Research Article
BibTex RIS Cite

Optimization Oxygen and Hydrogen Input Velocities by Golden Section Method with 3D Multifluid Model in COMSOL for PEMFCs

Year 2022, Volume: 10 Issue: 3, 1489 - 1507, 31.07.2022
https://doi.org/10.29130/dubited.995420

Abstract

A three dimensional (3D), gas-liquid multi-phase flow and transport model in COMSOL Multiphysics has been developed to simulate flow and transport phenomena in a proton exchange membrane fuel cell (PEMFC) with several operational parameters. The effects of changes in oxygen and hydrogen input velocities on concentration change at electrodes, current density in polymeric membrane and cell performance have been investigated in PEMFC. The simulations, made in COMSOL for numerical method, were presented with an emphasis on the physical and fundamental insight afforded by distributions of velocity vector, local current density, overpotential, oxygen and water concentrations. Using Golden Section Method, optimization of the change in the speed vector was made based on the numerical models for velocity values. Results showed that computational and numerical methods are in great harmony. The polarization curve, which is used as a measure of efficiency in cell performance, were supportive with results. The data show that the power density obtained for the optimum model is higher, with such a model performance of 92.87%. Compared to the currently used PEMFC, while hydrogen saving achieved between 4.2% and 7.1%, electrical efficiency increase were between 1% and 2.4%.

