Research Article
BibTex RIS Cite

3D Electromagnetic Analysis and Optimization of Metamaterial Constructed by SRR Using the MOGA Algorithm for Performance Improvement

Year 2021, Volume: 9 Issue: 3 - Additional Issue, 34 - 47, 29.05.2021
https://doi.org/10.29130/dubited.885029

Abstract

The study presents 3D electromagnetic analysis and optimization of metamaterial constructed split ring resonator. The analysis was carried out under electromagnetic analysis conditions by using electromagnetic boundary conditions master and slave. The operating frequency range, in other words the performance characteristic, has been analysed from 1 GHz to 20 GHz. The split-ring resonator design has been analysed on triple co-axes in accordance with its actual use. Surface current density, electric field strength and magnetic field strength values were examined in the analysis. Metamaterial based split-ring resonators are used in many fields. Today, it has many applications as measurement and sensor or as antenna in 5G applications. In order to obtain a suitable design at high frequencies, micron-level designs are required. Newly developed objective functions are presented in the study. In this study, good results were obtained with an optimized SRR design by using multi-objective genetic algorithm in the range up to 20 GHz that can achieve negative refractive index capacity. These results are presented in the study with the relationship between permittivity and permeability. Furthermore, when the results obtained from the design are examined, it is seen that it is suitable for wireless applications. Performance improvement have been carried out SRR negative refractive index capacity which before has 11 GHz was increased to 15.5 GHz.

