Research Article
BibTex RIS Cite

Detonation Parameters of the Pentaerythritol Tetranitrate and Some Structures Descriptors in Different Solvents - Computational Study

Year 2021, Volume: 9 Issue: 4, 1227 - 1241, 31.07.2021
https://doi.org/10.29130/dubited.896332

Abstract

Pentaerythritol tetranitrate (PETN, C5H8N4O12) is a relatively stable explosive nitrate ester molecule. It has been widely used in various military and public industrial productions. In this study, the solubility tendency of PETN in different organic solvents was investigated theoretically. Several physicochemical parameters of PETN such as density, detonation pressure, temperature, rate and products of detonation reaction were investigated using the B3LYP functional and basic set of polarization functions (d, p) containing 6-31G**. The obtained results have been compared with the literature values. Furthermore, the stability and reactivity of PETN in acetone, diethyl ether, ethanol, tetrahydrofuran, toluene and methylene chloride were examined. Results revealed toluene is a good solvent to increase the explosive properties of PETN.

References

  • [1] E. Schrödinger, "An undulatory theory of the mechanics of atoms and molecules," Physical Review, vol. 28, no. 6, pp. 1049-1070, 1926.
  • [2] D. N. Zwaan, "Nature of production blast malfunctions: a creighton mine case study," M.S. thesis, Depertmant of Civil Engineering, Toronto University, Toronto, Canada, 2014.
  • [3] P. Hohenberg, W. Kohn, "Inhomogeneous electron gas," Physical Review, vol. 136, no. 3B, pp. B864-B871, 1964.
  • [4] W. Kohn, L.J. Sham, "Self-consistent equations including exchange and correlation effects," Physical Review, vol. 140, no. 4A, pp. A1133-A1138, 1965.
  • [5] K. M. Al-Ahmary, M.M. Habeeb and S.H. Aljahdali, "Synthesis, spectroscopic studies and DFT/TD-DFT/PCM calculations of molecular structure, spectroscopic characterization and NBO of charge transfer complex between 5-amino-1,3-dimethylpyrazole (5-ADMP) with chloranilic acid (CLA) in different solvents," Journal of Molecular Liquids, vol. 277, pp. 453-470, 2019.
  • [6] J. K. Cooper, C.D. Grant, and J.Z. Zhang, "Experimental and TD-DFT Study of Optical Absorption of Six Explosive Molecules: RDX, HMX, PETN, TNT, TATP, and HMTD," J Phys Chem A, vol. 117, no. 29, pp. 6043-51, 2013.
  • [7] P. Machado, et al., "Synthesis, characterization and DFT studies of a new unsymmetrical dinuclear Vanadium(IV) complex with a bipodal N2O-donor ligand," Journal of Molecular Structure, vol. 1193, no. 1, pp. 110-117, 2019.
  • [8] N. Le, I. Schweigert, "Modeling solid–solid phase transitions in PETN using density functional theory," AIP Conference Proceedings 1979, vol. 040004, pp. 1-6, 2018.
  • [9] L. Türker, "Interaction of TATB with Cu and Cu+1. a DFT study," Defence Technology, vol. 15, no. 1, pp. 27-37, 2019.
  • [10] J. W. Yang, et al., "A study of UV–vis spectroscopic and DFT calculation of the UV absorber in different solvent," Progress in Organic Coatings, vol. 135, pp. 168-175, 2019.
  • [11] M. K. Priya, et al., "Molecular structure, spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) analysis, HOMO-LUMO energies, mulliken, MEP and thermal properties of new chalcone derivative by DFT calculation," Materials Today, vol. 8, pp. 37-46, 2019.
  • [12] I. N. Booysen, et al., "Synthesis, characterization, biological and DFT studies of new 4-substituted phthalonitriles," Journal of Molecular Structure, vol. 1191, pp. 244-252, 2019.
  • [13] F. Tielens, et al., "Characterization of amorphous silica based catalysts using DFT computational methods," Catalysis Today, vol. 354, pp. 3-18, 2019.
  • [14] X. Zhao, "A dirac semimetal phase diagram of the binary compound CuI(R-3m)," Journal of Physics and Chemistry of Solids, vol. 131, pp. 62-68, 2019.
  • [15] J. Akhavan, The Chemistry of Explosives, 3rd ed., United Kingdom, USA: RSC Paperback, 1998, pp. 37-38, 73-74.
  • [16] B. Tollens, P. Wigand, "Ueber den penta-erythrit, einen aus formaldehyd und acetaldehyd synthetisch hergestellten vierwerthigen alkohol," Justus Liebigs Annalen der Chemie, vol. 265, no. 3, pp. 316-340, 1891.
  • [17] N. G. Johnson, H. A. Lewis, "Explosive composition," U.S. Patent 2 033 196, Mar. 10, 1936.
  • [18] J. A. Wyler, "Nitrated pentaerythritol mother liquor," U.S. Patent 2 152 372, Mar. 28, 1939.
  • [19] J. A. Wyler, "Pentaerythritol tetranitrate explosive," U.S. Patent 2 154 552, Apr. 18, 1939.
  • [20] W. O. Snelling, "Making granulated explosives," U.S. Patent 2 346 116, Apr. 4, 1944.
  • [21] C. O. Davis, W. E. Kirst, "Explosive charge," U.S. Patent 2 371 879, Mar. 20, 1945.
  • [22] C. O. Davis, W. E. Kirst, "Metod of preparing cast explosive charges," U.S. Patent 2 384 730, Sept. 11, 1945.
  • [23] S. D. Ehrlich, "Pentaerythrol tetranitrate product," U.S Patent 2 597 926, May. 27, 1952.
  • [24] R.S. Gow, J.F. Williamson, and A.J. Williamson, "Pentaerythrtol tetranitrate," U.S Patent 2 867 647, Jan. 27, 1959.
  • [25] H. B. J. Schurink, "Pentaerythritol", Organic Syntheses Database Online, 4rd ed., USA: John Wiley & Sons, 1925.
  • [26] S. Fordham, High Explosives and Propellants, 2rd revised ed., Pergamon Press formerly of nobel's explosive Co. Ltd, 1980, pp. 31-32.
  • [27] R. Meyer, J. Köhler, and H. A., Explosives, 5rd ed., Wiley-VCH Verlag GmbH & Co.KGaA, 2002, pp. 134-139, 253-254.
