Research Article
BibTex RIS Cite

Examining Seed Germination Rate and Seedlings Gas Exchange Performances of Some Turkish Red Pine Provenances Under Water Stress

Year 2021, Volume: 9 Issue: 3 - Additional Issue, 48 - 60, 29.05.2021
https://doi.org/10.29130/dubited.898820

Abstract

With climate change, global warming has increased adverse effects on living things in our country. In these adverse effects, water scarcity is the most crucial problem due to the increase in temperature and decrease in precipitation. Forests are the most affected ecosystem among others by water scarcity in our country. This study tried to determine the 5-year-old seeds and 1-year-old seedlings (produced from the same seeds) of some Turkish red pine provenance’ responses to different water stress levels. First, how the water stress levels (0, -0.2, -0.4, -0.6, -0.8 MPa) affect seed germination of these provenances was determined. Secondly, gas exchange parameters [net photosynthesis (Anet), stomatal conductance (gs), transpiration (E), and intrinsic water use efficiency (iWUE)] under different water stress were determined in the seedlings obtained from these species' seeds. As a result of the germination test, Denizli-Çameli (DC) provenance had the highest rate (48%), while Maraş-Suçatı had the lowest rate (29%) under control treatment. The highest germination rate was obtained in Burdur/Bucak provenance (5%) under -0.2 MPa osmotic potential. For gas exchange parameters, Antalya/Gündoğmuş provenance had the highest Anet, gs values while DC provenance had the lowest Anet, gs, and E values when provenance is considered as a single factor. Besides, increasing in irrigation increased Anet, gs, and E while decreased the iWUE. The lowest seedling E under water stress can be explained because this species responds to the water shortage by closing its stomata. Among the Turkish red pine origins, DC provenance showed higher drought tolerance than others.