References

  • [1] A. Dadgarpour, B. Zarghooni, B. S. Virdee, T. A. Denidni and A. A. Kishk, “Mutual Coupling Reduction in Dielectric Resonator Antennas Using Metasurface Shield for 60-GHz MIMO Systems,” in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 477-480, 2017.
  • [2] C. Herrojo, F. Paredes, J. Mata-Contreras, S. Zuffanelli and F. Martín, “Multistate Multiresonator Spectral Signature Barcodes Implemented by Means of S-Shaped Split Ring Resonators (S-SRRs),” in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 7, pp. 2341-2352, 2017.
  • [3] P. Vélez, L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc and F. Martín, “Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids,” in IEEE Sensors Journal, vol. 17, no. 20, pp. 6589-6598, 2017.
  • [4] A. Ebrahimi, J. Scott and K. Ghorbani, “Differential Sensors Using Microstrip Lines Loaded With Two Split-Ring Resonators,” in IEEE Sensors Journal, vol. 18, no. 14, pp. 5786-5793, 2018.
  • [5] M. Abdolrazzaghi and M. Daneshmand, “Exploiting Sensitivity Enhancement in Micro-wave Planar Sensors Using Intermodulation Products With Phase Noise Analysis,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4382-4395, 2020.
  • [6] T. Haq, C. Ruan, S. Ullah and A. Kosar Fahad, “Dual Notch Microwave Sensors Based on Complementary Metamaterial Resonators,” in IEEE Access, vol. 7, pp. 153489-153498, 2019.
  • [7] B. Camli, E. Kusakci, B. Lafci, S. Salman, H. Torun and A. D. Yalcinkaya, “Cost-Effective, Microstrip Antenna Driven Ring Resonator Microwave Biosensor for Biospecific Detection of Glucose,” in IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 2, pp. 404-409, Art no. 6900706, 2017.
  • [8] K. Xu et al., “Novel Microwave Sensors Based on Split Ring Resonators for Measuring Permittivity,” in IEEE Access, vol. 6, pp. 26111-26120, 2018.
  • [9] J. Hinojosa, M. Rossi, A. Saura-Ródenas, A. Álvarez-Melcón and F. L. Martínez-Viviente, “Compact Bandstop Half-Mode Substrate Integrated Waveguide Filter Based on a Broadside-Coupled Open Split-Ring Resonator,” in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 6, pp. 3001-3010, 2018.
  • [10] W. Tang, G. Goussetis, N. J. G. Fonseca, H. Legay, E. Sáenz and P. de Maagt, “Coupled Split-Ring Resonator Circular Polarization Selective Surface,” in IEEE Transactions on Antennas and Propagation, vol. 65, no. 9, pp. 4664-4675, 2017.
  • [11] G. Govind, N. K. Tiwari, K. K. Agrawal and M. J. Akhtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” in IEEE Sensors Journal, vol. 18, no. 18, pp. 7442-7449, 2018.
  • [12] J. Mata-Contreras, C. Herrojo and F. Martín, “Application of Split Ring Resonator (SRR) Loaded Transmission Lines to the Design of Angular Displacement and Velocity Sensors for Space Applications,” in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4450-4460, 2017.
  • [13] T. Yue, Z. H. Jiang, A. H. Panaretos and D. H. Werner, “A Compact Dual-Band Antenna Enabled by a Complementary Split-Ring Resonator-Loaded Metasurface,” in IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6878-6888, 2017.
  • [14] M. A. H. Ansari, A. K. Jha, Z. Akhter and M. J. Akhtar, “Multi-Band RF Planar Sensor Using Complementary Split Ring Resonator for Testing of Dielectric Materials,” in IEEE Sensors Journal, vol. 18, no. 16, pp. 6596-6606, 2018.
  • [15] T. Athauda and N. C. Karmakar, “The Realization of Chipless RFID Resonator for Multiple Physical Parameter Sensing,” in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5387-5396, 2019.
  • [16] J. S. Bobowski and A. P. Clements, “Permittivity and Conductivity Measured Using a Novel Toroidal Split-Ring Resonator,” in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 6, pp. 2132-2138, 2017.
  • [17] A. B. de Alleluia et al., “Experimental Testing of a 3-D-Printed Metamaterial Slow Wave Structure for High-Power Microwave Generation,” in IEEE Transactions on Plasma Science, vol. 48, no. 12, pp. 4356-4364, 2020.
  • [18] R. A. Dextre, T. Yamauchi, K. A. Polzin and K. G. Xu, “Concentric Split-Ring Resonator Microwave Microplasma Generation at Off-Resonant Frequencies,” in IEEE Transactions on Plasma Science, vol. 48, no. 4, pp. 827-834, 2020.
  • [19] A. A. G. Amer, S. Z. Sapuan, N. Nasimuddin, A. Alphones and N. B. Zinal, “A Comprehensive Review of Metasurface Structures Suitable for RF Energy Harvesting,” in IEEE Access, vol. 8, pp. 76433-76452, 2020.
  • [20] X. Liu, W. Wu, P. Ji and N. Yuan, “Design of Compact Dual-Passband Filters by Parasitic Passband With Controllable Passbands,” in IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 410-412, 2018.
  • [21] M. Li, X. Chen, A. Zhang, W. Fan and A. A. Kishk, “Split-Ring Resonator-Loaded Baffles for Decoupling of Dual-Polarized Base Station Array,” in IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 10, pp. 1828-1832, 2020.
  • [22] S. Ma, L. Sydänheimo, L. Ukkonen and T. Björninen, “Split-Ring Resonator Antenna System With Cortical Implant and Head-Worn Parts for Effective Far-Field Implant Communications,” in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 4, pp. 710-713, 2018.