  • [28] J. J. P. Stewart, "Optimization of parameters for semiempirical methods II. applications," Journal of Computational Chemistry, vol. 10, no. 2, pp. 221-264, 1989.
  • [29] J. J. P. Stewart, "Optimization of parameters for semiempirical methods I. method," Journal of Computational Chemistry, vol. 10, no. 2, pp. 209-220, 1989.
  • [30] A. R. Leach, Molecular Modelling, 2rd ed., Essex, UK: Longman, 1997.
  • [31] W. Kohn, L.J. Sham, "Quantum density oscillations in an inhomogeneous electron gas," Physical Review, vol. 137, no. 6A, pp. A1697-A1705, 1965.
  • [32] Spartan, Molecular Modeling in Physical Chemistry, Irvine Calif., USA: Wavefunction, 2005, pp. 52-57.
  • [33] D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-world Problems, New Jersey, USA: John Wiley & Sons, Inc, 2001.
  • [34] L. Türker, "Borazine-embedded coronene—a DFT study," Polycyclic Aromatic Compounds, vol. 32, no. 1, pp. 61-74, 2012.
  • [35] S. Zhu et al., "Molecular design and property prediction of a series of novel cyclotetramethylene tetranitramine derivatives as high energy density compounds," Structural Chemistry, vol. 29, no. 5, pp. 1457-1463, 2018.
  • [36] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, New York, USA: Oxford University Press, 1989.
  • [37] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical Review A, vol. 38, no. 6, pp. 3098-3100, 1988.
  • [38] S. H. Vosko, L. Wilk and M. Nusair, "Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis," Canadian Journal of Physics, vol. 58, no. 8, pp. 1200-1211, 1980.
  • [39] C. Lee, W. Yang and R.G. Parr, "Development of the colle-salvetti correlation-energy formula into a functional of the electron density," Physical Review B, vol. 37, no. 2, pp. 785-789, 1988.
  • [40] R.C. Gaussian, M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2004.
  • [41] J. Yang et al., "A theoretical study on 1,5-diazido-3-nitrazapentane (DANP) and 1,7-diazido-2,4,6-trinitrazaheptane (DATNH): molecular and crystal structures, thermodynamic and detonation properties, and pyrolysis mechanism," J Mol Model, vol. 19, no. 12, pp. 5367-76, 2013.
  • [42] P. Eaton, R. Gilardi and M.X. Zhang, "Polynitrocubanes: advanced high-density, high-energy materials," Advanced Materials - Advan Mater, vol.12, pp. 1143-1148, 2000.
  • [43] L. Türker, S. Variş, "Structurally modified RDX - a DFT study," Defence Technology, vol. 13, no. 6, pp. 385-391, 2017.
  • [44] J. Chen et al., "Combination high energy with stability: polynitrogen explosives N14 and N18," Communication, pp. 1-10, 2018.
  • [45] M. H. Keshavarz, "Simple procedure for determining heats of detonation," Thermochimica Acta, vol. 428, no. 1-2, pp. 95-99, 2005.
  • [46] P. W. Cooper, Explosives Engineering, Toronto, New York: Wiley-VHC, 1997, pp. 131-132.
  • [47] J. K. Labonowski, J. W. Andzelm, Density Functional Methods in Chemistry, Berlin, Germany: Springer-Verlag, 1991.
  • [48] J. M. Seminario, P. Politzer, Theoretical and Computational Chemistry (Modem Density Functional Theory: A Tool for Chemistry), Amsterdam, The Netherlands, 1995, pp. 371-374.
  • [49] P. Atkins, J. D. Paula, Atkin’s Physical Chemistry, 8rd ed., New York: Oxford University Press, 2006, pp. 45, 53-55,
  • [50] T. Atalar, "Molecular design of some potential explosives," Ph.D. thesis, Department of Chemistry, METU, Ankara, Turkey, 2009.
  • [51] G. Wang et al., "Calculation of detonation velocity, pressure, and electric sensitivity of nitro arenes based on quantum chemistry," Propellants, Explosives, Pyrotechnics, vol. 31, no. 5, pp. 361-368, 2006.
  • [52] J. Zhang, J. Xiao and H. Xiao, "Theoretical studies on heats of formation for cubylnitrates using density functional theory B3LYP Method and semiempirical MO methods," International Journal of Quantum Chemistry - Int J Quantum Chem, vol. 86, pp. 305-312, 2002.
  • [53] S. Varış, "Molecular modelling of some explosives and propellants," Ph.D. thesis, Department of Chemistry, METU, Ankara, Turkey, 2013.
  • [54] M. J. Kamlet and S. J. Jacobs, "Chemistry of detonations. I. A simple method for calculating detonation properties of C H N O explosives," J. Chem. Phys., pp. 48, 1968.
  • [55] M. J. Kamlet and J. M. Short, "The chemistry of detonations. VI. a “rule for gamma” as a criterion for choice among conflicting detonation pressure measurements," Combustion and Flame, vol. 38, pp. 221-230, 1980.
  • [56] L. Qiu et al., "Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines," J. Phys. Chem. A, vol. 110, pp. 3797-3807, 2006.
  • [57] K. Jeong, "New theoretically predicted RDX and β-HMX-based high-energy-density molecules," International Journal of Quantum Chemistry, vol. 118, no. 6, 2018.
  • [58] Y. Zhou, X. Long and Y. Shu, "Theoretical studies on the heats of formation, densities, and detonation properties of substituted s-tetrazine compounds," J Mol Model, vol. 16, no. 5, pp. 1021-1027, 2010.
  • [59] H. Lin et al., "Theoretical design and screening potential high energy density materials: combination of 1,2,4-oxadiazole and 1,3,4-oxadiazole Rings," Combustion, Explosion, and Shock Waves, vol. 55, no. 5, pp. 547-554, 2019.
  • [60] Y. Li, B. Li and L. Xie, "Design and properties prediction of modified CL‐20 energetic derivatives," Journal of the Chinese Chemical Society, 2019.
  • [61] L. L. Altgilbers et al., Explosive Pulsed Power, London: Imperial College Press, 2011.