References

  • [1] A. Semerci, B. İmal, C. A. Gonzalez-Benecke, “Intraspecfic variability in cold tolerance in Pinus brutia sampled from two contrasting provenance trials,” New Forests, pp. 1-17, 2020.
  • [2] M. R. Chambel, J. Climent, C. Pichot, F. Ducci, “Mediterranean Pines (Pinus halepensis Mill. and brutia Ten.)” in Forest Tree Breeding in Europe: Current State-Of-The-Art and Perspectives, L. E. Pâques, Ed.; Springer: Dordrecht, The Netherlands, 2013, pp. 229–265.
  • [3] A. Mauri, M. Di Leo, D. de Rigo, G. Caudullo, “Pinus halepensis and Pinus brutia In Europe: Distribution, Habitat, Usage and Threats,” in European Atlas of Forest Tree Species, J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston-Durrant and A. Mauri, Eds., Luxembourg: Off. EU, 2016. pp. 122–123.
  • [4] Orman Genel Müdürlüğü, Orman İdaresi ve Planlama Dairesi Başkanlığı. (2015, 01 March). Türkiye Orman Varlığı [Online]. Available: https://www.ogm.gov.tr/ekutuphane/Yayinlar/T%C3%BCrkiye%20Orman%20Varl%C4%B1%C4%9F%C4%B1-2016-2017.pdf.
  • [5] General Directorate of Forestry. (2010, 1 June). Main Tree Species of Turkey. Main Tree Species of Turkey, [Online]. Available: http://web.ogm.gov.tr/languages/English/Sayfalar/Publication.aspx.
  • [6] Z. Yahyaoglu, M. Genç M, “Seedling Standardization, Biological and Technical Fundamentals of Standard Seedling Propagation (in Turkish),” Suleyman Demirel University, no. 75, pp. 1-555, 2007.
  • [7] D. Yildiz, P. Nzokou, A. Deligoz, I. Koc, M. Genc, “Chemical and physiological responses of four Turkish red pine (Pinus brutia Ten.) provenances to cold temperature treatments,” European Journal of Forest Research, vol. 133, no. 5, pp. 809-818, 2014. [8] M. T. Tyree, “Hydraulic limits on tree performance: transpiration, carbon gain and growth of trees,” Trees, vol. 17, pp. 95–100, 2003.
  • [9] C. A Maier, J. Burley, R. Cook, S. B. Ghezehei, D. W. Hazel, E. G. Nichols, “Tree water use, water use efficiency, and carbon isotope discrimination in relation to growth potential in Populus deltoides and hybrids under field condition,” Forests, no. 10, pp. 993, 2019.
  • [10] H. Lambers, F. S. Chapin, T. L. Pons, “Plant Physiological Ecology,” Springer: New York, NY, USA, 2008, pp. 1-604.
  • [11] P. Lionello, L. Scarascia L, “The relation between climate change in the Mediterranean Region and global warming,” Regional Environmental Change, vol. 18, no. 5, pp. 1481–1493, 2018.
  • [12] IPCC “Climate change 2014 synthesis report contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change,” Core Writing Team, Geneva, Switzerland, Rep. 5, 2014.
  • [13] H. Şevik, N. Ertürk, “Effects of drought stress on germination in fourteen provenances of Pinus brutia Ten. seeds in Turkey,” Turkish Journal of Agriculture-Food Science and Technology, vol. 3, no. 5, pp. 294-299, 2015.
  • [14] T. T. Koslowski, S. G. Pallardy, “Acclimation and adaptive responses of woody plants to environmental stress,” Botanical Review, vol. 68, no. 2, pp. 270-334, 2002.
  • [15] O. Topacoglu, H. Sevik, E. Akkuzu, “Effects of water stress on germination of Pinus nigra Arnold. Seeds,” Pakistan Journal of Botany, vol. 48, no. 2, pp. 447–453, 2016.
  • [16] S. Ahmad, R. Ahmad, M. Y. Ashraf, M. Ashraf, E. A. Waraich, “Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages,” Pakistan Journal of Botany, vol. 41, no. 2, pp. 647-54, 2009.
  • [17] A. D. Vickers, S. C. F. Plamer “The influence of canopy cover and other factors upon the regeneration of scots pine and its associated ground flora within glen tanar national nature reserve,” Forestry, vol. 73, no. 1, pp. 37-49, 2000.
  • [18] J. L. Harper “Population Biology of Plants,” Blackburn Press: Caldwell, NJ, USA; London, UK, 2010, pp. 1-892.
  • [19] M. Almansouri, J. M. Kinet, S. Lutts, “Effect of Salt and Osmotic Stresses in Germination in Durum Wheat (Triticum durum Desf),” Plant Soil, vol. 231, no. 2, pp. 243-245, 2001.
  • [20] C. M. Karssen, “Seasonal Pattern of Dormancy in Weed Seeds” in Physiology and Biochemistry of Seed Development, Dormancy and Germination, A. A. Khan, Eds., Elsevier Biomedical Press, Amsterdam, 1982, pp. 243-270.
  • [21] M. Cetin, H. Sevik, N, Yigit, H. B. Ozel, B. Aricak, T. Varol, “The variable of leaf micromorphogical characters on grown in distinct climate conditions in some landscape plants,” Fresenius Environmental Bulletin, vol. 27 no. 5, pp. 3206-3211, 2018.
  • [22] M. Cetin, H. Sevik, N. Yigit “Climate type-related changes in the leaf micromorphological characters of certain landscape plants,” Environmental Monitoring and Assessment, vol. 190 no. 7, pp. 1-9, 2018.