  • [23] C. Tseng and C. Wu, “A Novel Microwave Phased- and Perturbation-Injection-Locked Sensor With Self-Oscillating Complementary Split-Ring Resonator for Finger and Wrist Pulse Detection,” in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1933-1942, 2020.
  • [24] P. Vélez, J. Muñoz-Enano, K. Grenier, J. Mata-Contreras, D. Dubuc and F. Martín, “Split Ring Resonator-Based Microwave Fluidic Sensors for Electrolyte Concentration Measurements,” in IEEE Sensors Journal, vol. 19, no. 7, pp. 2562-2569, 2019.
  • [25] U. Kose and A. Kavas, “Design and Performance Analysis of Split Ring Resonator Based Microstrip Antenna With Defected Ground Structure,” 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 2020, pp. 1-4.
  • [26] L. Wu, J. Sheng, S. Peng, Z. Xiao and S. Gu, “Chipless RFID Tag using Complementary Hexagonal Split Ring Resonator,” 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019, pp. 1334-1336.
  • [27] X. Jiang, P. Zhong, Q. Zhang and A. K. Rashid, “A Broadband Metamaterial Polarization Converter Based on Split Ring Resonators,” 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 2019, pp. 1-3.
  • [28] B. Chowdhury, T. Walpita, B. Yang and A. Eroglu, “Resonant Characteristics of Split Ring Resonator And Unit Cell for Periodic Metamaterial Devices,” 2020 International Applied Computational Electromagnetics Society Symposium (ACES), Monterey, CA, USA, 2020, pp. 1-2.
  • [29] Y. Liu, X. Dang, L. Li and H. Yin, “Planar microwave retroreflector based on a split ring resonator metasurface,” 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES), Nanjing, China, 2019, pp. 1-2.
  • [30] Y. Khanna, R. Gaur, R. Gupta and Y. K. Awasthi, “Design of Metamaterial by Slotted Split Ring Resonator-SSRR for Dual Frequency Band Applications,” 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2019, pp. 87-90.
  • [31] G. Amruta and R. Kumar, “Enhancing the Performance Characteristic of Patch Antenna using Split-Ring Resonator Metamaterial,” 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2020, pp. 367-370.
  • [32] Y. M. Huang, Y. Zhou, H. Jin, G. Wang and M. Bozzi, “Miniaturized Evanescent Mode Substrate Integrated Waveguide Filter with Mixed-Coupled Folded Complementary Split-Ring Resonators,” 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 2019, pp. 1-4.
  • [33] M. Gupta, “Conformal Microstrip Filter Design Using Complementary Split Ring Resonator,” 2018 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 2018, pp. 1-4.
  • [34] A. Singh, A. Raj, A. Gupta, A. Tiwari and P. Kumar, “Split ring resonator biosensor-an innovative design and analysis,” 2020 IEEE 8th International Conference on Photonics (ICP), Kota Bharu, Malaysia, 2020, pp. 117-118.
  • [35] K. S. Umadevi, S. K. Simon, S. P. Chakyar, J. Andrews and V. P. Joseph, “Wide Band Microwave Absorber using Flexible Broadside Coupled Split Ring Resonator Metamaterial Structure,” 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), Rome, Italy, 2019, pp. X-453-X-455.
  • [36] W. Shahzad, W. D. Hu, A. Samad and L. P. Ligthart, “Complementary Split Ring Resonator based Metamaterial sensor for Dielectric Materials Measurements,” 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2020, pp. 695-698.
  • [37] A. K. Gorur, “A Dual-Band Balun BPF Using Codirectional Split Ring Resonators,” in IEEE Microwave and Wireless Components Letters, vol. 30, no. 10, pp. 949-952, 2020.
  • [38] Y. -R. Ho and C. -L. Yang, “A Wearable Throat Vibration Microwave Sensor Based on Split-Ring Resonator for Harmonics Detection,” 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 504-507.
  • [39] M. Baghelani, N. Hosseini and M. Daneshmand, “Selective Measurement of Water Content in Multivariable Biofuel Using Microstrip Split Ring Resonators,” 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 225-228.
  • [40] I. Topaloglu and O. Gurdal, “A second order sensitivity analysis based numerical approach developed for dimension optimization, in electric machine design by electromagnetic design software,” Journal of the Faculty of Engineering and Architecture of Gazi University, 2010, pp. 363-369.
  • [41] F. Korkmaz and I. Topaloglu, “Simulink model of vector controlled linear induction motor with end effect for electromagnetic launcher system,” Elektronika ir Elektrotechnika, 2014, pp. 29-32.
  • [42] M. Hesham and S. O. Abdellatif, “Compact Bandpass Filter Based on Split Ring Resonators,” 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2019, pp. 301-303.
  • [43] H. Kahraman , “Rulet Elektromanyetik Alan Optimizasyon (R-EFO) Algoritması”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 8, no. 1, pp. 69-80, 2020.
  • [44] F. Katırcıoğlu ve U. Güvenç , “Sequentially Modified Gravitational Search Algorithm for Image Enhancement”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 8, no. 4, pp. 2266-2288, 2020.