  • [62] F. H. Ree, "A statistical mechanical theory of chemically reacting multiphase mixtures: application to the detonation properties of PETN," J. Chem. Phys., vol. 81, no. 3, pp. 1251-1263, 1984.
  • [63] P. Politzer, P. Lane and J.S. Murray, "Computational characterization of a potential energetic compound: 1,3,5,7-Tetranitro-2,4,6,8-Tetraazacubane," Central European Journal of Energetic Materials, vol. 8, no. 1, pp. 39-52, 2011.
  • [64] C. M. Tarver, R.D. Breithaupt and J.W. Kury, "Detonation waves in pentaerythritol tetranitrate," Journal of Applied Physics, vol. 81, no. 11, pp. 7193 -7202, 1997.
  • [65] K. Stark et al., "Crystal structure, sensitiveness and theoretical explosive performance of xylitol pentanitrate (XPN)," Propellants Explosives Pyrotechnics, vol. 44, pp. 541–549, 2019.
  • [66] J. C. Oxley et al., "Characterization and analysis of tetranitrate esters," Propellants, Explosives, Pyrotechnics, vol. 37, no. 1, pp. 24-39, 2012.
  • [67] Y. H. Joo and J.M. Shreeve, "Polynitramino compounds outperform PETN," Chem Commun (Camb), vol. 46, no. 1, pp. 142-4, 2010.
  • [68] M. L. Hobbs and M. R. Baer, "Calibrating the BKW-EOS with a large product species data base and measured C-J properties," Tenth Symposium (International) on Detonation, pp. 409-418, 1993.
  • [69] S. Gunasekaran et al., "Experimental and theoretical investigations of spectroscopic properties of N-acetyl-5-Methoxytryptamine," Canadian Journal of Analytical Sciences and Spectroscopy, vol. 53, pp. 149-162, 2008.
  • [70] C.J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2rd ed., Chichester, England: John Wiley & Sons Ltd, 2004, pp. 149,194-195.
  • [71] F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed., New York: InterScience Publisher, 1972.
  • [72] P. O. Löwdin, "Density functional theory: a source of chemical concepts and a cost-effective methodology for their calculation," in Advances in Quantum Chemistry, Academic Press, 1998, pp. 303-328.
  • [73] R.G. Pearson, "Hard and soft acids and bases," Journal of the American Chemical Society, vol. 85, pp. 3533-3539, 1963.
  • [74] R.G. Parr and R.G. Pearson, "Absolute hardness: companion parameter to absolute electronegativity," J. Am. Chem. Soc, vol. 105, pp. 7512-7516, 1983.
  • [75] R.G. Pearson, "Absolute electronegativity and absolute hardness of lewis acids and bases," J. Am. Chem. Soc., vol. 107, pp. 6801-6806, 1985.
  • [76] M. Godarzi et al., "Effect of B12N12 junction on the energetic and chemical features of PATO: a density functional theory investigation," Int. J. Nano Dimens., vol. 10, no. 1, pp. 62-68, 2019.
  • [77] R.G. Parr and W. Yang, "Density functional approach to the frontier-electron theory of chemical reactivity," J. Am. Chem. Soc., vol. 106, pp. 4049-4050, 1984.
  • [78] L. Türker and S. Variş, "Prediction of explosive performance properties ofz-DBBD and its isomers by quantum chemical computations," Journal of Energetic Materials, vol. 31, no. 3, pp. 203-216, 2013.
  • [79] L. Türker, C. Bayar, "A DFT study on estrone - TNT interaction," Zeitschrift für Anorganische und Allgemeine Chemie, vol. 639, no. 10, pp. 1871-1875, 2013.
  • [80] L. Türker, "Interaction of TNT and aluminum - A DFT treatment," Zeitschrift für Anorganische und Allgemeine Chemie, vol. 641, no. 2, pp. 408-413, 2015.
  • [81] A. Smirnov et al., "Basic characteristics for estimation polynitrogen compounds efficiency," Central European Journal of Energetic Materials, vol. 8, no. 4, pp. 233-247, 2011.
  • [82] L. Türker, "A DFT study on TNGU isomers and aluminized cis -TNGU composites," Defence Technology, vol. 14, no. 2, pp. 109-118, 2017.
  • [83] J. I. Aihara et al., "Further test of the isolated pentagon rule: thermodynamic and kinetic stabilities of c84 fullerene isomers," Journal of Computational Chemistry, vol. 17, no. 12, pp. 1387-1394, 1996.
  • [84] Y. H. Azeez, S. Hekim and S. Akpınar, "The theoretical investigation of the HOMO, LUMO energies and chemical reactivity of C9H12 and C7F3NH5Cl molecules," Journal of Physical Chemistry and Functional Materials, vol. 2, no. 1, pp. 29-31, 2019.
  • [85] D. E. Manolopoulos, J. C. May and S. E. Down, "Theoretical studies of the fullerenes: C34 to C70," Chemical Physics Letters, vol. 181, no. 2, pp. 105-111, 1991.
  • [86] D. Zhai et al., "Molecular design and properties of bridged energetic pyridines derivatives," RSC Advances, vol. 9, no. 65, pp. 37747-37758, 2019.
  • [87] N. Jadhao, A. Naik, "Effect of electronegativity on structural, spectrophotometric and thermo-chemical properties of fluorine and chlorine substituted isoxazoles by DFT method," Cogent Chemistry, 2017.
  • [88] L. Xiao et al., "Preparation and characteristics of a novel PETN/TKX-50 co-Crystal by a solvent/non-solvent method," RSC Advances, vol. 9, no. 16, pp. 9204-9210, 2019.
  • [89] I. Bouabdallah et al., "Hartree–Fock and density functional theory studies on tautomerism of 5,50-diisopropyl-3,30-bipyrazole in gas phase and solution", Chemical Physics Letters, vol. 588, pp. 208-214, 2013.
  • [90] Z. Demircioğlu, C. C. Ersanlı, "(±)-(1SR,8RS,10RS)-9,9,10-tribromtrisiklo[6.2.1.02,7] undeka-2,4,6-trien molekülünün hesaplamali kimya yöntemiyle lokal ve global kimyasal aktivite ve DNA bazlari ile yük transferinin tayini", Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, c. 14, ss. 165-178, 2019.