References

  • [1]D. S. Falcão, P. J. Gomes, V. B. Oliveira, C. Pinho, and A. M. F. R. Pinto, “1d and 3d numerical simulations in PEM fuel cells,ˮ International Journal of Hydrogen Energy, vol. 36, no. 19, pp. 12486–12498, 2011.
  • [2]D. Cheddie and N. Munroe, “Review and comparison of approaches to proton exchange membrane fuel cell modeling,ˮ Journal of Power Sources, vol. 147, no. (1-2), pp. 72–84, 2005.
  • [3]Z. X. Chen, D. B. Ingham, M. S. Ismail, L. Ma, K. J. Hughes, and M. Pourkashanian, “Dynamics of liquid water in the anode flow channels of PEM fuel cells: a numerical parametric study,ˮ Journal of the Energy Institute, vol. 92, no. 6, pp. 1956–1967, 2019.
  • [4]H. Meng, B. Han, and B. Ruan, “Numerical modeling of liquid water transport inside and across membrane in PEM fuel cells,ˮ Asia-Pacific Journal of Chemical Engineering, vol. 8, no. 1, pp. 104–114, 2013.
  • [5]P. Quan and M. C. Lai, “Numerical study of water management in the air flow channel of a PEM fuel cell cathode,ˮ Journal of Power Sources, vol. 164, no. 1, pp. 222–237, 2007.
  • [6]I. khazaee and H. Sabadbafan, “Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell,ˮ Energy, vol. 101, pp. 252–265, 2016.
  • [7]G. Zhang and K. Jiao, “Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review,ˮ Journal of Power Sources, vol. 391, pp. 120–133, 2018.
  • [8]V. Lakshminarayanan and P. Karthikeyan, “Investigation of pemfc performance with various configurations of serpentine and interdigitated flow channel,ˮ Progress in Computational Fluid Dynamics, an International Journal, vol. 19, no. 5, pp. 328–336, 2019.
  • [9]D. Harvey, J. G. Pharoah, and K. Karan, “A comparison of different approaches to modelling the pemfc catalyst layer,ˮ Journal of Power Sources, vol. 179, no.1, pp. 209–219, 2008.
  • [10]S. O. Obayopo, T. Bello-Ochende, and J. P. Meyer, “Three-dimensional optimisation of a fuel gas channel of a proton exchange membrane fuel cell for maximum current density,ˮ International Journal of Energy Research, vol. 37, no. 3, pp. 228–241, 2013.
  • [11]D. Singh, D. M. Lu, and N. Djilali, “A two-dimensional analysis of mass transport in proton exchange membrane fuel cells,ˮ International Journal of Engineering Science, vol. 37, no. 4, pp. 431–452, 1999.
  • [12]S. Um, C-Y. Wang, and K. S. Chen, “Computational fluid dynamics modeling of proton exchange membrane fuel cells,ˮ Journal of the Electrochemical Society, vol. 147, no. 12, pp. 4485- 4493, 2000.
  • [13]A. Z. Weber and J. Newman, “Transport in polymer-electrolyte membranes: I. physical model,ˮ Journal of the Electrochemical Society, vol. 150, no. 7, pp. A1008- A1015, 2003.
  • [14]J. E. Dawes, N. S. Hanspal, O. A. Family, and A. Turan, “Three-dimensional CFD modelling of PEM fuel cells: an investigation into the effects of water flooding,ˮ Chemical Engineering Science, vol. 64, no. 12, pp. 2781–2794, 2009.
  • [15]J. G. Carton, V. Lawlor, A. G. Olabi, C. Hochenauer, and G. Zauner, “Water droplet accumulation and motion in PEM (proton exchange membrane) fuel cell mini-channels,ˮ Energy, vol. 39, no. 1, pp. 63–73, 2012.
  • [16]A. D. Le and B. Zhou, “A general model of proton exchange membrane fuel cell,ˮ Journal of Power Sources, vol. 182, no. 1, pp. 197–222, 2008.
  • [17]L. Xing, Q. Cai, X. Liu, C. Liu, K. Scott, and Y. Yan, “Anode partial flooding modelling of proton exchange membrane fuel cells: Optimisation of electrode properties and channel geometries,ˮ Chemical Engineering Science, vol. 146, pp. 88–103, 2016.
  • [18]J. S. Yi, J. D. Yang, and C. King, “Water management along the flow channels of PEM fuel cells,ˮ AIChE Journal, vol. 50, no. 10, pp. 2594–2603, 2004.
  • [19]S. Chevalier, J-C. Olivier, C. Josset, and B. Auvity, “Polymer electrolyte membrane fuel cell operating in stoichiometric regime,ˮ Journal of Power Sources, vol. 440, pp. 227100-227109, 2019.
  • [20]J. Shen, L. Xu, H. Chang, Z. Tu, and S. H. Chan, “Partial flooding and its effect on the performance of a proton exchange membrane fuel cell,ˮ Energy Conversion and Management, vol. 207, pp. 112537-112544, 2020.
  • [21]M. Hasheminasab, M. J. Kermani, S. S. Nourazar, and M. H. Khodsiani, “A novel experimental based statistical study for water management in proton exchange membrane fuel cells,ˮ Applied Energy, vol. 264, pp. 114713-114728, 2020.
  • [22]M. Jourdani, H. Mounir, and A. Marjani. “Three-dimensional PEM fuel cells modeling using comsol multiphysics.ˮ The International Journal of Multiphysics, vol. 11, no. 4, pp. 427–442, 2017.
  • [23]G. Zhang, L. Fan, J. Sun, and K. Jiao, “A 3d model of PEMFC considering detailed multiphase flow and anisotropic transport properties,ˮ International Journal of Heat and Mass Transfer, vol. 115, pp. 714–724, 2017.
  • [24]T. Berning, D. M. Lu, and N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell,ˮ Journal of Power Sources, vol. 106, no.1-2, pp. 284–294, 2002.
  • [25]W-Y. Lee, G-G. Park, T-H. Yang, Y-G. Yoon, and C-S. Kim, “Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks,ˮ International Journal of Hydrogen Energy, vol. 29, no. 9, pp. 961–966, 2004.
  • [26]T. Berning and N. Djilali. “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study,ˮ Journal of Power Sources, vol. 124, no. 2, pp. 440–452, 2003.
  • [27]J. C. Amphlett, R. M. Baumert, R. F. Mann, B. Aç Peppley, P. R. Roberge, and T. J. Harris, “Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell: I. mechanistic model development,ˮ Journal of the Electrochemical Society, vol. 142, no. 1, pp. 1-8, 1995.
  • [28]M. M. Hussain, J. J. Baschuk, X. Li, and I. Dincer, “Thermodynamic analysis of a PEM fuel cell power system,ˮ International Journal of Thermal Sciences, vol. 44, no. 9, pp. 903–911, 2005.
  • [29]I. Dincer, “Technical, environmental and exergetic aspects of hydrogen energy systems,ˮ International Journal of Hydrogen Energy, vol. 27, no. 3, pp. 265–285, 2002.
  • [30]P. Choi, N. H. Jalani, T. M. Thampan, and R. Datta, “Consideration of thermodynamic, transport, and mechanical properties in the design of polymer electrolyte membranes for higher temperature fuel cell operation,ˮ Journal of Polymer Science Part B: Polymer Physics, vol. 44, no. 16, pp. 2183–2200, 2006.
  • [31]F. Barbir, “PEM electrolysis for production of hydrogen from renewable energy sources,ˮ Solar Energy, vol. 78, no. 5, pp. 661–669, 2005.

