Research Article
BibTex RIS Cite

Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade

Year 2022, Volume: 10 Issue: 2, 1045 - 1066, 30.04.2022
https://doi.org/10.29130/dubited.977192

Abstract

In this study, the structural and thermal analysis of the final stage compressor rotor blades, which are currently used on-site, is performed by using the ANSYS program. For that reason, a 3D model of the existing compressor blade has been done. Later on, this model was transferred to the ANSYS program and analyzed. In the analysis, the parameters formed in the blade geometry were determined. By creating a design geometry with the selected parameters, the stress of the existing blade under operating conditions was examined. All external parameters in this study were taken from an F-class gas turbine operating under real field conditions. The stresses of the obtained values in different regions on the blade were examined. This study is also a reverse engineering study and the effects of real field conditions on the compressor blades have been analyzed.

Supporting Institution

yok

Project Number

--

Thanks

--

References

  • [1] O. O. Badran, “Gas-turbine performance improvements,” Applied Energy, vol. 64, pp. 263-273, 1999.
  • [2] J. Błachnio, J. Spychała, and D. Zasada, “Analysis of structural changes in a gas turbine blade as a result of high temperature and stress,” Engineering Failure Analysis, vol. 127, no. 105554, 2021.
  • [3] R. K. Mishra, J. Thomas, K. Srinivasan, V. Nandi, and R. R. Bhatt, “Failure analysis of an un-cooled turbine blade in an aero gas turbine engine,” Engineering Failure Analysis, vol. 79, pp. 836-844, 2017.
  • [4] E. Toklu, M. Gerengi, and F. Polat, “F class gas turbine blade cooling calculation,” Journal of Engineering Research and Applied Science, vol. 8.2, pp. 1248-1256, 2019.
  • [5] W.I. Rowen, “Simplified mathematical representations of heavy-duty gas turbines,” Journal of Engineering for Power, vol 105, pp. 865-869, 1983.
  • [6] J. Undrill, “Modeling of combined cycle plants ın grid simulation studies,” IEEE Power Eng. Soc. Winter Meeting, vol 2, pp. 657-663, 2001.
  • [7] B. Deepanraj, P. Lawrence, and G. Sankaranarayanan, “Theoretical analysis of gas turbine blade by finite element method,” Scientific world, vol. 9, no. 9, pp. 29-33, 2011.
  • [8] S. K. Kim, D. Kim, and D. J. Cha, “Finite element analysis of self-excited instabilities in a lean premixed gas turbine combustor,” International Journal of Heat and Mass Transfer, vol. 120, pp. 350-360, 2018.
  • [9] H. P. Singh, A. Rawat, A. R. Manral, and P. Kumar, “Computational analysis of a gas turbine blade with different materials,” Materials Today: Proceedings, vol. 44, pp. 63-69, 2021.
  • [10] Y. Bazilevs, K. Takizawa, M. C. Wu, T. Kuraishi, R. Avsar, Z. Xu, and T. E. Tezduyar, “Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method,” Computational Mechanics, vol. 67, no. 1, pp. 57-84, 2021.
  • [11] W. Maktouf and S. Kacem, “An investigation of premature fatigue failures of gas turbine blade,” Engineering Failure Analysis, vol. 47, pp. 89-101, 2015.
  • [12] T. J. Carter, “Common failures in gas turbine blades,” Engineering Failure Analysis, vol. 12, no. 2, pp. 237-247, 2005.
  • [13] J. Hou, B. J. Wicks, and R. A. Antoniou, “An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis,” Engineering Failure Analysis, vol. 9, no. 2, pp. 201-211, 2002.
  • [14] D. Ziegler, M. Puccinelli, B. Bergallo, and A. Picasso, “Investigation of turbine blade failure in a thermal power plant,” Case Studies in Engineering Failure Analysis, vol. 1, no. 3, pp. 192-199, 2013.
  • [15] G. Narendranath and S. Suresh, “Thermal analysis of a gas turbine rotor blade by using Ansys”, International journal of engineering research and applications, vol. 2, no. 5, pp. 2021-2027, 2012.
  • [16] S. Y. Chang and K. Y. Oh, “Contribution of high mechanical fatigue to gas turbine blade lifetime during steady-state operation,” Coatings, vol. 9, no. 4, pp. 229, 2019.
  • [17] Y. Song, G. Chun-wei, and J. Xing-xing, “Development and validation of a full-range performance analysis model for a three-spool gas turbine with turbine cooling,” Energy, vol. 89, pp. 545-557, 2015.
  • [18] X. Lv, X. Liu, C. Gu, and Y. Weng, “Determination of safe operation zone for an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system,” Energy, vol. 99, pp. 91-102, 2016.
  • [19] W. Meng and W. Zhangqi, “The vibration frequencies of wind turbine steel tower by transfer matrix method,” Third International Conference on Measuring Technology and Mechatronics Automation, vol. 3, pp. 995-998, 2011.
  • [20] P. V. Krishnakanth, G. N. Raju, R. D. V. Prasad, and R. Saisrinu, “Structural and thermal analysis of gas turbine blade by using FEM,” International Journal of Scientific Research Engineering and Technology, vol. 2(2), pp. 60-65, 2013.
  • [21] L. M. Amoo, “On the design and structural analysis of jet engine fan blade structures,” Progress in Aerospace Sciences, vol. 60, pp. 1-11, 2013.
  • [22] O. Kauss, H. Tsybenko, K. Naumenko, S. Hütter, and M. Krüger, “Structural analysis of gas turbine blades made of Mo-Si-B under transient thermo-mechanical loads,” Computational Materials Science, vol. 165, pp. 129-136, 2019.