  • [23] F. Ahmadloo, M. Tabari, B. Behtari “Effect of drought stress on the germination parameters of Cupressus seeds,” International Journal of Forest, Soil and Erosion, vol. 1, no. 1, pp. 11-17, 2011. [24] N. Carpita, D. Sabularse, D. Monfezinos, D. P. Delmer, “Determination of the pore size of cell walls of living plant cells,” Science, vol. 205, no. 4411, pp. 1144-1147, 1979.
  • [25] H. Sevik, M. Cetin, “Effect of water stress on seed germination for select landscape plants,” Polish Journal of Environmental Studies, vol. 24, no. 2, pp. 689-693, 2015.
  • [26] N. Yigit, H. Sevik, M. Cetin, N. Kaya, “Determination of the effect of drought stress on the seed germination in some plant species, water stress in plants,” InTech, ch. 3, 2016, pp. 43-62.
  • [27] B. E. Michel, M. R. Kaufmann, “The osmotic potential of polyethylene glycol 6000,” Plant Physiology, vol. 51, no. 5, pp. 914–916, 1973.
  • [28] W. Rasband. (2016, 3 June). ImageJ. Image Processing and Analysis in Java, Research Services Branch, National Institute of Mental Health, Bethesda, Maryland, USA, [Online]. Available: http://rsbweb.nih.gov/ij/index.html
  • [29] M. Boydak, H. Dirik, F. Tilki, M. Çalıkoğlu, “Effects of water stress on germination in six provenances of Pinus brutia seeds from different bioclimatic zones in Turkey,” Turkish Journal Agriculture and Forestry, vol. 27, no. 2, pp. 91-97, 2003.
  • [30] F. Tilki, H. Dirik, “Seed germination of three provenances of Pinus brutia (Ten.) as influenced by stratification, temperature and water stress,” Journal of Environmental Biology, vol. 27, no. 1, pp. 133-137, 2007.
  • [31] M. Hrivnák, L. Paule, D. Krajmerová, Ş. Kulaç, H. Şevik, İ. Turna, I. Tvauri. D. Gömöry, “Genetic variation in Tertiary Relics: The case of Eastern‐Mediterranean Abies (Pinaceae),” Ecology and Evolution, vol. 7, no. 23, pp. 10018-10030, 2017.
  • [32] H. Sevik, H. B. Ozel, M. Cetin, H. U. Özel, T. Erdem, “Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants,” Air Quality, Atmosphere & Health, vol. 12, no. 2, pp. 189-195, 2019.
  • [33] H. Sevik, M. Cetin, A. Ozturk, N. Yigit, O. Karakus, “Changes in micromorphological characters of Platanus orientalis L. leaves in Turkey,” Applied Ecology and Environmental Research, vol. 17, no. 3, pp. 5909-5921, 2019.
  • [34] C. Yucedag, H. B. Ozel, M. Cetin, H. Sevik, “Variability in morphological traits of seedlings from five Euonymus japonicus cultivars,” Environmental Monitoring and Assessment, vol. 191, no. 5, pp. 1-4, 2019.
  • [35] A. Cesur, I. Zeren Cetin, A. E. S. Abo Aisha, O. B. M. Alrabiti, A. M. O. Aljama, A. A. Jawed, M. Cetin, H. Sevik, H. B. Ozel, “The usability of Cupressus arizonica annual rings in monitoring the changes in heavy metal concentration in Air,” Environmental Science and Pollution Research, pp. 1-7, 2021.
  • [36] M. Cetin, H. Sevik, O. Cobanoglu O, “Ca, Cu, and Li in washed and unwashed specimens of needles, bark, and branches of the blue spruce (Picea pungens) in the city of Ankara,” Environmental Science and Pollution Research, vol. 27, no. 17, pp. 21816-21825, 2020.
  • [37] S. Buyurukçu, “Hanönü‐Günlübur The Anatolian Black Pine (Pinus nigra Arnold Ssp. pallasiana (Lamb.) Holmboe) water stress effects on seed garden in terms of clonal variation,” M. S. thesis, Institute of Science and Technology, Kastamonu University, Kastamonu, Turkey, 2011. (in Turkish). [38] S. Gulcu, H. C. Gultekin, Z. Olmez, “The effects of sowing time and depth on germination and seedling percentage of the Taurus Cedar (Cedrus libani A. Rich.),” African Journal of Biotechnology, vol. 9, no. 15, pp. 2267-2275, 2010.
  • [39] Ş. Kulaç, “Research on changes of physiological and morphological and biochemical on scotch pine (Pinus sylvestris L.) seedlings under drought stress , (in English with abstract),” Ph. D. dissertation, Graduate School of Natural and Applied Sciences, Karadeniz Technical University, Trabzon, Turkey, 2010.
  • [40] J. Zhang, H. Jiang, X. Song, J. Jin, X. Zhang, “The responses of plant Leaf CO2/H2O exchange and water use efficiency to drought: a meta-analysis,” Sustainability, vol. 10, no. 2, pp. 551, 2018.
  • [41] M. Ashraf, “Relationships between leaf gas exchange characteristics and growth of differently adapted populations of blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging,” Plant Science, vol. 165, no. 1, pp. 69-75, 2003.
  • [42] E. Bayar, A. Deligöz, “Impacts of precommercial thinning on gas exchange, midday water potential, and chlorophyll content in Pinus nigra subsp. pallasiana stand from The Semiarid Region,” Trees, vol. 34, pp. 1169-1181, 2020.
  • [43] P. Neumann, “The role of cell wall adjustment in plant resistance to water deficits,” Crop Scence, vol. 35, no. 5, pp. 1258-1266, 1995.
  • [44] J. Urban, M. W. Ingwers, M. A. McGuire, R. O. Teskey R. O, “Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra,” Journal of Experimental Botany, vol. 68, no.7, pp. 1757-1767, 2017.

