Research Article
BibTex RIS Cite

Three-phase Active Tracking AC-AC Voltage Regulator based on Buck Converter with an Efficient Hybrid Control Technique

Year 2022, Volume: 10 Issue: 2, 537 - 554, 30.04.2022
https://doi.org/10.29130/dubited.923829

Abstract

This study proposes a switch-mode three-phase active tracking AC-AC voltage regulator based on the buck converter. The regulator topology incorporates a moderate number of components with less complexity and high efficiency. An efficient hybrid control technique, based on a closed-loop PID controller that is supported with a new designed feedforward controller, is proposed for the regulator control different to the similar studies in the literature. The hybrid control technique augments the response of active tracking of the reference output phase voltages to achieve an improved quality close to sine-wave output phase voltages for either the input AC phase voltages that are ideal pure sine-wave or include various harmonics. The regulator topology has a modular structure for independent control of each output phase. So, the regulator can help to achieve close to sine-wave output phase voltages to supply a balanced/unbalanced wye-connected three-phase load or independent single-phase loads. The presented three-phase regulator and the control technique are tested with simulation and experimental studies. The laboratory set-up of the regulator is designed for 2.2 kW output power, 0-300 Vp input phase voltages (50 Hz), and 0-200 Vp output phase voltages. The results demonstrated that the proposed switch-mode three-phase buck-type active tracking voltage regulator can provide the desired AC phase voltages with less than 5% THD (total harmonic distortion) and low harmonics for different operating conditions. 

Thanks

The topology and control theory of the proposed AC regulator in the study are patented by the co-author in Austrian Patent Office as “Aktive Netzfilter” (patent no: AT 505460 B1, filed 10.07.2007, applied 15.06.2012).

