Research Article
BibTex RIS Cite

Determination of the Antifungal Effect of Bacterial Metabolites of Xenorhabdus szentirmaii Against Some Phytopathogenic Fungi

Year 2022, Volume: 10 Issue: 3, 1334 - 1343, 31.07.2022
https://doi.org/10.29130/dubited.1012415

Abstract

This study was carried out to determine the antifungal effects of the supernatant produced by the bacterium Xenorhabdus szentirmaii, which is associated with soil-inhabiting entomopathogenic nematodes, on important plant pathogenic fungi, Fusarium verticilliodes, Fusarium oxysporum f.sp lycopersici, Fusarium oxysporum f.sp radicis lycopersici, Botrytis cinerea, Sclerotinia sclerotiorum and Phytophthora nicotianae. The effects of 1, 3, 5 and 7% concentrations of the supernatant produced by X. szentirmaii bacteria on mycelium growth of the fungal pathogens was determined at 3, 7 and 14 days after application (dap). The effects of the supernatant on the formation of sporangia and the emergence of zoospores from the sporangium of Phytophthora nicotianae was also determined. According to the results of the study, the highest dose of the supernatant (7% concentration) prevented mycelium development of all tested pathogens. The effect of the supernatant decreased at 14 dap against F. verticilliodes, F. oxysporum f.sp lycopersici, F. oxysporum f.sp radicis lycopersici. The antifungal effect on S. sclerotiorum completely disappeared in 14 days whereas the effect continued even in 14 days against B. cinerea and P. nicotianae. Xenorhabdus szentirmaii supernatant at a concentration of 7% was highly efficacious on the formation of sporangia and the emergence of zoospores within the sporangium of P. nicotianae at a concentration of 7%.

Thanks

We thank to Dr. Selçuk Hazır from Adnan Menderes University for providing bacteria isolate.