PEMYH için COMSOL'da Üç Boyutlu Çoklu Akış Modeliyle Altın Oran Yöntemi ile Oksijen ve Hidrojen Giriş Hızlarının Optimizasyonu

Year 2022, Volume: 10 Issue: 3, 1489 - 1507, 31.07.2022
https://doi.org/10.29130/dubited.995420

Abstract

Üç boyutlu (3D), gaz-sıvı çok fazlı bir akış ve taşıma modeli, birkaç farklı operasyonel parametre ile bir proton değişim membranlı yakıt hücresinde (PEMFC) akış ve taşıma olaylarını simüle etmek için COMSOL Multiphysics'te geliştirilmiştir. Oksijen ve hidrojen giriş hızlarındaki değişikliklerin elektrotlardaki konsantrasyon değişikliği, polimerik membrandaki akım yoğunluğu ve hücre performansı üzerindeki etkileri PEMFC'de incelenmiştir. Sayısal yöntem için COMSOL'da yapılan simülasyonlar, hız vektörü, yerel akım yoğunluğu, aşırı potansiyel, oksijen ve su konsantrasyonlarının dağılımlarının sağladığı fiziksel ve temel anlayışa vurgu yapılarak sunulmuştur. Altın Oran Yöntemi kullanılarak, hız vektöründeki değişimin optimizasyonu hız değerleri için sayısal modellere dayalı olarak yapılmıştır. Sonuçlar, hesaplamalı ve sayısal yöntemlerin büyük bir uyum içinde olduğunu göstermiştir. Hücre performansında verimliliğin bir ölçüsü olarak kullanılan polarizasyon eğrisi, sonuçları destekleyici niteliktedir. Veriler, optimum model için elde edilen güç yoğunluğunun % 92,87 gibi bir model başarımı ile daha yüksek olduğunu göstermektedir. Mevcut kullanılan PEMFC ile karşılaştırıldığında % 4,2 ile % 7,1 arasında hidrojen tasarrufu sağlanırken, elektrik verimliliği artışı %1 ile %2,4 arasında olmuştur.