F Sınıfı Gaz Türbini Kompresor Kanadının Yapısal ve Termal Analizinin Yapılması

Year 2022, Volume: 10 Issue: 2, 1045 - 1066, 30.04.2022
https://doi.org/10.29130/dubited.977192

Abstract

Bu çalışmada gaz türbinlerinde kullanılan geometrisi belli son kademe kompresör rotor kanadının yapısal ve termal analizi ANSYS sonlu elemanlar programı kullanılarak yapılmıştır. Bunun için halihazırda mevcut olan kompresör kanadının 3 boyutlu modellemesi yapılmıştır. Daha sonra bu model ANSYS programına aktarılarak yapısal ve termal analizleri yapılmıştır. Yapılan analizlerde kanat geometrisinde oluşan parametreler saptanmıştır. Seçilen parametreler ile bir tasarım geometrisi oluşturularak mevcut kanadın çalışma koşullarındaki dayanımı incelenmiştir. Bu çalışmada konu edilen tüm dış parametreler gerçek saha şartlarında çalışan bir F sınıfı gaz türbininin değerlerinden alınmıştır. Alınan değerlerin kanat üzerinde farklı bölgelerdeki gerilmeleri incelenmiştir. Yapılan bu çalışma aynı zamanda tersinir bir mühendislik çalışması olup gerçek saha şartlarının kompresör kanatları üzerindeki etkileri analiz edilmiştir.