Su Stresi Altındaki Bazı Kızılçam Kaynaklarının Tohum Çimlenme Oranı ve Fidelerin Gaz Değişim Performanslarının İncelenmesi

Year 2021, Volume: 9 Issue: 3 - Additional Issue, 48 - 60, 29.05.2021
https://doi.org/10.29130/dubited.898820

Abstract

İklim değişikliğiyle beraber küresel ısınmanın ülkemizdeki canlılar üzerindeki olumsuz etkileri artmıştır. Bu olumsuz etkilerden su kıtlığı, sıcaklık artışı ve yağışların azalmasıyla birlikte en önemli sorun olarak ortaya çıkmıştır. Ülkemizde su kıtlığından en çok etkilenen ormanlar ekosistemleridir. Bu çalışmada, bazı Kızılçam orijinlerinin 5 yaşındaki tohumları ve 1 yaşındaki fidelerinin (aynı tohumlardan üretilmiş) farklı su stresi seviyelerine tepkilerinin belirlenmesine çalışılmıştır. İlk olarak, su stresi seviyelerinin (0, -0.2, -0.4, -0.6, -0.8 MPa) bu tohum kaynaklarının çimlenmesini nasıl etkilediği belirlendi. Daha sonra, bu türlerin tohumlarından elde edilen fidelerin su stresi altında gaz değişim parametreleri [net fotosentez (Anet), stoma iletkenliği (gs), terleme (E), ve içsel su kullanma verimliliği (iWUE)] belirlenmiştir. Kontrol işleminde altındaki çimlenme testi sonucunda, en yüksek çimlenme oranı Denizli/Çameli (DC) orijininde (%48) belirlenirken, Maraş/Suçatı orijini en düşük orana (%29) sahiptir. -0.2 MPa ozmotik su gerilimi altında en yüksek çimlenme oranı Burdur/Bucak orijininde tespit edilmiştir. Orijin tek değişken olarak ele alınıp fidelerin gaz değişim parametreleri incelendiğinde ise en yüksek Anet ve gs Antalya/Gündoğmuş orijininde belirlenirken en düşük Anet, gs ve E ise DC orijininde tespit edilmiştir. Ayrıca sulamanın artması Anet, gs ve E’yi arttırırken iWUE’yi düşürmüştür. Türlerin en düşük E değerine sahip olması onların su stresine karşı somatalarını kapatarak tepki vermesiyle açıklanabilir. Kızılcam orijinleri arasında DC orijini diğerlerinden kuraklığa toleransı daha yüksektir.