Pentaeritritol Tetranitratın Patlama Parametreleri ve Farklı Çözücülerdeki Bazı Yapı Tanımlayıcıları - Hesaplamalı Çalışma

Year 2021, Volume: 9 Issue: 4, 1227 - 1241, 31.07.2021
https://doi.org/10.29130/dubited.896332

Abstract

Pentaeritritol tetranitrat (PETN, C5H8N4O12) nispeten kararlı bir patlayıcı nitrrat esteridir. Çeşitli askeri ve kamuya ait endüstriyel üretimlerde yaygın olarak kullanılmaktadır. Bu çalışmada, PETN'nin farklı organik çözücülerdeki çözünürlük eğilimi teorik olarak araştırılmıştır. PETN'nin yoğunluk, patlama basıncı, sıcaklık, hız ve patlama reaksiyonunun ürünleri gibi çeşitli fizikokimyasal parametreleri, 6-31G ** içeren B3LYP fonksiyonel ve temel polarizasyon fonksiyonları seti (d, p) kullanılarak araştırılmıştır. Elde edilen sonuçlar literatür değerleri ile karşılaştırılmıştır. Ayrıca, PETN'nin aseton, dietil eter, etanol, tetrahidrofuran, toluen ve metilen klorit içindeki stabilitesi ve reaktivitesi benzer şekilde incelenmiştir. Sonuçlar PETN’in patlayıcı özelliklerini arttırmak için, toluenin iyi bir çözücü olduğunu ortaya çıkardı.