References

  • [1] J. You, D. M. Vilathgamuwa, N. Ghasemi, and B. Fu, “Virtual resistor-based integrated DC bus voltage conditioner for stability improvement of cascaded power converters,” IEEE Access, vol. 7, pp. 95959–95969, 2019.
  • [2] J. Kaniewski, P. Szczesniak, M. Jarnut, and Z. Fedyczak, “Voltage conditioner and power flow controller based on bipolar matrix-reactance choppers,” Int. J. Elect. Power Energy Syst., vol. 94, pp. 256–266, 2018.
  • [3] J. Kaniewski, “Three-phase AC/AC converter for voltage sag/swell compensator and phase shifter based on Cuk B2 matrix-reactance chopper,” Elect. Power Syst. Res., vol. 125, pp. 203–210, 2015.
  • [4] J. Kaniewski, “Three-Phase voltage sag/swell compensator with phase shifter function based on bipolar matrix-reactance chopper,” Int. Symp. Power Electron. Elect. Dri. Automat. Motion (SPEEDAM), 2014, pp. 63–642.
  • [5] S. Subramanian and M. K. Mishra, “Interphase AC-AC topology for voltage sag supporter,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 514–518, 2010.
  • [6] D. M. Lee, T. G. Habetler, R. G. Harley, T. L. Keister, and J. R. Rostron, “A voltage sag supporter utilizing a PWM-switched autotransformer,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 626–635, 2007.
  • [7] E. M. Molla and C. C. Kuo, “Voltage quality enhancement of grid-integrated PV system using battery-based dynamic voltage restorer,” Energies, vol. 13, no. 21, article number: 5742, 2020.
  • [8] C. I. Chen, Y. C. Chen, C. H. Chen, and Y. R. Chang, “Voltage regulation using recurrent wavelet fuzzy neural network-based dynamic voltage restorer,” Energies, vol. 13, no. 23, article number: 6242, 2020.
  • [9] P. L. S. Rodrigues, C. B. Jacobina, and N. B. De Freitas, “Single-phase universal active power filter based on ac-dc-ac converter with eight controlled switches,” IET Power Electron., vol. 12, no. 5, pp. 1131–1140, 2019.
  • [10] N. B. De Freitas, C. B. Jacobina, B. S. Gehrke, and M. F. Cunha, “Transformer-based single-phase AC-DC-AC topology for grid issues mitigation,” IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 4001–4011, 2019.
  • [11] Y. B. Wang, G. W. Cai, C. Liu, B. D. Zhu, D. B. Guo, and H. W. Zhang, “Three-phase flexible transformer based on bipolar direct AC/AC chopper and its control strategy,” IEEE Access, vol. 8, pp. 173336–173344, 2020.
  • [12] I. Rankis, M. Prieditis, and G. Stana, “Investigation of direct AC-AC buck converter with series injection transformer,” IEEE 59th Int. Sci. Conf. Power Elect. Eng. Riga Tech. Uni. (RTUCON), 2018.
  • [13] P. S. Huynh, D. Vincent, N. A. Azeez, L. Patnaik, and S. S. Williamson, “Performance analysis of a single-stage high-frequency AC-AC buck converter for a series-series compensated inductive power transfer system,” IEEE Transp. Electrif. Conf. Expo (ITEC), 2018, pp. 347–352.
  • [14] J. G. Wang and R. McMahon, “Highly reliable and efficient voltage optimizer based on direct PWM AC-AC buck converter,” IEEE Trans. Energy Convers., vol. 35, no. 4, pp. 1897–1906, 2020.
  • [15] J. G. Wang and R. McMahon, “Reliable control of direct PWM AC-AC buck converter with short circuit protection,” IEEE 28th Int. Symp. Ind. Electron. (ISIE), 2019, pp. 950–954.
  • [16] U. A. Khan, A. A. Khan, H. Cha, H. G. Kim, J. Kim, and J. W. Baek, “Dual-buck AC-AC converter with inverting and non-inverting operations,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9432–9443, 2018.
  • [17] O. Ursaru, M. Lucanu, C. Aghion, and N. Lucanu, “Single-phase direct boost AC-AC converter,” Adv. Elect. Comp. Eng., vol. 17, no. 4, pp. 43–48, 2017.
  • [18] T. Mishima, S. Sakamoto, and C. Ide, “ZVS phase-shift PWM-controlled single-stage boost full-bridge AC-AC converter for high-frequency induction heating applications,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2054–2061, 2017.
  • [19] A. A. Khan, H. Cha, and H. F. Ahmed, “An improved single-phase direct PWM inverting buck-boost AC-AC converter,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5384–5393, 2016.
  • [20] L. Z. He and X. Y. Xu, “Novel high-efficiency frequency-variable buck-boost AC-AC converter with safe-commutation and continuous current,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13225–13238, 2020.
  • [21] F. Yalcin, U. Arifoglu, I. Yazici, and K. Erin, “Robust single-phase inverter based on the buck-boost converter through an efficient hybrid control,” IET Power Electron., vol. 13, no. 1, pp. 50–59, 2020.
  • [22] F. Himmelstoss, “Aktive Netzfilter,” Austrian Patent AT 505460 B1, 2012.

Etkili Bir Hibrit Kontrol Tekniği ile Alçaltıcı Çevirici Tabanlı Üç Faz Aktif İzleyen AA-AA Gerilim Regülatörü

Year 2022, Volume: 10 Issue: 2, 537 - 554, 30.04.2022
https://doi.org/10.29130/dubited.923829

Abstract

Bu çalışma, alçaltıcı çevirici tabanlı anahtarlamalı mod aktif izleyen bir AA-AA gerilim regülatörü sunmaktadır. Regülatör topolojisi az karmaşıklık ve yüksek verimlilik sağlayacak şekilde makul sayıda eleman içermektedir. Literatürdeki benzer çalışmalardan farklı olarak, bu çalışmada regülatörün kontrolü için kapalı çevrim PID kontrolcünün yeni tasarlanan bir ileri beslemeli kontrolcü ile desteklenmesi tabanlı etkili bir hibrit kontrol tekniği önerilmiştir. Hibrit kontrol tekniği, giriş AA faz gerilimlerinin ideal saf sinüs dalgası olması ya da farklı harmonikler içermesi durumunda dahi iyileştirilmiş kalitede sinüs formuna yakın çıkış faz gerilimlerinin elde edilebilmesi için referans çıkış faz gerilimlerinin aktif izlenmesi cevabını arttırmaktadır. Regülatör topolojisi her bir çıkış fazının bağımsız olarak kontrol edilebilmesini sağlayan modüler bir yapıya sahiptir. Böylelikle regülatör, dengeli/dengesiz yıldız bağlı üç fazlı bir yükün ya da birbirinden bağımsız tek fazlı yüklerin beslenmesi için sinüs dalga formuna yakın çıkış faz gerilimlerinin elde edilebilmesine yardımcı olmaktadır. Sunulan üç fazlı regülatör ve kontrol tekniği simülasyon ve deneysel çalışmalarla test edilmiştir. Regülatöre ait laboratuvar test düzeneği 2.2 kW çıkış gücü, 0-300 Vp giriş faz gerilimleri (50 Hz) ve 0-200 Vp çıkış faz gerilimleri için tasarlanmıştır. Elde edilen sonuçlar, önerilen anahtarlamalı mod üç faz alçaltıcı tip aktif izlemeli gerilim regülatörünün farklı çalışma koşullarında %5 ten az THD (toplam harmonik distorsiyonu) değerine sahip istenen AA faz gerilimlerini sağlayabildiğini göstermektedir.