References

  • [1] S.T. Koike, P. Gladders, and A.O. Paulus, “Vegetable Diseases; A Colour Handbook” Ed. Jill Northcott. Manson Publishing, pp. 449, 2007.
  • [2] D. Steiger, (2007) “Global economic importance of Botrytis protection,” in Book of Abstracts, 14th International Botrytis Symposium, Cape Town, South Africa, 2007.
  • [3] S. Forst, and D. Clarke, “Bacteria-nematode symbiosis” in Entomopathogenic Nematology, USA: CABI, 2002, pp. 57-77.
  • [4] E. Boszormenyi, T. Ersek, A. Fodor, A.M. Fodor, L. Sz. Földes, M. Hevesi, J.S. Hogan, Z. Katona, M.G. Klein, A. Kormany, S. Pekar, A. Szentirmai, F. Sztaricskai, and R.A.J. Taylor “Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae," Journal of Applied Microbiolgy, vol. 107, pp. 746-759, 2009.
  • [5] A.O. Brachmann, S. Forst, G.M. Furgani, A. Fodor, and H.B. Bode, “Xenofuranones A and B: phenylpyruvate dimers from Xenorhabdus szentirmaii”, Journal of Natural Products, vol. 69, pp. 1830-1832, 2006.
  • [6] C.H. Bock, D.I. Shapiro-Ilan, D. Wedge, and C.H. Cantrell, “Identification of the antifungal compound, transcinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide”, Journal of Pest Science, vol. 87, pp. 155-162, 2014.
  • [7] D. I. Shapiro-Ilan, C. H. Bock, and M.W. Hotchkiss, “Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovienii and Photorhabdus luminescens”, Biological Control, vol. 14, no. 77, pp. 1-6, 2014.
  • [8] S. Hazır, D.I. Shapiro-Ilan, C.H. Bock, C. Hazır, L.G. Leite, and M.W. Hotchkiss, “Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens,” European Journal of Plant Pathology, vol. 146, pp. 369-381, 2016.
  • [9] S. Hazır, D.I. Shapiro-Ilan, C.H. Bock, and G. Leite, “Thermo-stability, dose effects and shelf life of antifungal metabolite-containing supernatants produced by Xenorhabdus szentirmaii,” European Journal of Plant Pathology, vol. 150, pp. 297-306, 2018.
  • [10] X. Fang, M. Zhang, Q. Tang, Y. Wang, and X. Zhang, “Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta,” Scientific Reports, vol. 4, no. 4300, 2014.
  • [11] T.U. Nisa, A.H. Wani, M.Y. Bhat, S.A. Pala and R.A. Mir,” In vitro inhibitory effect of fungicides and botanicals on mycelial growth and spore germination of Fusarium oxysporum,” Journal of Biopesticides, vol. 4, no. 1, pp. 53-56, 2011.
  • [12] J. H. Hu, C.X. Hong, E.L. Stromberg, and G.W. Moorman,” Mefenoxam sensitivity and Fitness analysis of Phytophthora nicotianae isolates from nurseries in Virginia, USA,” Plant Pathology, vol.57, pp. 728–736, 2008.
  • [13] J. Miao, X. Dong, D. Lin, Q. Wang, P. Liu, F. Chen, Y. Dub, and X. Liua, “Activity of the novel fungicide oxathiapiprolin against plant-pathogenic oomycetes,” Pest Management Science, vol. 72, pp. 1572-1577, 2016.
  • [14] E. Szallas, G. Koch, A. Fodor, J. Burghardt, O. Buss, A. Szentirmai, K.H. Nealson, and E. Stackebrandt, “Phylogenetic evidence for the taxonomic heterogenecity of Photorhabdus luminescens,” International Journal of Systematic Bacteriology, vol. 47, pp. 402-407, 1997.
  • [15] S.W. Fuchs, F. Grundmann, M. Kurz, M. Kaiser, and H.B. Bode, “Fabclavines: bioactive peptide–polyketide–polyamino hybrids from Xenorhabdus,” ChemBioChem, vol.15, pp. 512–516, 2014.
  • [16] S. Forst, and K. Nealson, “Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp.,” Microbiology Reviews, vol. 60, pp. 21-43, 1996.
  • [17] J.W. Deacon, “Fungal Biology 4th Edition”, Wiley-Blackwell Publishing, 2013, pp. 380.
  • [18] J.G.C. Chacon-Orozco, C.J.Bueno1, D.I. Shapiro‑Ilan, S. Hazir, L.G. Leite, and R. Harakava, “Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum,” Scientific Reports, vol. 10, no. 20649, 2020.
  • [19] N. Adlığ, ve B. Gülcü, “Trans-Cinnamik Asit ve Xenorhabdus szentirmaii metabolitlerinin Bitki patojeni fungus Botrytis cinerea mücadelesinde kullanımı,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 7, s. 3, ss. 2001-2009, 2019.
  • [20] K.K. Ng, and J.M. Webster, “Antimycotic activity of Xenorhabdus bovienii (Enterobacteriaceae) Mmetabolites against Phytophthora infestans on potato plants,” Canadian Journal of Plant Pathology, vol. 19, pp. 125-132, 1997.
  • [21] T. Zhou, X. Yang, D. Qiu, and H. Zeng, “Inhibitory effects of xenocoumacin 1 on the different stages of Phytophthora capsici and its control effect on Phytophthora blight of pepper,” BioControl, vol. 62, pp. 151-160, 2017.

Xenorhabdus szentirmaii Bakteri Metabolitlerinin Bazı Önemli Bitki Patojeni Funguslara Karşı Antifungal Etkilerinin Belirlenmesi

Year 2022, Volume: 10 Issue: 3, 1334 - 1343, 31.07.2022
https://doi.org/10.29130/dubited.1012415

Abstract

Bu çalışmada entomopatojenik nematodların simbiyotik bakterilerinden birisi olan Xenorhabdus szentirmaii tarafından üretilen metabolitlerin önemli bitki patojenlerinden olan Fusarium verticilliodes, Fusarium oxysporum f.sp lycopersici, Fusarium oxysporum f.sp radicis lycopersici, Botrytis cinerea, Sclerotinia sclerotiorum ve Phytophthora nicotianae’ya karşı antifungal etkileri araştırılmıştır. Buna göre farklı oranlarda (%1, 3, 5 ve 7’lik) X. szentirmaii bakteri süpernatantı içeren besiyerlerinde fungusların misel gelişimi 3, 7 ve 14 gün sonra değerlendirilmiştir. Ayrıca supernatantın P. nicotianae’nın sporangia oluşumuna ve zoospor çıkışı üzerindeki etkisi de değerlendirilmiştir. Elde edilen sonuçlara göre test edilen tüm patojenlerde en yüksek süpernatant konsantrasyonu (%7) misel gelişimini önemli oranda engellemiştir. Süpernatantın etkisi F. verticilliodes, F. oxysporum f.sp lycopersici, F. oxysporum f.sp radicis lycopersici’ye karşı 14 gün sonunda azalmıştır. S. sclerotiorum için antifungal etkinin 14 gün sonunda tamamen kaybolduğu, fakat B. cinerea ve P. nicotianae için devam ettiği gözlenmiştir. Ayrıca X. szentirmaii süpernatantının %7’lik konsantrasyonunun P. nicotianae’nın sporangia oluşumu ve zoospor çıkışını engellediği bulunmuştur.           