References

  • [1] E. Schrödinger, "An undulatory theory of the mechanics of atoms and molecules," Physical Review, vol. 28, no. 6, pp. 1049-1070, 1926.
  • [2] D. N. Zwaan, "Nature of production blast malfunctions: a creighton mine case study," M.S. thesis, Depertmant of Civil Engineering, Toronto University, Toronto, Canada, 2014.
  • [3] P. Hohenberg, W. Kohn, "Inhomogeneous electron gas," Physical Review, vol. 136, no. 3B, pp. B864-B871, 1964.
  • [4] W. Kohn, L.J. Sham, "Self-consistent equations including exchange and correlation effects," Physical Review, vol. 140, no. 4A, pp. A1133-A1138, 1965.
  • [5] K. M. Al-Ahmary, M.M. Habeeb and S.H. Aljahdali, "Synthesis, spectroscopic studies and DFT/TD-DFT/PCM calculations of molecular structure, spectroscopic characterization and NBO of charge transfer complex between 5-amino-1,3-dimethylpyrazole (5-ADMP) with chloranilic acid (CLA) in different solvents," Journal of Molecular Liquids, vol. 277, pp. 453-470, 2019.
  • [6] J. K. Cooper, C.D. Grant, and J.Z. Zhang, "Experimental and TD-DFT Study of Optical Absorption of Six Explosive Molecules: RDX, HMX, PETN, TNT, TATP, and HMTD," J Phys Chem A, vol. 117, no. 29, pp. 6043-51, 2013.
  • [7] P. Machado, et al., "Synthesis, characterization and DFT studies of a new unsymmetrical dinuclear Vanadium(IV) complex with a bipodal N2O-donor ligand," Journal of Molecular Structure, vol. 1193, no. 1, pp. 110-117, 2019.
  • [8] N. Le, I. Schweigert, "Modeling solid–solid phase transitions in PETN using density functional theory," AIP Conference Proceedings 1979, vol. 040004, pp. 1-6, 2018.
  • [9] L. Türker, "Interaction of TATB with Cu and Cu+1. a DFT study," Defence Technology, vol. 15, no. 1, pp. 27-37, 2019.
  • [10] J. W. Yang, et al., "A study of UV–vis spectroscopic and DFT calculation of the UV absorber in different solvent," Progress in Organic Coatings, vol. 135, pp. 168-175, 2019.
  • [11] M. K. Priya, et al., "Molecular structure, spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) analysis, HOMO-LUMO energies, mulliken, MEP and thermal properties of new chalcone derivative by DFT calculation," Materials Today, vol. 8, pp. 37-46, 2019.
  • [12] I. N. Booysen, et al., "Synthesis, characterization, biological and DFT studies of new 4-substituted phthalonitriles," Journal of Molecular Structure, vol. 1191, pp. 244-252, 2019.
  • [13] F. Tielens, et al., "Characterization of amorphous silica based catalysts using DFT computational methods," Catalysis Today, vol. 354, pp. 3-18, 2019.
  • [14] X. Zhao, "A dirac semimetal phase diagram of the binary compound CuI(R-3m)," Journal of Physics and Chemistry of Solids, vol. 131, pp. 62-68, 2019.
  • [15] J. Akhavan, The Chemistry of Explosives, 3rd ed., United Kingdom, USA: RSC Paperback, 1998, pp. 37-38, 73-74.
  • [16] B. Tollens, P. Wigand, "Ueber den penta-erythrit, einen aus formaldehyd und acetaldehyd synthetisch hergestellten vierwerthigen alkohol," Justus Liebigs Annalen der Chemie, vol. 265, no. 3, pp. 316-340, 1891.
  • [17] N. G. Johnson, H. A. Lewis, "Explosive composition," U.S. Patent 2 033 196, Mar. 10, 1936.
  • [18] J. A. Wyler, "Nitrated pentaerythritol mother liquor," U.S. Patent 2 152 372, Mar. 28, 1939.
  • [19] J. A. Wyler, "Pentaerythritol tetranitrate explosive," U.S. Patent 2 154 552, Apr. 18, 1939.
  • [20] W. O. Snelling, "Making granulated explosives," U.S. Patent 2 346 116, Apr. 4, 1944.
  • [21] C. O. Davis, W. E. Kirst, "Explosive charge," U.S. Patent 2 371 879, Mar. 20, 1945.
  • [22] C. O. Davis, W. E. Kirst, "Metod of preparing cast explosive charges," U.S. Patent 2 384 730, Sept. 11, 1945.
  • [23] S. D. Ehrlich, "Pentaerythrol tetranitrate product," U.S Patent 2 597 926, May. 27, 1952.
  • [24] R.S. Gow, J.F. Williamson, and A.J. Williamson, "Pentaerythrtol tetranitrate," U.S Patent 2 867 647, Jan. 27, 1959.
  • [25] H. B. J. Schurink, "Pentaerythritol", Organic Syntheses Database Online, 4rd ed., USA: John Wiley & Sons, 1925.
  • [26] S. Fordham, High Explosives and Propellants, 2rd revised ed., Pergamon Press formerly of nobel's explosive Co. Ltd, 1980, pp. 31-32.
  • [27] R. Meyer, J. Köhler, and H. A., Explosives, 5rd ed., Wiley-VCH Verlag GmbH & Co.KGaA, 2002, pp. 134-139, 253-254.
  • [28] J. J. P. Stewart, "Optimization of parameters for semiempirical methods II. applications," Journal of Computational Chemistry, vol. 10, no. 2, pp. 221-264, 1989.
  • [29] J. J. P. Stewart, "Optimization of parameters for semiempirical methods I. method," Journal of Computational Chemistry, vol. 10, no. 2, pp. 209-220, 1989.
  • [30] A. R. Leach, Molecular Modelling, 2rd ed., Essex, UK: Longman, 1997.
  • [31] W. Kohn, L.J. Sham, "Quantum density oscillations in an inhomogeneous electron gas," Physical Review, vol. 137, no. 6A, pp. A1697-A1705, 1965.
  • [32] Spartan, Molecular Modeling in Physical Chemistry, Irvine Calif., USA: Wavefunction, 2005, pp. 52-57.
  • [33] D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-world Problems, New Jersey, USA: John Wiley & Sons, Inc, 2001.
