1524, 2011.
  • [33] Y. Zhang, N.G. Park, “A thin film (< 200 nm) perovskite solar cell with 18% efficiency.” Journal of Materials Chemistry A, c.8, s.34, ss.17420-17428,2020.
  • [34] Q. Wali, F. J. Iftikhar, M. E. Khan, A. Ullah, Y. Iqbal ve R. Jose, “Advances in stability of perovskite solar cells,” Organic Electronics, c. 78, ss. 105590, 2020.
  • [35] M. Abd Mutalib, F. Aziz, A. F. Ismail, W. N. W. Salleh, N. Yusof, J. Jaafar, ve N. A. Ludin, “Towards high performance perovskite solar cells: A review of morphological control and HTM development,” Applied Materials Today, c.13, ss.69-82, 2018.
  • [36] S. Yurtdaş, C. A. N. Mustafa, M. Karaman ve C. Tozlu, “Polimerik güneş hücrelerinde ag nanopartikül katkılı TiO2 tampon tabakasının kendiliğinden organize olan tek tabaka moleküller (SAM) ile modifiye edilmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.8, s.1, ss.1058-1071, 2020.
  • [37] B. Kılıç, “Yeni nesil güneş hücrelerinde hibrit nano-yarıiletkenlerin sentezlenerek optoelektronik özelliklerinin incelenmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c.9, s.1, ss.51-59, 2021.
  • [38] Y. Ma, S. Wang, L. Zheng, Z. Lu, D. Zhang, Z. Bian ve L. Xiao. “Recent research developments of perovskite solar cells,” Chinese Journal of Chemistry, c. 32, s. 10, ss. 957-963, 2014.
  • [39] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang ve Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” Journal of the American Chemical Society, c. 136, s. 2, ss. 622-625, 2014.
  • [40] S. Razza, F. Di Giacomo, F. Matteocci, L. Cin Ó, A. L. Palma, S. Casaluc ve A. Di Carlo, “Perovskite solar cells and large area modules (100ácm2) based on an air flow-assisted PbI2 blade coating deposition process,” Journal of Power Sources, c. 277, ss. 286-291, 2015.
  • [41] G. Yılmaz ve Ç. Özkök, “Perovskit Güneş Hücreleri ve Kararsızlık Problemleri,” Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 9, s. 1, ss. 297-304, 2019.
  • [42] M. Liu, M. B. Johnston ve H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, c. 501, s.7467, ss. 395-398, 2013.
  • [43] D. B. Mitzi, C. A. Feild, W. T. A. Harrison ve A.M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature, c. 369, s. 6480, ss. 467-469, 1994.
  • [44] B. Dwi, “Comparison of SnO 2/Si-n thin films deposited by pneumatic spray pyrolysis technique with that deposited by ultrasonic spray Pyrolysis Technique,” Indonesian Journal of Materials Science, c. 43, ss. 241-245, 2008.
  • [45] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin ve M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, c. 499, s. 7458, ss. 316-319, 2013.
  • [46] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens ve H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, c. 342, s. 6156, ss. 341-344, 2013.
  • [47] E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks ve D. Cahen, “Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor),” Nano Letters, c. 14, s. 2, ss. 1000-1004, 2014.
  • [48] Y. Shi, Y. Xing, Y. Li, Q. Dong, K. Wang, Y. Du ve T. Ma, “CH3NH3PbI3 and CH3NH3PbI3–xClx in planar or mesoporous perovskite solar cells: comprehensive ınsight into the dependence of performance on architecture,” The Journal of Physical Chemistry C, c. 119, s. 28, ss. 15868-15873, 2015.
  • [49] A. Listorti, E. J. Juarez-Perez, C. Frontera, V. Roiati, L. Garcia-Andrade, S. Colella ve I. Mora-Sero, “Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells,” The Journal Of Physical Chemistry Letters, c. 6, s. 9, ss. 1628-1637, 2015.
  • [50] J. G. Bednorz ve K. A. Müller, “Possible highT c superconductivity in the Ba− La− Cu− O system,” Zeitschrift für Physik B Condensed Matter, c. 64, s. 2, ss. 189-193, 1986.
  • [51] D. B. Mitzi, K. Chondroudis, ve C. R. Kagan, “Organic-inorganic electronics,” IBM Journal Of Research And Development, c. 45, s.1, ss. 29-45, 2001.
  • [52] C. C. Stoumpos, C. D. Malliakas, ve M. G. Kanatzidis, “Semiconducting tin and lead iodide perovsk ites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorganic Chemistry, c. 52, s. 15, ss. 9019-9038, 2013.