References

  • [1]D. S. Falcão, P. J. Gomes, V. B. Oliveira, C. Pinho, and A. M. F. R. Pinto, “1d and 3d numerical simulations in PEM fuel cells,ˮ International Journal of Hydrogen Energy, vol. 36, no. 19, pp. 12486–12498, 2011.
  • [2]D. Cheddie and N. Munroe, “Review and comparison of approaches to proton exchange membrane fuel cell modeling,ˮ Journal of Power Sources, vol. 147, no. (1-2), pp. 72–84, 2005.
  • [3]Z. X. Chen, D. B. Ingham, M. S. Ismail, L. Ma, K. J. Hughes, and M. Pourkashanian, “Dynamics of liquid water in the anode flow channels of PEM fuel cells: a numerical parametric study,ˮ Journal of the Energy Institute, vol. 92, no. 6, pp. 1956–1967, 2019.
  • [4]H. Meng, B. Han, and B. Ruan, “Numerical modeling of liquid water transport inside and across membrane in PEM fuel cells,ˮ Asia-Pacific Journal of Chemical Engineering, vol. 8, no. 1, pp. 104–114, 2013.
  • [5]P. Quan and M. C. Lai, “Numerical study of water management in the air flow channel of a PEM fuel cell cathode,ˮ Journal of Power Sources, vol. 164, no. 1, pp. 222–237, 2007.
  • [6]I. khazaee and H. Sabadbafan, “Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell,ˮ Energy, vol. 101, pp. 252–265, 2016.
  • [7]G. Zhang and K. Jiao, “Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review,ˮ Journal of Power Sources, vol. 391, pp. 120–133, 2018.
  • [8]V. Lakshminarayanan and P. Karthikeyan, “Investigation of pemfc performance with various configurations of serpentine and interdigitated flow channel,ˮ Progress in Computational Fluid Dynamics, an International Journal, vol. 19, no. 5, pp. 328–336, 2019.
  • [9]D. Harvey, J. G. Pharoah, and K. Karan, “A comparison of different approaches to modelling the pemfc catalyst layer,ˮ Journal of Power Sources, vol. 179, no.1, pp. 209–219, 2008.
  • [10]S. O. Obayopo, T. Bello-Ochende, and J. P. Meyer, “Three-dimensional optimisation of a fuel gas channel of a proton exchange membrane fuel cell for maximum current density,ˮ International Journal of Energy Research, vol. 37, no. 3, pp. 228–241, 2013.
  • [11]D. Singh, D. M. Lu, and N. Djilali, “A two-dimensional analysis of mass transport in proton exchange membrane fuel cells,ˮ International Journal of Engineering Science, vol. 37, no. 4, pp. 431–452, 1999.
  • [12]S. Um, C-Y. Wang, and K. S. Chen, “Computational fluid dynamics modeling of proton exchange membrane fuel cells,ˮ Journal of the Electrochemical Society, vol. 147, no. 12, pp. 4485- 4493, 2000.
  • [13]A. Z. Weber and J. Newman, “Transport in polymer-electrolyte membranes: I. physical model,ˮ Journal of the Electrochemical Society, vol. 150, no. 7, pp. A1008- A1015, 2003.
  • [14]J. E. Dawes, N. S. Hanspal, O. A. Family, and A. Turan, “Three-dimensional CFD modelling of PEM fuel cells: an investigation into the effects of water flooding,ˮ Chemical Engineering Science, vol. 64, no. 12, pp. 2781–2794, 2009.
  • [15]J. G. Carton, V. Lawlor, A. G. Olabi, C. Hochenauer, and G. Zauner, “Water droplet accumulation and motion in PEM (proton exchange membrane) fuel cell mini-channels,ˮ Energy, vol. 39, no. 1, pp. 63–73, 2012.
  • [16]A. D. Le and B. Zhou, “A general model of proton exchange membrane fuel cell,ˮ Journal of Power Sources, vol. 182, no. 1, pp. 197–222, 2008.
  • [17]L. Xing, Q. Cai, X. Liu, C. Liu, K. Scott, and Y. Yan, “Anode partial flooding modelling of proton exchange membrane fuel cells: Optimisation of electrode properties and channel geometries,ˮ Chemical Engineering Science, vol. 146, pp. 88–103, 2016.
  • [18]J. S. Yi, J. D. Yang, and C. King, “Water management along the flow channels of PEM fuel cells,ˮ AIChE Journal, vol. 50, no. 10, pp. 2594–2603, 2004.
  • [19]S. Chevalier, J-C. Olivier, C. Josset, and B. Auvity, “Polymer electrolyte membrane fuel cell operating in stoichiometric regime,ˮ Journal of Power Sources, vol. 440, pp. 227100-227109, 2019.
  • [20]J. Shen, L. Xu, H. Chang, Z. Tu, and S. H. Chan, “Partial flooding and its effect on the performance of a proton exchange membrane fuel cell,ˮ Energy Conversion and Management, vol. 207, pp. 112537-112544, 2020.
  • [21]M. Hasheminasab, M. J. Kermani, S. S. Nourazar, and M. H. Khodsiani, “A novel experimental based statistical study for water management in proton exchange membrane fuel cells,ˮ Applied Energy, vol. 264, pp. 114713-114728, 2020.
  • [22]M. Jourdani, H. Mounir, and A. Marjani. “Three-dimensional PEM fuel cells modeling using comsol multiphysics.ˮ The International Journal of Multiphysics, vol. 11, no. 4, pp. 427–442, 2017.
  • [23]G. Zhang, L. Fan, J. Sun, and K. Jiao, “A 3d model of PEMFC considering detailed multiphase flow and anisotropic transport properties,ˮ International Journal of Heat and Mass Transfer, vol. 115, pp. 714–724, 2017.
  • [24]T. Berning, D. M. Lu, and N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell,ˮ Journal of Power Sources, vol. 106, no.1-2, pp. 284–294, 2002.
  • [25]W-Y. Lee, G-G. Park, T-H. Yang, Y-G. Yoon, and C-S. Kim, “Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks,ˮ International Journal of Hydrogen Energy, vol. 29, no. 9, pp. 961–966, 2004.
  • [26]T. Berning and N. Djilali. “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study,ˮ Journal of Power Sources, vol. 124, no. 2, pp. 440–452, 2003.
  • [27]J. C. Amphlett, R. M. Baumert, R. F. Mann, B. Aç Peppley, P. R. Roberge, and T. J. Harris, “Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell: I. mechanistic model development,ˮ Journal of the Electrochemical Society, vol. 142, no. 1, pp. 1-8, 1995.
  • [28]M. M. Hussain, J. J. Baschuk, X. Li, and I. Dincer, “Thermodynamic analysis of a PEM fuel cell power system,ˮ International Journal of Thermal Sciences, vol. 44, no. 9, pp. 903–911, 2005.
  • [29]I. Dincer, “Technical, environmental and exergetic aspects of hydrogen energy systems,ˮ International Journal of Hydrogen Energy, vol. 27, no. 3, pp. 265–285, 2002.
  • [30]P. Choi, N. H. Jalani, T. M. Thampan, and R. Datta, “Consideration of thermodynamic, transport, and mechanical properties in the design of polymer electrolyte membranes for higher temperature fuel cell operation,ˮ Journal of Polymer Science Part B: Polymer Physics, vol. 44, no. 16, pp. 2183–2200, 2006.
  • [31]F. Barbir, “PEM electrolysis for production of hydrogen from renewable energy sources,ˮ Solar Energy, vol. 78, no. 5, pp. 661–669, 2005.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ezgi Bayrakdar Ateş 0000-0001-7306-8733