Meta-malzeme Yapılı Ayrık Halka Rezonatörün Performans İyileştirmesi için MOGA Algoritması Kullanılarak Üç Boyutlu Elektromanyetik Analizi ve Optimizasyonu

Year 2021, Volume: 9 Issue: 3 - Additional Issue, 34 - 47, 29.05.2021
https://doi.org/10.29130/dubited.885029

Abstract

Çalışma, meta-malzeme yapılı ayrık halka rezonatörün 3D elektromanyetik analizini ve optimizasyonunu sunar. Analiz, elektromanyetik analiz koşulları altında, ana ve bağımlı elektromanyetik sınır koşulları kullanılarak gerçekleştirilmiştir. Çalışma frekansı aralığı yani performans özelliği 1 GHz'den 20 GHz'e kadar frekans aralığında analiz edilmiştir. Ayrık halkalı rezonatör tasarımı, gerçek kullanımına uygun olarak üçlü eş eksenler üzerinde analiz edilmiştir. Analizde yüzey akım yoğunluğu, elektrik alan şiddeti ve manyetik alan şiddeti değerleri incelenmiştir. Meta-malzeme yapılı ayrık halka rezonatörler birçok alanda kullanılmaktadır. Günümüzde 5G uygulamalarında ölçüm ve sensör veya anten olarak birçok uygulama alanına sahiptir. Yüksek frekanslarda uygun bir tasarım elde etmek için mikron seviyesinde tasarımlara ihtiyaç vardır. Yeni geliştirilmiş amaç fonksiyonları çalışmada sunulmuştur. Bu çalışmada, negatif kırılma indisi kapasitesine ulaşabilen 20 GHz'e kadar çok amaçlı genetik algoritma kullanılarak optimize edilmiş bir SRR tasarımı ile iyi sonuçlar elde edilmiştir. Bu sonuçlar, çalışmada geçirgenlik ve geçirgenlik arasındaki ilişki ile sunulmuştur. Ayrıca tasarımdan elde edilen sonuçlar incelendiğinde kablosuz uygulamalara uygun olduğu görülmektedir. Daha önce 11 GHz olan SRR negatif kırılma indisi kapasitesi performans iyileştirmesi ile 15.5 GHz'e çıkarılmıştır.