References

  • [1] A. Semerci, B. İmal, C. A. Gonzalez-Benecke, “Intraspecfic variability in cold tolerance in Pinus brutia sampled from two contrasting provenance trials,” New Forests, pp. 1-17, 2020.
  • [2] M. R. Chambel, J. Climent, C. Pichot, F. Ducci, “Mediterranean Pines (Pinus halepensis Mill. and brutia Ten.)” in Forest Tree Breeding in Europe: Current State-Of-The-Art and Perspectives, L. E. Pâques, Ed.; Springer: Dordrecht, The Netherlands, 2013, pp. 229–265.
  • [3] A. Mauri, M. Di Leo, D. de Rigo, G. Caudullo, “Pinus halepensis and Pinus brutia In Europe: Distribution, Habitat, Usage and Threats,” in European Atlas of Forest Tree Species, J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston-Durrant and A. Mauri, Eds., Luxembourg: Off. EU, 2016. pp. 122–123.
  • [4] Orman Genel Müdürlüğü, Orman İdaresi ve Planlama Dairesi Başkanlığı. (2015, 01 March). Türkiye Orman Varlığı [Online]. Available: https://www.ogm.gov.tr/ekutuphane/Yayinlar/T%C3%BCrkiye%20Orman%20Varl%C4%B1%C4%9F%C4%B1-2016-2017.pdf.
  • [5] General Directorate of Forestry. (2010, 1 June). Main Tree Species of Turkey. Main Tree Species of Turkey, [Online]. Available: http://web.ogm.gov.tr/languages/English/Sayfalar/Publication.aspx.
  • [6] Z. Yahyaoglu, M. Genç M, “Seedling Standardization, Biological and Technical Fundamentals of Standard Seedling Propagation (in Turkish),” Suleyman Demirel University, no. 75, pp. 1-555, 2007.
  • [7] D. Yildiz, P. Nzokou, A. Deligoz, I. Koc, M. Genc, “Chemical and physiological responses of four Turkish red pine (Pinus brutia Ten.) provenances to cold temperature treatments,” European Journal of Forest Research, vol. 133, no. 5, pp. 809-818, 2014. [8] M. T. Tyree, “Hydraulic limits on tree performance: transpiration, carbon gain and growth of trees,” Trees, vol. 17, pp. 95–100, 2003.
  • [9] C. A Maier, J. Burley, R. Cook, S. B. Ghezehei, D. W. Hazel, E. G. Nichols, “Tree water use, water use efficiency, and carbon isotope discrimination in relation to growth potential in Populus deltoides and hybrids under field condition,” Forests, no. 10, pp. 993, 2019.
  • [10] H. Lambers, F. S. Chapin, T. L. Pons, “Plant Physiological Ecology,” Springer: New York, NY, USA, 2008, pp. 1-604.
  • [11] P. Lionello, L. Scarascia L, “The relation between climate change in the Mediterranean Region and global warming,” Regional Environmental Change, vol. 18, no. 5, pp. 1481–1493, 2018.
  • [12] IPCC “Climate change 2014 synthesis report contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change,” Core Writing Team, Geneva, Switzerland, Rep. 5, 2014.
  • [13] H. Şevik, N. Ertürk, “Effects of drought stress on germination in fourteen provenances of Pinus brutia Ten. seeds in Turkey,” Turkish Journal of Agriculture-Food Science and Technology, vol. 3, no. 5, pp. 294-299, 2015.
  • [14] T. T. Koslowski, S. G. Pallardy, “Acclimation and adaptive responses of woody plants to environmental stress,” Botanical Review, vol. 68, no. 2, pp. 270-334, 2002.
  • [15] O. Topacoglu, H. Sevik, E. Akkuzu, “Effects of water stress on germination of Pinus nigra Arnold. Seeds,” Pakistan Journal of Botany, vol. 48, no. 2, pp. 447–453, 2016.
  • [16] S. Ahmad, R. Ahmad, M. Y. Ashraf, M. Ashraf, E. A. Waraich, “Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages,” Pakistan Journal of Botany, vol. 41, no. 2, pp. 647-54, 2009.
  • [17] A. D. Vickers, S. C. F. Plamer “The influence of canopy cover and other factors upon the regeneration of scots pine and its associated ground flora within glen tanar national nature reserve,” Forestry, vol. 73, no. 1, pp. 37-49, 2000.
  • [18] J. L. Harper “Population Biology of Plants,” Blackburn Press: Caldwell, NJ, USA; London, UK, 2010, pp. 1-892.
  • [19] M. Almansouri, J. M. Kinet, S. Lutts, “Effect of Salt and Osmotic Stresses in Germination in Durum Wheat (Triticum durum Desf),” Plant Soil, vol. 231, no. 2, pp. 243-245, 2001.
  • [20] C. M. Karssen, “Seasonal Pattern of Dormancy in Weed Seeds” in Physiology and Biochemistry of Seed Development, Dormancy and Germination, A. A. Khan, Eds., Elsevier Biomedical Press, Amsterdam, 1982, pp. 243-270.
  • [21] M. Cetin, H. Sevik, N, Yigit, H. B. Ozel, B. Aricak, T. Varol, “The variable of leaf micromorphogical characters on grown in distinct climate conditions in some landscape plants,” Fresenius Environmental Bulletin, vol. 27 no. 5, pp. 3206-3211, 2018.
  • [22] M. Cetin, H. Sevik, N. Yigit “Climate type-related changes in the leaf micromorphological characters of certain landscape plants,” Environmental Monitoring and Assessment, vol. 190 no. 7, pp. 1-9, 2018.
  • [23] F. Ahmadloo, M. Tabari, B. Behtari “Effect of drought stress on the germination parameters of Cupressus seeds,” International Journal of Forest, Soil and Erosion, vol. 1, no. 1, pp. 11-17, 2011. [24] N. Carpita, D. Sabularse, D. Monfezinos, D. P. Delmer, “Determination of the pore size of cell walls of living plant cells,” Science, vol. 205, no. 4411, pp. 1144-1147, 1979.