  • [34] L. Türker, "Borazine-embedded coronene—a DFT study," Polycyclic Aromatic Compounds, vol. 32, no. 1, pp. 61-74, 2012.
  • [35] S. Zhu et al., "Molecular design and property prediction of a series of novel cyclotetramethylene tetranitramine derivatives as high energy density compounds," Structural Chemistry, vol. 29, no. 5, pp. 1457-1463, 2018.
  • [36] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, New York, USA: Oxford University Press, 1989.
  • [37] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical Review A, vol. 38, no. 6, pp. 3098-3100, 1988.
  • [38] S. H. Vosko, L. Wilk and M. Nusair, "Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis," Canadian Journal of Physics, vol. 58, no. 8, pp. 1200-1211, 1980.
  • [39] C. Lee, W. Yang and R.G. Parr, "Development of the colle-salvetti correlation-energy formula into a functional of the electron density," Physical Review B, vol. 37, no. 2, pp. 785-789, 1988.
  • [40] R.C. Gaussian, M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2004.
  • [41] J. Yang et al., "A theoretical study on 1,5-diazido-3-nitrazapentane (DANP) and 1,7-diazido-2,4,6-trinitrazaheptane (DATNH): molecular and crystal structures, thermodynamic and detonation properties, and pyrolysis mechanism," J Mol Model, vol. 19, no. 12, pp. 5367-76, 2013.
  • [42] P. Eaton, R. Gilardi and M.X. Zhang, "Polynitrocubanes: advanced high-density, high-energy materials," Advanced Materials - Advan Mater, vol.12, pp. 1143-1148, 2000.
  • [43] L. Türker, S. Variş, "Structurally modified RDX - a DFT study," Defence Technology, vol. 13, no. 6, pp. 385-391, 2017.
  • [44] J. Chen et al., "Combination high energy with stability: polynitrogen explosives N14 and N18," Communication, pp. 1-10, 2018.
  • [45] M. H. Keshavarz, "Simple procedure for determining heats of detonation," Thermochimica Acta, vol. 428, no. 1-2, pp. 95-99, 2005.
  • [46] P. W. Cooper, Explosives Engineering, Toronto, New York: Wiley-VHC, 1997, pp. 131-132.
  • [47] J. K. Labonowski, J. W. Andzelm, Density Functional Methods in Chemistry, Berlin, Germany: Springer-Verlag, 1991.
  • [48] J. M. Seminario, P. Politzer, Theoretical and Computational Chemistry (Modem Density Functional Theory: A Tool for Chemistry), Amsterdam, The Netherlands, 1995, pp. 371-374.
  • [49] P. Atkins, J. D. Paula, Atkin’s Physical Chemistry, 8rd ed., New York: Oxford University Press, 2006, pp. 45, 53-55,
  • [50] T. Atalar, "Molecular design of some potential explosives," Ph.D. thesis, Department of Chemistry, METU, Ankara, Turkey, 2009.
  • [51] G. Wang et al., "Calculation of detonation velocity, pressure, and electric sensitivity of nitro arenes based on quantum chemistry," Propellants, Explosives, Pyrotechnics, vol. 31, no. 5, pp. 361-368, 2006.
  • [52] J. Zhang, J. Xiao and H. Xiao, "Theoretical studies on heats of formation for cubylnitrates using density functional theory B3LYP Method and semiempirical MO methods," International Journal of Quantum Chemistry - Int J Quantum Chem, vol. 86, pp. 305-312, 2002.
  • [53] S. Varış, "Molecular modelling of some explosives and propellants," Ph.D. thesis, Department of Chemistry, METU, Ankara, Turkey, 2013.
  • [54] M. J. Kamlet and S. J. Jacobs, "Chemistry of detonations. I. A simple method for calculating detonation properties of C H N O explosives," J. Chem. Phys., pp. 48, 1968.
  • [55] M. J. Kamlet and J. M. Short, "The chemistry of detonations. VI. a “rule for gamma” as a criterion for choice among conflicting detonation pressure measurements," Combustion and Flame, vol. 38, pp. 221-230, 1980.
  • [56] L. Qiu et al., "Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines," J. Phys. Chem. A, vol. 110, pp. 3797-3807, 2006.
  • [57] K. Jeong, "New theoretically predicted RDX and β-HMX-based high-energy-density molecules," International Journal of Quantum Chemistry, vol. 118, no. 6, 2018.
  • [58] Y. Zhou, X. Long and Y. Shu, "Theoretical studies on the heats of formation, densities, and detonation properties of substituted s-tetrazine compounds," J Mol Model, vol. 16, no. 5, pp. 1021-1027, 2010.
  • [59] H. Lin et al., "Theoretical design and screening potential high energy density materials: combination of 1,2,4-oxadiazole and 1,3,4-oxadiazole Rings," Combustion, Explosion, and Shock Waves, vol. 55, no. 5, pp. 547-554, 2019.
  • [60] Y. Li, B. Li and L. Xie, "Design and properties prediction of modified CL‐20 energetic derivatives," Journal of the Chinese Chemical Society, 2019.
  • [61] L. L. Altgilbers et al., Explosive Pulsed Power, London: Imperial College Press, 2011.
  • [62] F. H. Ree, "A statistical mechanical theory of chemically reacting multiphase mixtures: application to the detonation properties of PETN," J. Chem. Phys., vol. 81, no. 3, pp. 1251-1263, 1984.
  • [63] P. Politzer, P. Lane and J.S. Murray, "Computational characterization of a potential energetic compound: 1,3,5,7-Tetranitro-2,4,6,8-Tetraazacubane," Central European Journal of Energetic Materials, vol. 8, no. 1, pp. 39-52, 2011.