References

  • [1] A. Dadgarpour, B. Zarghooni, B. S. Virdee, T. A. Denidni and A. A. Kishk, “Mutual Coupling Reduction in Dielectric Resonator Antennas Using Metasurface Shield for 60-GHz MIMO Systems,” in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 477-480, 2017.
  • [2] C. Herrojo, F. Paredes, J. Mata-Contreras, S. Zuffanelli and F. Martín, “Multistate Multiresonator Spectral Signature Barcodes Implemented by Means of S-Shaped Split Ring Resonators (S-SRRs),” in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 7, pp. 2341-2352, 2017.
  • [3] P. Vélez, L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc and F. Martín, “Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids,” in IEEE Sensors Journal, vol. 17, no. 20, pp. 6589-6598, 2017.
  • [4] A. Ebrahimi, J. Scott and K. Ghorbani, “Differential Sensors Using Microstrip Lines Loaded With Two Split-Ring Resonators,” in IEEE Sensors Journal, vol. 18, no. 14, pp. 5786-5793, 2018.
  • [5] M. Abdolrazzaghi and M. Daneshmand, “Exploiting Sensitivity Enhancement in Micro-wave Planar Sensors Using Intermodulation Products With Phase Noise Analysis,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4382-4395, 2020.
  • [6] T. Haq, C. Ruan, S. Ullah and A. Kosar Fahad, “Dual Notch Microwave Sensors Based on Complementary Metamaterial Resonators,” in IEEE Access, vol. 7, pp. 153489-153498, 2019.
  • [7] B. Camli, E. Kusakci, B. Lafci, S. Salman, H. Torun and A. D. Yalcinkaya, “Cost-Effective, Microstrip Antenna Driven Ring Resonator Microwave Biosensor for Biospecific Detection of Glucose,” in IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 2, pp. 404-409, Art no. 6900706, 2017.
  • [8] K. Xu et al., “Novel Microwave Sensors Based on Split Ring Resonators for Measuring Permittivity,” in IEEE Access, vol. 6, pp. 26111-26120, 2018.
  • [9] J. Hinojosa, M. Rossi, A. Saura-Ródenas, A. Álvarez-Melcón and F. L. Martínez-Viviente, “Compact Bandstop Half-Mode Substrate Integrated Waveguide Filter Based on a Broadside-Coupled Open Split-Ring Resonator,” in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 6, pp. 3001-3010, 2018.
  • [10] W. Tang, G. Goussetis, N. J. G. Fonseca, H. Legay, E. Sáenz and P. de Maagt, “Coupled Split-Ring Resonator Circular Polarization Selective Surface,” in IEEE Transactions on Antennas and Propagation, vol. 65, no. 9, pp. 4664-4675, 2017.
  • [11] G. Govind, N. K. Tiwari, K. K. Agrawal and M. J. Akhtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” in IEEE Sensors Journal, vol. 18, no. 18, pp. 7442-7449, 2018.
  • [12] J. Mata-Contreras, C. Herrojo and F. Martín, “Application of Split Ring Resonator (SRR) Loaded Transmission Lines to the Design of Angular Displacement and Velocity Sensors for Space Applications,” in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4450-4460, 2017.
  • [13] T. Yue, Z. H. Jiang, A. H. Panaretos and D. H. Werner, “A Compact Dual-Band Antenna Enabled by a Complementary Split-Ring Resonator-Loaded Metasurface,” in IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6878-6888, 2017.
  • [14] M. A. H. Ansari, A. K. Jha, Z. Akhter and M. J. Akhtar, “Multi-Band RF Planar Sensor Using Complementary Split Ring Resonator for Testing of Dielectric Materials,” in IEEE Sensors Journal, vol. 18, no. 16, pp. 6596-6606, 2018.
  • [15] T. Athauda and N. C. Karmakar, “The Realization of Chipless RFID Resonator for Multiple Physical Parameter Sensing,” in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5387-5396, 2019.
  • [16] J. S. Bobowski and A. P. Clements, “Permittivity and Conductivity Measured Using a Novel Toroidal Split-Ring Resonator,” in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 6, pp. 2132-2138, 2017.
  • [17] A. B. de Alleluia et al., “Experimental Testing of a 3-D-Printed Metamaterial Slow Wave Structure for High-Power Microwave Generation,” in IEEE Transactions on Plasma Science, vol. 48, no. 12, pp. 4356-4364, 2020.
  • [18] R. A. Dextre, T. Yamauchi, K. A. Polzin and K. G. Xu, “Concentric Split-Ring Resonator Microwave Microplasma Generation at Off-Resonant Frequencies,” in IEEE Transactions on Plasma Science, vol. 48, no. 4, pp. 827-834, 2020.
  • [19] A. A. G. Amer, S. Z. Sapuan, N. Nasimuddin, A. Alphones and N. B. Zinal, “A Comprehensive Review of Metasurface Structures Suitable for RF Energy Harvesting,” in IEEE Access, vol. 8, pp. 76433-76452, 2020.
  • [20] X. Liu, W. Wu, P. Ji and N. Yuan, “Design of Compact Dual-Passband Filters by Parasitic Passband With Controllable Passbands,” in IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 410-412, 2018.
  • [21] M. Li, X. Chen, A. Zhang, W. Fan and A. A. Kishk, “Split-Ring Resonator-Loaded Baffles for Decoupling of Dual-Polarized Base Station Array,” in IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 10, pp. 1828-1832, 2020.
  • [22] S. Ma, L. Sydänheimo, L. Ukkonen and T. Björninen, “Split-Ring Resonator Antenna System With Cortical Implant and Head-Worn Parts for Effective Far-Field Implant Communications,” in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 4, pp. 710-713, 2018.