References

  • [1] S.T. Koike, P. Gladders, and A.O. Paulus, “Vegetable Diseases; A Colour Handbook” Ed. Jill Northcott. Manson Publishing, pp. 449, 2007.
  • [2] D. Steiger, (2007) “Global economic importance of Botrytis protection,” in Book of Abstracts, 14th International Botrytis Symposium, Cape Town, South Africa, 2007.
  • [3] S. Forst, and D. Clarke, “Bacteria-nematode symbiosis” in Entomopathogenic Nematology, USA: CABI, 2002, pp. 57-77.
  • [4] E. Boszormenyi, T. Ersek, A. Fodor, A.M. Fodor, L. Sz. Földes, M. Hevesi, J.S. Hogan, Z. Katona, M.G. Klein, A. Kormany, S. Pekar, A. Szentirmai, F. Sztaricskai, and R.A.J. Taylor “Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae," Journal of Applied Microbiolgy, vol. 107, pp. 746-759, 2009.
  • [5] A.O. Brachmann, S. Forst, G.M. Furgani, A. Fodor, and H.B. Bode, “Xenofuranones A and B: phenylpyruvate dimers from Xenorhabdus szentirmaii”, Journal of Natural Products, vol. 69, pp. 1830-1832, 2006.
  • [6] C.H. Bock, D.I. Shapiro-Ilan, D. Wedge, and C.H. Cantrell, “Identification of the antifungal compound, transcinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide”, Journal of Pest Science, vol. 87, pp. 155-162, 2014.
  • [7] D. I. Shapiro-Ilan, C. H. Bock, and M.W. Hotchkiss, “Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovienii and Photorhabdus luminescens”, Biological Control, vol. 14, no. 77, pp. 1-6, 2014.
  • [8] S. Hazır, D.I. Shapiro-Ilan, C.H. Bock, C. Hazır, L.G. Leite, and M.W. Hotchkiss, “Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens,” European Journal of Plant Pathology, vol. 146, pp. 369-381, 2016.
  • [9] S. Hazır, D.I. Shapiro-Ilan, C.H. Bock, and G. Leite, “Thermo-stability, dose effects and shelf life of antifungal metabolite-containing supernatants produced by Xenorhabdus szentirmaii,” European Journal of Plant Pathology, vol. 150, pp. 297-306, 2018.
  • [10] X. Fang, M. Zhang, Q. Tang, Y. Wang, and X. Zhang, “Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta,” Scientific Reports, vol. 4, no. 4300, 2014.
  • [11] T.U. Nisa, A.H. Wani, M.Y. Bhat, S.A. Pala and R.A. Mir,” In vitro inhibitory effect of fungicides and botanicals on mycelial growth and spore germination of Fusarium oxysporum,” Journal of Biopesticides, vol. 4, no. 1, pp. 53-56, 2011.
  • [12] J. H. Hu, C.X. Hong, E.L. Stromberg, and G.W. Moorman,” Mefenoxam sensitivity and Fitness analysis of Phytophthora nicotianae isolates from nurseries in Virginia, USA,” Plant Pathology, vol.57, pp. 728–736, 2008.
  • [13] J. Miao, X. Dong, D. Lin, Q. Wang, P. Liu, F. Chen, Y. Dub, and X. Liua, “Activity of the novel fungicide oxathiapiprolin against plant-pathogenic oomycetes,” Pest Management Science, vol. 72, pp. 1572-1577, 2016.
  • [14] E. Szallas, G. Koch, A. Fodor, J. Burghardt, O. Buss, A. Szentirmai, K.H. Nealson, and E. Stackebrandt, “Phylogenetic evidence for the taxonomic heterogenecity of Photorhabdus luminescens,” International Journal of Systematic Bacteriology, vol. 47, pp. 402-407, 1997.
  • [15] S.W. Fuchs, F. Grundmann, M. Kurz, M. Kaiser, and H.B. Bode, “Fabclavines: bioactive peptide–polyketide–polyamino hybrids from Xenorhabdus,” ChemBioChem, vol.15, pp. 512–516, 2014.
  • [16] S. Forst, and K. Nealson, “Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp.,” Microbiology Reviews, vol. 60, pp. 21-43, 1996.
  • [17] J.W. Deacon, “Fungal Biology 4th Edition”, Wiley-Blackwell Publishing, 2013, pp. 380.
  • [18] J.G.C. Chacon-Orozco, C.J.Bueno1, D.I. Shapiro‑Ilan, S. Hazir, L.G. Leite, and R. Harakava, “Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum,” Scientific Reports, vol. 10, no. 20649, 2020.
  • [19] N. Adlığ, ve B. Gülcü, “Trans-Cinnamik Asit ve Xenorhabdus szentirmaii metabolitlerinin Bitki patojeni fungus Botrytis cinerea mücadelesinde kullanımı,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 7, s. 3, ss. 2001-2009, 2019.
  • [20] K.K. Ng, and J.M. Webster, “Antimycotic activity of Xenorhabdus bovienii (Enterobacteriaceae) Mmetabolites against Phytophthora infestans on potato plants,” Canadian Journal of Plant Pathology, vol. 19, pp. 125-132, 1997.
  • [21] T. Zhou, X. Yang, D. Qiu, and H. Zeng, “Inhibitory effects of xenocoumacin 1 on the different stages of Phytophthora capsici and its control effect on Phytophthora blight of pepper,” BioControl, vol. 62, pp. 151-160, 2017.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nedim Altın 0000-0003-1267-7951