  • [53] S. Sharma, N. Weiden, ve A.Weiss, “Phase diagrams of quasibinary systems of the type: ABX3—A′ BX3; ABX3—AB′ X3, and ABX3—ABX′ 3; X= halogen,” Zeitschrift für Physikalische Chemie, c.175, s.1, ss. 63-80, 1992.
  • [54] D. Zhou, T. Zhou, Y. Tian, X. Zhu, ve Y. Tu, “Perovskite-based solar cells: materials, methods, and future perspectives,” Journal of Nanomaterials, c. 2018, 2018.
  • [55] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. W. Wang, S. D. Stranks, ve R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites,” Nature Physics, c. 11, s. 7, ss. 582-587, 2015.
  • [56] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. Lam, M. Grätzel, ve T. C. Sum, “Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science, c. 342, s. 6156, ss. 344-347, 2013.
  • [57] T. A. Berhe, W. N. Su, C. H. Chen, C. J. Pan, J. H. Cheng, H. M. Chen, ve B. J. Hwang, “Organometal halide perovskite solar cells: degradation and stability,” Energy & Environmental Science, c. 9, s. 2, ss. 323-356, 2016.
  • [58] M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, ve N. Miura, “Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3) PbI3,” Physica B: Condensed Matter, c. 201, ss. 427-430, 1994.
  • [59] T. Minemoto, ve M. Murata, “Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells,” Journal of Applied Physics, c. 116, s. 5, ss. 054505, 2014.
  • [60] D. Wang, M. Wright, N. K. Elumalai, ve A. Uddin, “Stability of perovskite solar cells,” Solar Energy Materials and Solar Cells, c. 147, ss. 255-275, 2016.
  • [61] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal ve S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Letters, c. 13, s. 4, ss. 1764-1769, 2013
  • [62] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee ve H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells,” Nature Communications, c. 4, s. 1, ss. 1-8, 2013.
  • [63] A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, ve H. Han, “A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability,” Science, c. 345, s. 6194, ss. 295-298, 2014.
  • [64] M. Salado, L. Contreras-Bernal, L. Caliò, A. Todinova, C. López-Santos, S. Ahmad, J. A. Anta, “Impact of moisture on efficiency-determining electronic processes in perovskite solar cells,” Journal of Materials Chemistry A, c. 5, s. 22, ss. 10917-10927, 2017.
  • [65] M. Jørgensen, K. Norrman, ve F. C. Krebs, “Stability/degradation of polymer solar cells,” Solar Energy Materials And Solar Cells, c. 92, s. 7, ss. 686-714, 2008.
  • [66] G. Niu, X. Guo, ve L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” Journal of Materials Chemistry A, c. 3, s. 17, ss. 8970-8980, 2015.
  • [67] H. S. Kim, S. H. Im, ve N. G. Park, “Organolead halide perovskite: new horizons in solar cell research,” The Journal of Physical Chemistry C, c. 118, s.11, ss. 5615-5625, 2014.
  • [68] S. Bai, Z. Wu, X. Wu, Y. Jin, N. Zhao, Z. Chen ve B. Sun, “High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial Engineering,” Nano Research, c. 7, s. 12, ss. 1749-1758, 2014.
  • [69] W. Li, J. Li, L. Wang, G. Niu, R. Gao ve Y. Qiu, “Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance,” Journal of Materials Chemistry A, c. 1, s. 38, ss. 11735-11740, 2013.
  • [70] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro ve N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific Reports, c. 2, s.1, ss. 1-7, 2012.
  • [71] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami ve H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science, c. 338, s. 6107, ss. 643-647, 2012.
  • [72] B. Suarez, V. Gonzalez-Pedro, T.S. Ripolles, R. S. Sanchez, L. Otero ve I. Mora-Sero, “Recombination study of combined halides (Cl, Br, I) perovskite solar cells,” The Journal Of Physical Chemistry Letters, c. 5, s. 10, ss. 1628-1635, 2014.
  • [73] J. A. Christians, P. A. Miranda Herrera ve P. V. Kamat, “Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air,” Journal of the American Chemical Society, c. 137, s. 4, ss. 1530-1538, 2015.
  • [74] J. Yang, B. D. Siempelkamp, D. Liu ve T. L. Kelly, “Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques,” ACS Nano, c. 9, s. 2, ss. 1955-1963, 2015.
  • [75] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde ve A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Letters, c. 14, s. 5, ss. 2584-2590, 2014.
  • [76] A. Hinsch, J. M. Kroon, R. Kern, I, Uhlendorf, J. Holzbock, A. Meyer ve J. Ferber, “Long term stability of dye sensitised solar cells,” Progress in Photovoltaics: Research and Applications, c. 9, s. 6, ss. 425-438, 2001.