  • [23] C. Tseng and C. Wu, “A Novel Microwave Phased- and Perturbation-Injection-Locked Sensor With Self-Oscillating Complementary Split-Ring Resonator for Finger and Wrist Pulse Detection,” in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1933-1942, 2020.
  • [24] P. Vélez, J. Muñoz-Enano, K. Grenier, J. Mata-Contreras, D. Dubuc and F. Martín, “Split Ring Resonator-Based Microwave Fluidic Sensors for Electrolyte Concentration Measurements,” in IEEE Sensors Journal, vol. 19, no. 7, pp. 2562-2569, 2019.
  • [25] U. Kose and A. Kavas, “Design and Performance Analysis of Split Ring Resonator Based Microstrip Antenna With Defected Ground Structure,” 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 2020, pp. 1-4.
  • [26] L. Wu, J. Sheng, S. Peng, Z. Xiao and S. Gu, “Chipless RFID Tag using Complementary Hexagonal Split Ring Resonator,” 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019, pp. 1334-1336.
  • [27] X. Jiang, P. Zhong, Q. Zhang and A. K. Rashid, “A Broadband Metamaterial Polarization Converter Based on Split Ring Resonators,” 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 2019, pp. 1-3.
  • [28] B. Chowdhury, T. Walpita, B. Yang and A. Eroglu, “Resonant Characteristics of Split Ring Resonator And Unit Cell for Periodic Metamaterial Devices,” 2020 International Applied Computational Electromagnetics Society Symposium (ACES), Monterey, CA, USA, 2020, pp. 1-2.
  • [29] Y. Liu, X. Dang, L. Li and H. Yin, “Planar microwave retroreflector based on a split ring resonator metasurface,” 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES), Nanjing, China, 2019, pp. 1-2.
  • [30] Y. Khanna, R. Gaur, R. Gupta and Y. K. Awasthi, “Design of Metamaterial by Slotted Split Ring Resonator-SSRR for Dual Frequency Band Applications,” 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2019, pp. 87-90.
  • [31] G. Amruta and R. Kumar, “Enhancing the Performance Characteristic of Patch Antenna using Split-Ring Resonator Metamaterial,” 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2020, pp. 367-370.
  • [32] Y. M. Huang, Y. Zhou, H. Jin, G. Wang and M. Bozzi, “Miniaturized Evanescent Mode Substrate Integrated Waveguide Filter with Mixed-Coupled Folded Complementary Split-Ring Resonators,” 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 2019, pp. 1-4.
  • [33] M. Gupta, “Conformal Microstrip Filter Design Using Complementary Split Ring Resonator,” 2018 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 2018, pp. 1-4.
  • [34] A. Singh, A. Raj, A. Gupta, A. Tiwari and P. Kumar, “Split ring resonator biosensor-an innovative design and analysis,” 2020 IEEE 8th International Conference on Photonics (ICP), Kota Bharu, Malaysia, 2020, pp. 117-118.
  • [35] K. S. Umadevi, S. K. Simon, S. P. Chakyar, J. Andrews and V. P. Joseph, “Wide Band Microwave Absorber using Flexible Broadside Coupled Split Ring Resonator Metamaterial Structure,” 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), Rome, Italy, 2019, pp. X-453-X-455.
  • [36] W. Shahzad, W. D. Hu, A. Samad and L. P. Ligthart, “Complementary Split Ring Resonator based Metamaterial sensor for Dielectric Materials Measurements,” 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2020, pp. 695-698.
  • [37] A. K. Gorur, “A Dual-Band Balun BPF Using Codirectional Split Ring Resonators,” in IEEE Microwave and Wireless Components Letters, vol. 30, no. 10, pp. 949-952, 2020.
  • [38] Y. -R. Ho and C. -L. Yang, “A Wearable Throat Vibration Microwave Sensor Based on Split-Ring Resonator for Harmonics Detection,” 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 504-507.
  • [39] M. Baghelani, N. Hosseini and M. Daneshmand, “Selective Measurement of Water Content in Multivariable Biofuel Using Microstrip Split Ring Resonators,” 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 225-228.
  • [40] I. Topaloglu and O. Gurdal, “A second order sensitivity analysis based numerical approach developed for dimension optimization, in electric machine design by electromagnetic design software,” Journal of the Faculty of Engineering and Architecture of Gazi University, 2010, pp. 363-369.
  • [41] F. Korkmaz and I. Topaloglu, “Simulink model of vector controlled linear induction motor with end effect for electromagnetic launcher system,” Elektronika ir Elektrotechnika, 2014, pp. 29-32.
  • [42] M. Hesham and S. O. Abdellatif, “Compact Bandpass Filter Based on Split Ring Resonators,” 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2019, pp. 301-303.
  • [43] H. Kahraman , “Rulet Elektromanyetik Alan Optimizasyon (R-EFO) Algoritması”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 8, no. 1, pp. 69-80, 2020.
  • [44] F. Katırcıoğlu ve U. Güvenç , “Sequentially Modified Gravitational Search Algorithm for Image Enhancement”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 8, no. 4, pp. 2266-2288, 2020.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İsmail Topaloğlu 0000-0002-9599-5228