  • [25] H. Sevik, M. Cetin, “Effect of water stress on seed germination for select landscape plants,” Polish Journal of Environmental Studies, vol. 24, no. 2, pp. 689-693, 2015.
  • [26] N. Yigit, H. Sevik, M. Cetin, N. Kaya, “Determination of the effect of drought stress on the seed germination in some plant species, water stress in plants,” InTech, ch. 3, 2016, pp. 43-62.
  • [27] B. E. Michel, M. R. Kaufmann, “The osmotic potential of polyethylene glycol 6000,” Plant Physiology, vol. 51, no. 5, pp. 914–916, 1973.
  • [28] W. Rasband. (2016, 3 June). ImageJ. Image Processing and Analysis in Java, Research Services Branch, National Institute of Mental Health, Bethesda, Maryland, USA, [Online]. Available: http://rsbweb.nih.gov/ij/index.html
  • [29] M. Boydak, H. Dirik, F. Tilki, M. Çalıkoğlu, “Effects of water stress on germination in six provenances of Pinus brutia seeds from different bioclimatic zones in Turkey,” Turkish Journal Agriculture and Forestry, vol. 27, no. 2, pp. 91-97, 2003.
  • [30] F. Tilki, H. Dirik, “Seed germination of three provenances of Pinus brutia (Ten.) as influenced by stratification, temperature and water stress,” Journal of Environmental Biology, vol. 27, no. 1, pp. 133-137, 2007.
  • [31] M. Hrivnák, L. Paule, D. Krajmerová, Ş. Kulaç, H. Şevik, İ. Turna, I. Tvauri. D. Gömöry, “Genetic variation in Tertiary Relics: The case of Eastern‐Mediterranean Abies (Pinaceae),” Ecology and Evolution, vol. 7, no. 23, pp. 10018-10030, 2017.
  • [32] H. Sevik, H. B. Ozel, M. Cetin, H. U. Özel, T. Erdem, “Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants,” Air Quality, Atmosphere & Health, vol. 12, no. 2, pp. 189-195, 2019.
  • [33] H. Sevik, M. Cetin, A. Ozturk, N. Yigit, O. Karakus, “Changes in micromorphological characters of Platanus orientalis L. leaves in Turkey,” Applied Ecology and Environmental Research, vol. 17, no. 3, pp. 5909-5921, 2019.
  • [34] C. Yucedag, H. B. Ozel, M. Cetin, H. Sevik, “Variability in morphological traits of seedlings from five Euonymus japonicus cultivars,” Environmental Monitoring and Assessment, vol. 191, no. 5, pp. 1-4, 2019.
  • [35] A. Cesur, I. Zeren Cetin, A. E. S. Abo Aisha, O. B. M. Alrabiti, A. M. O. Aljama, A. A. Jawed, M. Cetin, H. Sevik, H. B. Ozel, “The usability of Cupressus arizonica annual rings in monitoring the changes in heavy metal concentration in Air,” Environmental Science and Pollution Research, pp. 1-7, 2021.
  • [36] M. Cetin, H. Sevik, O. Cobanoglu O, “Ca, Cu, and Li in washed and unwashed specimens of needles, bark, and branches of the blue spruce (Picea pungens) in the city of Ankara,” Environmental Science and Pollution Research, vol. 27, no. 17, pp. 21816-21825, 2020.
  • [37] S. Buyurukçu, “Hanönü‐Günlübur The Anatolian Black Pine (Pinus nigra Arnold Ssp. pallasiana (Lamb.) Holmboe) water stress effects on seed garden in terms of clonal variation,” M. S. thesis, Institute of Science and Technology, Kastamonu University, Kastamonu, Turkey, 2011. (in Turkish). [38] S. Gulcu, H. C. Gultekin, Z. Olmez, “The effects of sowing time and depth on germination and seedling percentage of the Taurus Cedar (Cedrus libani A. Rich.),” African Journal of Biotechnology, vol. 9, no. 15, pp. 2267-2275, 2010.
  • [39] Ş. Kulaç, “Research on changes of physiological and morphological and biochemical on scotch pine (Pinus sylvestris L.) seedlings under drought stress , (in English with abstract),” Ph. D. dissertation, Graduate School of Natural and Applied Sciences, Karadeniz Technical University, Trabzon, Turkey, 2010.
  • [40] J. Zhang, H. Jiang, X. Song, J. Jin, X. Zhang, “The responses of plant Leaf CO2/H2O exchange and water use efficiency to drought: a meta-analysis,” Sustainability, vol. 10, no. 2, pp. 551, 2018.
  • [41] M. Ashraf, “Relationships between leaf gas exchange characteristics and growth of differently adapted populations of blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging,” Plant Science, vol. 165, no. 1, pp. 69-75, 2003.
  • [42] E. Bayar, A. Deligöz, “Impacts of precommercial thinning on gas exchange, midday water potential, and chlorophyll content in Pinus nigra subsp. pallasiana stand from The Semiarid Region,” Trees, vol. 34, pp. 1169-1181, 2020.
  • [43] P. Neumann, “The role of cell wall adjustment in plant resistance to water deficits,” Crop Scence, vol. 35, no. 5, pp. 1258-1266, 1995.
  • [44] J. Urban, M. W. Ingwers, M. A. McGuire, R. O. Teskey R. O, “Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra,” Journal of Experimental Botany, vol. 68, no.7, pp. 1757-1767, 2017.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İsmail Koç 0000-0001-5847-9155