  • [77] J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, E. M. Barea, ve E. Palomares, “A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors,” Inorganica Chimica Acta, c. 361, s. 3, ss. 684-698, 2008.
  • [78] K. Schwanitz, U. Weiler, R. Hunger, T. Mayer ve W. Jaegermann, “Synchrotron-induced photoelectron spectroscopy of the dye-sensitized nanocrystalline TiO2/electrolyte interface: band gap states and their interaction with dye and solvent molecules,” The Journal of Physical Chemistry C, c. 111, s. 2, ss. 849-854, 2007.
  • [79] Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen ve Y. Chen, “Recent progress on the long term stability of perovskite solar cells,” Advanced Science, c. 5, s. 5, ss. 1700387, 2018. [80] W. Nie, J. C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, ve A. D. Mohite, “Light-activated photocurrent degradation and self-healing in perovskite solar cells,” Nature Communications, c. 7, s. 1, ss. 1-9, 2016.
  • [81] J. Su, W. F. Wang, Y. Lei, L. Zhang, L. H. Xu, D. Wang ve Y. Bai, “On the growth of CH3NH3PbI3-xClx single crystal and characterization,” Physica B: Condensed Matter, c. 537, ss. 7-11, 2018. [82] B. Kim, G. H. Moon, S. C. Park, J. Jang ve Y. S. Kang, “Effects of crystal size and surface coverage of perovskites on electron recombination in solar cells,” Materials Letters, c. 242, ss. 191-194, 2019.
  • [83] Z. Cheng ve J. Lin, “Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating Engineering,” CrystEngComm, c. 12, s. 10, ss. 2646-2662, 2010.
  • [84] A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaál, L. Forró ve E. Horváth, “Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3,” The Journal Of Physical Chemistry Letters, c. 5, s. 14, ss. 2488-2492, 2014.
  • [85] R. K. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar ve E. A. Katz, “Temperature-and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight,” The Journal Of Physical Chemistry Letters, c. 6, s. 3, ss. 326-330, 2015.
  • [86] C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao ve J. Huang, “Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing,” Journal of Materials Chemistry A, c. 2, s. 43, ss. 18508-18514, 2014.
There are 84 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Cevahir Tarhan 0000-0002-4762-6719

Berces Kurt 0000-0002-1285-0542

Publication Date May 29, 2021
Published in Issue Year 2021 Volume: 9 Issue: 3 - Additional Issue

Cite

APA Tarhan, C., & Kurt, B. (2021). Perovskit Güneş Pilleri ve Kararsızlık Problemleri Üzerine Bir Araştırma. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 9(3), 158-171. https://doi.org/10.29130/dubited.836702
AMA Tarhan C, Kurt B. Perovskit Güneş Pilleri ve Kararsızlık Problemleri Üzerine Bir Araştırma. DUBİTED. May 2021;9(3):158-171. doi:10.29130/dubited.836702
Chicago Tarhan, Cevahir, and Berces Kurt. “Perovskit Güneş Pilleri Ve Kararsızlık Problemleri Üzerine Bir Araştırma”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 9, no. 3 (May 2021): 158-71. https://doi.org/10.29130/dubited.836702.
EndNote Tarhan C, Kurt B (May 1, 2021) Perovskit Güneş Pilleri ve Kararsızlık Problemleri Üzerine Bir Araştırma. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9 3 158–171.
IEEE C. Tarhan and B. Kurt, “Perovskit Güneş Pilleri ve Kararsızlık Problemleri Üzerine Bir Araştırma”, DUBİTED, vol. 9, no. 3, pp. 158–171, 2021, doi: 10.29130/dubited.836702.
ISNAD Tarhan, Cevahir - Kurt, Berces. “Perovskit Güneş Pilleri Ve Kararsızlık Problemleri Üzerine Bir Araştırma”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9/3 (May 2021), 158-171. https://doi.org/10.29130/dubited.836702.
JAMA Tarhan C, Kurt B. Perovskit Güneş Pilleri ve Kararsızlık Problemleri Üzerine Bir Araştırma. DUBİTED. 2021;9:158–171.
MLA Tarhan, Cevahir and Berces Kurt. “Perovskit Güneş Pilleri Ve Kararsızlık Problemleri Üzerine Bir Araştırma”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 9, no. 3, 2021, pp. 158-71, doi:10.29130/dubited.836702.
Vancouver Tarhan C, Kurt B. Perovskit Güneş Pilleri ve Kararsızlık Problemleri Üzerine Bir Araştırma. DUBİTED. 2021;9(3):158-71.