References

  • [1] J. You, D. M. Vilathgamuwa, N. Ghasemi, and B. Fu, “Virtual resistor-based integrated DC bus voltage conditioner for stability improvement of cascaded power converters,” IEEE Access, vol. 7, pp. 95959–95969, 2019.
  • [2] J. Kaniewski, P. Szczesniak, M. Jarnut, and Z. Fedyczak, “Voltage conditioner and power flow controller based on bipolar matrix-reactance choppers,” Int. J. Elect. Power Energy Syst., vol. 94, pp. 256–266, 2018.
  • [3] J. Kaniewski, “Three-phase AC/AC converter for voltage sag/swell compensator and phase shifter based on Cuk B2 matrix-reactance chopper,” Elect. Power Syst. Res., vol. 125, pp. 203–210, 2015.
  • [4] J. Kaniewski, “Three-Phase voltage sag/swell compensator with phase shifter function based on bipolar matrix-reactance chopper,” Int. Symp. Power Electron. Elect. Dri. Automat. Motion (SPEEDAM), 2014, pp. 63–642.
  • [5] S. Subramanian and M. K. Mishra, “Interphase AC-AC topology for voltage sag supporter,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 514–518, 2010.
  • [6] D. M. Lee, T. G. Habetler, R. G. Harley, T. L. Keister, and J. R. Rostron, “A voltage sag supporter utilizing a PWM-switched autotransformer,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 626–635, 2007.
  • [7] E. M. Molla and C. C. Kuo, “Voltage quality enhancement of grid-integrated PV system using battery-based dynamic voltage restorer,” Energies, vol. 13, no. 21, article number: 5742, 2020.
  • [8] C. I. Chen, Y. C. Chen, C. H. Chen, and Y. R. Chang, “Voltage regulation using recurrent wavelet fuzzy neural network-based dynamic voltage restorer,” Energies, vol. 13, no. 23, article number: 6242, 2020.
  • [9] P. L. S. Rodrigues, C. B. Jacobina, and N. B. De Freitas, “Single-phase universal active power filter based on ac-dc-ac converter with eight controlled switches,” IET Power Electron., vol. 12, no. 5, pp. 1131–1140, 2019.
  • [10] N. B. De Freitas, C. B. Jacobina, B. S. Gehrke, and M. F. Cunha, “Transformer-based single-phase AC-DC-AC topology for grid issues mitigation,” IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 4001–4011, 2019.
  • [11] Y. B. Wang, G. W. Cai, C. Liu, B. D. Zhu, D. B. Guo, and H. W. Zhang, “Three-phase flexible transformer based on bipolar direct AC/AC chopper and its control strategy,” IEEE Access, vol. 8, pp. 173336–173344, 2020.
  • [12] I. Rankis, M. Prieditis, and G. Stana, “Investigation of direct AC-AC buck converter with series injection transformer,” IEEE 59th Int. Sci. Conf. Power Elect. Eng. Riga Tech. Uni. (RTUCON), 2018.
  • [13] P. S. Huynh, D. Vincent, N. A. Azeez, L. Patnaik, and S. S. Williamson, “Performance analysis of a single-stage high-frequency AC-AC buck converter for a series-series compensated inductive power transfer system,” IEEE Transp. Electrif. Conf. Expo (ITEC), 2018, pp. 347–352.
  • [14] J. G. Wang and R. McMahon, “Highly reliable and efficient voltage optimizer based on direct PWM AC-AC buck converter,” IEEE Trans. Energy Convers., vol. 35, no. 4, pp. 1897–1906, 2020.
  • [15] J. G. Wang and R. McMahon, “Reliable control of direct PWM AC-AC buck converter with short circuit protection,” IEEE 28th Int. Symp. Ind. Electron. (ISIE), 2019, pp. 950–954.
  • [16] U. A. Khan, A. A. Khan, H. Cha, H. G. Kim, J. Kim, and J. W. Baek, “Dual-buck AC-AC converter with inverting and non-inverting operations,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9432–9443, 2018.
  • [17] O. Ursaru, M. Lucanu, C. Aghion, and N. Lucanu, “Single-phase direct boost AC-AC converter,” Adv. Elect. Comp. Eng., vol. 17, no. 4, pp. 43–48, 2017.
  • [18] T. Mishima, S. Sakamoto, and C. Ide, “ZVS phase-shift PWM-controlled single-stage boost full-bridge AC-AC converter for high-frequency induction heating applications,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2054–2061, 2017.
  • [19] A. A. Khan, H. Cha, and H. F. Ahmed, “An improved single-phase direct PWM inverting buck-boost AC-AC converter,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5384–5393, 2016.
  • [20] L. Z. He and X. Y. Xu, “Novel high-efficiency frequency-variable buck-boost AC-AC converter with safe-commutation and continuous current,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13225–13238, 2020.
  • [21] F. Yalcin, U. Arifoglu, I. Yazici, and K. Erin, “Robust single-phase inverter based on the buck-boost converter through an efficient hybrid control,” IET Power Electron., vol. 13, no. 1, pp. 50–59, 2020.
  • [22] F. Himmelstoss, “Aktive Netzfilter,” Austrian Patent AT 505460 B1, 2012.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Faruk Yalçın 0000-0003-2672-216X