  • [64] C. M. Tarver, R.D. Breithaupt and J.W. Kury, "Detonation waves in pentaerythritol tetranitrate," Journal of Applied Physics, vol. 81, no. 11, pp. 7193 -7202, 1997.
  • [65] K. Stark et al., "Crystal structure, sensitiveness and theoretical explosive performance of xylitol pentanitrate (XPN)," Propellants Explosives Pyrotechnics, vol. 44, pp. 541–549, 2019.
  • [66] J. C. Oxley et al., "Characterization and analysis of tetranitrate esters," Propellants, Explosives, Pyrotechnics, vol. 37, no. 1, pp. 24-39, 2012.
  • [67] Y. H. Joo and J.M. Shreeve, "Polynitramino compounds outperform PETN," Chem Commun (Camb), vol. 46, no. 1, pp. 142-4, 2010.
  • [68] M. L. Hobbs and M. R. Baer, "Calibrating the BKW-EOS with a large product species data base and measured C-J properties," Tenth Symposium (International) on Detonation, pp. 409-418, 1993.
  • [69] S. Gunasekaran et al., "Experimental and theoretical investigations of spectroscopic properties of N-acetyl-5-Methoxytryptamine," Canadian Journal of Analytical Sciences and Spectroscopy, vol. 53, pp. 149-162, 2008.
  • [70] C.J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2rd ed., Chichester, England: John Wiley & Sons Ltd, 2004, pp. 149,194-195.
  • [71] F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed., New York: InterScience Publisher, 1972.
  • [72] P. O. Löwdin, "Density functional theory: a source of chemical concepts and a cost-effective methodology for their calculation," in Advances in Quantum Chemistry, Academic Press, 1998, pp. 303-328.
  • [73] R.G. Pearson, "Hard and soft acids and bases," Journal of the American Chemical Society, vol. 85, pp. 3533-3539, 1963.
  • [74] R.G. Parr and R.G. Pearson, "Absolute hardness: companion parameter to absolute electronegativity," J. Am. Chem. Soc, vol. 105, pp. 7512-7516, 1983.
  • [75] R.G. Pearson, "Absolute electronegativity and absolute hardness of lewis acids and bases," J. Am. Chem. Soc., vol. 107, pp. 6801-6806, 1985.
  • [76] M. Godarzi et al., "Effect of B12N12 junction on the energetic and chemical features of PATO: a density functional theory investigation," Int. J. Nano Dimens., vol. 10, no. 1, pp. 62-68, 2019.
  • [77] R.G. Parr and W. Yang, "Density functional approach to the frontier-electron theory of chemical reactivity," J. Am. Chem. Soc., vol. 106, pp. 4049-4050, 1984.
  • [78] L. Türker and S. Variş, "Prediction of explosive performance properties ofz-DBBD and its isomers by quantum chemical computations," Journal of Energetic Materials, vol. 31, no. 3, pp. 203-216, 2013.
  • [79] L. Türker, C. Bayar, "A DFT study on estrone - TNT interaction," Zeitschrift für Anorganische und Allgemeine Chemie, vol. 639, no. 10, pp. 1871-1875, 2013.
  • [80] L. Türker, "Interaction of TNT and aluminum - A DFT treatment," Zeitschrift für Anorganische und Allgemeine Chemie, vol. 641, no. 2, pp. 408-413, 2015.
  • [81] A. Smirnov et al., "Basic characteristics for estimation polynitrogen compounds efficiency," Central European Journal of Energetic Materials, vol. 8, no. 4, pp. 233-247, 2011.
  • [82] L. Türker, "A DFT study on TNGU isomers and aluminized cis -TNGU composites," Defence Technology, vol. 14, no. 2, pp. 109-118, 2017.
  • [83] J. I. Aihara et al., "Further test of the isolated pentagon rule: thermodynamic and kinetic stabilities of c84 fullerene isomers," Journal of Computational Chemistry, vol. 17, no. 12, pp. 1387-1394, 1996.
  • [84] Y. H. Azeez, S. Hekim and S. Akpınar, "The theoretical investigation of the HOMO, LUMO energies and chemical reactivity of C9H12 and C7F3NH5Cl molecules," Journal of Physical Chemistry and Functional Materials, vol. 2, no. 1, pp. 29-31, 2019.
  • [85] D. E. Manolopoulos, J. C. May and S. E. Down, "Theoretical studies of the fullerenes: C34 to C70," Chemical Physics Letters, vol. 181, no. 2, pp. 105-111, 1991.
  • [86] D. Zhai et al., "Molecular design and properties of bridged energetic pyridines derivatives," RSC Advances, vol. 9, no. 65, pp. 37747-37758, 2019.
  • [87] N. Jadhao, A. Naik, "Effect of electronegativity on structural, spectrophotometric and thermo-chemical properties of fluorine and chlorine substituted isoxazoles by DFT method," Cogent Chemistry, 2017.
  • [88] L. Xiao et al., "Preparation and characteristics of a novel PETN/TKX-50 co-Crystal by a solvent/non-solvent method," RSC Advances, vol. 9, no. 16, pp. 9204-9210, 2019.
  • [89] I. Bouabdallah et al., "Hartree–Fock and density functional theory studies on tautomerism of 5,50-diisopropyl-3,30-bipyrazole in gas phase and solution", Chemical Physics Letters, vol. 588, pp. 208-214, 2013.
  • [90] Z. Demircioğlu, C. C. Ersanlı, "(±)-(1SR,8RS,10RS)-9,9,10-tribromtrisiklo[6.2.1.02,7] undeka-2,4,6-trien molekülünün hesaplamali kimya yöntemiyle lokal ve global kimyasal aktivite ve DNA bazlari ile yük transferinin tayini", Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, c. 14, ss. 165-178, 2019.
There are 90 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cihat Hilal 0000-0002-6966-6711