Barış Gülcü 0000-0002-4808-1538

Publication Date July 31, 2022
Published in Issue Year 2022 Volume: 10 Issue: 3

Cite

APA Altın, N., & Gülcü, B. (2022). Determination of the Antifungal Effect of Bacterial Metabolites of Xenorhabdus szentirmaii Against Some Phytopathogenic Fungi. Duzce University Journal of Science and Technology, 10(3), 1334-1343. https://doi.org/10.29130/dubited.1012415
AMA Altın N, Gülcü B. Determination of the Antifungal Effect of Bacterial Metabolites of Xenorhabdus szentirmaii Against Some Phytopathogenic Fungi. DUBİTED. July 2022;10(3):1334-1343. doi:10.29130/dubited.1012415
Chicago Altın, Nedim, and Barış Gülcü. “Determination of the Antifungal Effect of Bacterial Metabolites of Xenorhabdus Szentirmaii Against Some Phytopathogenic Fungi”. Duzce University Journal of Science and Technology 10, no. 3 (July 2022): 1334-43. https://doi.org/10.29130/dubited.1012415.
EndNote Altın N, Gülcü B (July 1, 2022) Determination of the Antifungal Effect of Bacterial Metabolites of Xenorhabdus szentirmaii Against Some Phytopathogenic Fungi. Duzce University Journal of Science and Technology 10 3 1334–1343.
IEEE N. Altın and B. Gülcü, “Determination of the Antifungal Effect of Bacterial Metabolites of Xenorhabdus szentirmaii Against Some Phytopathogenic Fungi”, DUBİTED, vol. 10, no. 3, pp. 1334–1343, 2022, doi: 10.29130/dubited.1012415.
ISNAD Altın, Nedim - Gülcü, Barış. “Determination of the Antifungal Effect of Bacterial Metabolites of Xenorhabdus Szentirmaii Against Some Phytopathogenic Fungi”. Duzce University Journal of Science and Technology 10/3 (July 2022), 1334-1343. https://doi.org/10.29130/dubited.1012415.
JAMA Altın N, Gülcü B. Determination of the Antifungal Effect of Bacterial Metabolites of Xenorhabdus szentirmaii Against Some Phytopathogenic Fungi. DUBİTED. 2022;10:1334–1343.
MLA Altın, Nedim and Barış Gülcü. “Determination of the Antifungal Effect of Bacterial Metabolites of Xenorhabdus Szentirmaii Against Some Phytopathogenic Fungi”. Duzce University Journal of Science and Technology, vol. 10, no. 3, 2022, pp. 1334-43, doi:10.29130/dubited.1012415.
Vancouver Altın N, Gülcü B. Determination of the Antifungal Effect of Bacterial Metabolites of Xenorhabdus szentirmaii Against Some Phytopathogenic Fungi. DUBİTED. 2022;10(3):1334-43.