Publication Date May 29, 2021
Published in Issue Year 2021 Volume: 9 Issue: 3 - Additional Issue

Cite

APA Koç, İ. (2021). Examining Seed Germination Rate and Seedlings Gas Exchange Performances of Some Turkish Red Pine Provenances Under Water Stress. Duzce University Journal of Science and Technology, 9(3), 48-60. https://doi.org/10.29130/dubited.898820
AMA Koç İ. Examining Seed Germination Rate and Seedlings Gas Exchange Performances of Some Turkish Red Pine Provenances Under Water Stress. DUBİTED. May 2021;9(3):48-60. doi:10.29130/dubited.898820
Chicago Koç, İsmail. “Examining Seed Germination Rate and Seedlings Gas Exchange Performances of Some Turkish Red Pine Provenances Under Water Stress”. Duzce University Journal of Science and Technology 9, no. 3 (May 2021): 48-60. https://doi.org/10.29130/dubited.898820.
EndNote Koç İ (May 1, 2021) Examining Seed Germination Rate and Seedlings Gas Exchange Performances of Some Turkish Red Pine Provenances Under Water Stress. Duzce University Journal of Science and Technology 9 3 48–60.
IEEE İ. Koç, “Examining Seed Germination Rate and Seedlings Gas Exchange Performances of Some Turkish Red Pine Provenances Under Water Stress”, DUBİTED, vol. 9, no. 3, pp. 48–60, 2021, doi: 10.29130/dubited.898820.
ISNAD Koç, İsmail. “Examining Seed Germination Rate and Seedlings Gas Exchange Performances of Some Turkish Red Pine Provenances Under Water Stress”. Duzce University Journal of Science and Technology 9/3 (May 2021), 48-60. https://doi.org/10.29130/dubited.898820.
JAMA Koç İ. Examining Seed Germination Rate and Seedlings Gas Exchange Performances of Some Turkish Red Pine Provenances Under Water Stress. DUBİTED. 2021;9:48–60.
MLA Koç, İsmail. “Examining Seed Germination Rate and Seedlings Gas Exchange Performances of Some Turkish Red Pine Provenances Under Water Stress”. Duzce University Journal of Science and Technology, vol. 9, no. 3, 2021, pp. 48-60, doi:10.29130/dubited.898820.
Vancouver Koç İ. Examining Seed Germination Rate and Seedlings Gas Exchange Performances of Some Turkish Red Pine Provenances Under Water Stress. DUBİTED. 2021;9(3):48-60.

Cited By