Project Number

--

References

  • [1] O. O. Badran, “Gas-turbine performance improvements,” Applied Energy, vol. 64, pp. 263-273, 1999.
  • [2] J. Błachnio, J. Spychała, and D. Zasada, “Analysis of structural changes in a gas turbine blade as a result of high temperature and stress,” Engineering Failure Analysis, vol. 127, no. 105554, 2021.
  • [3] R. K. Mishra, J. Thomas, K. Srinivasan, V. Nandi, and R. R. Bhatt, “Failure analysis of an un-cooled turbine blade in an aero gas turbine engine,” Engineering Failure Analysis, vol. 79, pp. 836-844, 2017.
  • [4] E. Toklu, M. Gerengi, and F. Polat, “F class gas turbine blade cooling calculation,” Journal of Engineering Research and Applied Science, vol. 8.2, pp. 1248-1256, 2019.
  • [5] W.I. Rowen, “Simplified mathematical representations of heavy-duty gas turbines,” Journal of Engineering for Power, vol 105, pp. 865-869, 1983.
  • [6] J. Undrill, “Modeling of combined cycle plants ın grid simulation studies,” IEEE Power Eng. Soc. Winter Meeting, vol 2, pp. 657-663, 2001.
  • [7] B. Deepanraj, P. Lawrence, and G. Sankaranarayanan, “Theoretical analysis of gas turbine blade by finite element method,” Scientific world, vol. 9, no. 9, pp. 29-33, 2011.
  • [8] S. K. Kim, D. Kim, and D. J. Cha, “Finite element analysis of self-excited instabilities in a lean premixed gas turbine combustor,” International Journal of Heat and Mass Transfer, vol. 120, pp. 350-360, 2018.
  • [9] H. P. Singh, A. Rawat, A. R. Manral, and P. Kumar, “Computational analysis of a gas turbine blade with different materials,” Materials Today: Proceedings, vol. 44, pp. 63-69, 2021.
  • [10] Y. Bazilevs, K. Takizawa, M. C. Wu, T. Kuraishi, R. Avsar, Z. Xu, and T. E. Tezduyar, “Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method,” Computational Mechanics, vol. 67, no. 1, pp. 57-84, 2021.
  • [11] W. Maktouf and S. Kacem, “An investigation of premature fatigue failures of gas turbine blade,” Engineering Failure Analysis, vol. 47, pp. 89-101, 2015.
  • [12] T. J. Carter, “Common failures in gas turbine blades,” Engineering Failure Analysis, vol. 12, no. 2, pp. 237-247, 2005.
  • [13] J. Hou, B. J. Wicks, and R. A. Antoniou, “An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis,” Engineering Failure Analysis, vol. 9, no. 2, pp. 201-211, 2002.
  • [14] D. Ziegler, M. Puccinelli, B. Bergallo, and A. Picasso, “Investigation of turbine blade failure in a thermal power plant,” Case Studies in Engineering Failure Analysis, vol. 1, no. 3, pp. 192-199, 2013.
  • [15] G. Narendranath and S. Suresh, “Thermal analysis of a gas turbine rotor blade by using Ansys”, International journal of engineering research and applications, vol. 2, no. 5, pp. 2021-2027, 2012.
  • [16] S. Y. Chang and K. Y. Oh, “Contribution of high mechanical fatigue to gas turbine blade lifetime during steady-state operation,” Coatings, vol. 9, no. 4, pp. 229, 2019.
  • [17] Y. Song, G. Chun-wei, and J. Xing-xing, “Development and validation of a full-range performance analysis model for a three-spool gas turbine with turbine cooling,” Energy, vol. 89, pp. 545-557, 2015.
  • [18] X. Lv, X. Liu, C. Gu, and Y. Weng, “Determination of safe operation zone for an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system,” Energy, vol. 99, pp. 91-102, 2016.
  • [19] W. Meng and W. Zhangqi, “The vibration frequencies of wind turbine steel tower by transfer matrix method,” Third International Conference on Measuring Technology and Mechatronics Automation, vol. 3, pp. 995-998, 2011.
  • [20] P. V. Krishnakanth, G. N. Raju, R. D. V. Prasad, and R. Saisrinu, “Structural and thermal analysis of gas turbine blade by using FEM,” International Journal of Scientific Research Engineering and Technology, vol. 2(2), pp. 60-65, 2013.
  • [21] L. M. Amoo, “On the design and structural analysis of jet engine fan blade structures,” Progress in Aerospace Sciences, vol. 60, pp. 1-11, 2013.
  • [22] O. Kauss, H. Tsybenko, K. Naumenko, S. Hütter, and M. Krüger, “Structural analysis of gas turbine blades made of Mo-Si-B under transient thermo-mechanical loads,” Computational Materials Science, vol. 165, pp. 129-136, 2019.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mustafa Gerengi 0000-0002-6098-3876

Fikret Polat 0000-0003-3767-3156

Project Number --
Publication Date April 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Gerengi, M., & Polat, F. (2022). Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade. Duzce University Journal of Science and Technology, 10(2), 1045-1066. https://doi.org/10.29130/dubited.977192
AMA Gerengi M, Polat F. Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade. DUBİTED. April 2022;10(2):1045-1066. doi:10.29130/dubited.977192
Chicago Gerengi, Mustafa, and Fikret Polat. “Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade”. Duzce University Journal of Science and Technology 10, no. 2 (April 2022): 1045-66. https://doi.org/10.29130/dubited.977192.
EndNote Gerengi M, Polat F (April 1, 2022) Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade. Duzce University Journal of Science and Technology 10 2 1045–1066.
IEEE M. Gerengi and F. Polat, “Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade”, DUBİTED, vol. 10, no. 2, pp. 1045–1066, 2022, doi: 10.29130/dubited.977192.
ISNAD Gerengi, Mustafa - Polat, Fikret. “Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade”. Duzce University Journal of Science and Technology 10/2 (April 2022), 1045-1066. https://doi.org/10.29130/dubited.977192.
JAMA Gerengi M, Polat F. Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade. DUBİTED. 2022;10:1045–1066.
MLA Gerengi, Mustafa and Fikret Polat. “Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade”. Duzce University Journal of Science and Technology, vol. 10, no. 2, 2022, pp. 1045-66, doi:10.29130/dubited.977192.
Vancouver Gerengi M, Polat F. Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade. DUBİTED. 2022;10(2):1045-66.