Publication Date May 29, 2021
Published in Issue Year 2021 Volume: 9 Issue: 3 - Additional Issue

Cite

APA Topaloğlu, İ. (2021). 3D Electromagnetic Analysis and Optimization of Metamaterial Constructed by SRR Using the MOGA Algorithm for Performance Improvement. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 9(3), 34-47. https://doi.org/10.29130/dubited.885029
AMA Topaloğlu İ. 3D Electromagnetic Analysis and Optimization of Metamaterial Constructed by SRR Using the MOGA Algorithm for Performance Improvement. DUBİTED. May 2021;9(3):34-47. doi:10.29130/dubited.885029
Chicago Topaloğlu, İsmail. “3D Electromagnetic Analysis and Optimization of Metamaterial Constructed by SRR Using the MOGA Algorithm for Performance Improvement”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 9, no. 3 (May 2021): 34-47. https://doi.org/10.29130/dubited.885029.
EndNote Topaloğlu İ (May 1, 2021) 3D Electromagnetic Analysis and Optimization of Metamaterial Constructed by SRR Using the MOGA Algorithm for Performance Improvement. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9 3 34–47.
IEEE İ. Topaloğlu, “3D Electromagnetic Analysis and Optimization of Metamaterial Constructed by SRR Using the MOGA Algorithm for Performance Improvement”, DUBİTED, vol. 9, no. 3, pp. 34–47, 2021, doi: 10.29130/dubited.885029.
ISNAD Topaloğlu, İsmail. “3D Electromagnetic Analysis and Optimization of Metamaterial Constructed by SRR Using the MOGA Algorithm for Performance Improvement”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9/3 (May 2021), 34-47. https://doi.org/10.29130/dubited.885029.
JAMA Topaloğlu İ. 3D Electromagnetic Analysis and Optimization of Metamaterial Constructed by SRR Using the MOGA Algorithm for Performance Improvement. DUBİTED. 2021;9:34–47.
MLA Topaloğlu, İsmail. “3D Electromagnetic Analysis and Optimization of Metamaterial Constructed by SRR Using the MOGA Algorithm for Performance Improvement”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 9, no. 3, 2021, pp. 34-47, doi:10.29130/dubited.885029.
Vancouver Topaloğlu İ. 3D Electromagnetic Analysis and Optimization of Metamaterial Constructed by SRR Using the MOGA Algorithm for Performance Improvement. DUBİTED. 2021;9(3):34-47.