Felix Hımmelstoss 0000-0001-8482-2295

Publication Date April 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Yalçın, F., & Hımmelstoss, F. (2022). Three-phase Active Tracking AC-AC Voltage Regulator based on Buck Converter with an Efficient Hybrid Control Technique. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(2), 537-554. https://doi.org/10.29130/dubited.923829
AMA Yalçın F, Hımmelstoss F. Three-phase Active Tracking AC-AC Voltage Regulator based on Buck Converter with an Efficient Hybrid Control Technique. DUBİTED. April 2022;10(2):537-554. doi:10.29130/dubited.923829
Chicago Yalçın, Faruk, and Felix Hımmelstoss. “Three-Phase Active Tracking AC-AC Voltage Regulator Based on Buck Converter With an Efficient Hybrid Control Technique”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, no. 2 (April 2022): 537-54. https://doi.org/10.29130/dubited.923829.
EndNote Yalçın F, Hımmelstoss F (April 1, 2022) Three-phase Active Tracking AC-AC Voltage Regulator based on Buck Converter with an Efficient Hybrid Control Technique. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 2 537–554.
IEEE F. Yalçın and F. Hımmelstoss, “Three-phase Active Tracking AC-AC Voltage Regulator based on Buck Converter with an Efficient Hybrid Control Technique”, DUBİTED, vol. 10, no. 2, pp. 537–554, 2022, doi: 10.29130/dubited.923829.
ISNAD Yalçın, Faruk - Hımmelstoss, Felix. “Three-Phase Active Tracking AC-AC Voltage Regulator Based on Buck Converter With an Efficient Hybrid Control Technique”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/2 (April 2022), 537-554. https://doi.org/10.29130/dubited.923829.
JAMA Yalçın F, Hımmelstoss F. Three-phase Active Tracking AC-AC Voltage Regulator based on Buck Converter with an Efficient Hybrid Control Technique. DUBİTED. 2022;10:537–554.
MLA Yalçın, Faruk and Felix Hımmelstoss. “Three-Phase Active Tracking AC-AC Voltage Regulator Based on Buck Converter With an Efficient Hybrid Control Technique”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 10, no. 2, 2022, pp. 537-54, doi:10.29130/dubited.923829.
Vancouver Yalçın F, Hımmelstoss F. Three-phase Active Tracking AC-AC Voltage Regulator based on Buck Converter with an Efficient Hybrid Control Technique. DUBİTED. 2022;10(2):537-54.