Müşerref Önal 0000-0002-1540-8389

Mehmet Erman Mert 0000-0002-0114-8707

Publication Date July 31, 2021
Published in Issue Year 2021 Volume: 9 Issue: 4

Cite

APA Hilal, C., Önal, M., & Mert, M. E. (2021). Detonation Parameters of the Pentaerythritol Tetranitrate and Some Structures Descriptors in Different Solvents - Computational Study. Duzce University Journal of Science and Technology, 9(4), 1227-1241. https://doi.org/10.29130/dubited.896332
AMA Hilal C, Önal M, Mert ME. Detonation Parameters of the Pentaerythritol Tetranitrate and Some Structures Descriptors in Different Solvents - Computational Study. DUBİTED. July 2021;9(4):1227-1241. doi:10.29130/dubited.896332
Chicago Hilal, Cihat, Müşerref Önal, and Mehmet Erman Mert. “Detonation Parameters of the Pentaerythritol Tetranitrate and Some Structures Descriptors in Different Solvents - Computational Study”. Duzce University Journal of Science and Technology 9, no. 4 (July 2021): 1227-41. https://doi.org/10.29130/dubited.896332.
EndNote Hilal C, Önal M, Mert ME (July 1, 2021) Detonation Parameters of the Pentaerythritol Tetranitrate and Some Structures Descriptors in Different Solvents - Computational Study. Duzce University Journal of Science and Technology 9 4 1227–1241.
IEEE C. Hilal, M. Önal, and M. E. Mert, “Detonation Parameters of the Pentaerythritol Tetranitrate and Some Structures Descriptors in Different Solvents - Computational Study”, DUBİTED, vol. 9, no. 4, pp. 1227–1241, 2021, doi: 10.29130/dubited.896332.
ISNAD Hilal, Cihat et al. “Detonation Parameters of the Pentaerythritol Tetranitrate and Some Structures Descriptors in Different Solvents - Computational Study”. Duzce University Journal of Science and Technology 9/4 (July 2021), 1227-1241. https://doi.org/10.29130/dubited.896332.
JAMA Hilal C, Önal M, Mert ME. Detonation Parameters of the Pentaerythritol Tetranitrate and Some Structures Descriptors in Different Solvents - Computational Study. DUBİTED. 2021;9:1227–1241.
MLA Hilal, Cihat et al. “Detonation Parameters of the Pentaerythritol Tetranitrate and Some Structures Descriptors in Different Solvents - Computational Study”. Duzce University Journal of Science and Technology, vol. 9, no. 4, 2021, pp. 1227-41, doi:10.29130/dubited.896332.
Vancouver Hilal C, Önal M, Mert ME. Detonation Parameters of the Pentaerythritol Tetranitrate and Some Structures Descriptors in Different Solvents - Computational Study. DUBİTED. 2021;9(4):1227-41.