Ahmet Ege This is me 0000-0002-7308-2129

Publication Date July 31, 2022
Published in Issue Year 2022 Volume: 10 Issue: 3

Cite

APA Bayrakdar Ateş, E., & Ege, A. (2022). Optimization Oxygen and Hydrogen Input Velocities by Golden Section Method with 3D Multifluid Model in COMSOL for PEMFCs. Duzce University Journal of Science and Technology, 10(3), 1489-1507. https://doi.org/10.29130/dubited.995420
AMA Bayrakdar Ateş E, Ege A. Optimization Oxygen and Hydrogen Input Velocities by Golden Section Method with 3D Multifluid Model in COMSOL for PEMFCs. DUBİTED. July 2022;10(3):1489-1507. doi:10.29130/dubited.995420
Chicago Bayrakdar Ateş, Ezgi, and Ahmet Ege. “Optimization Oxygen and Hydrogen Input Velocities by Golden Section Method With 3D Multifluid Model in COMSOL for PEMFCs”. Duzce University Journal of Science and Technology 10, no. 3 (July 2022): 1489-1507. https://doi.org/10.29130/dubited.995420.
EndNote Bayrakdar Ateş E, Ege A (July 1, 2022) Optimization Oxygen and Hydrogen Input Velocities by Golden Section Method with 3D Multifluid Model in COMSOL for PEMFCs. Duzce University Journal of Science and Technology 10 3 1489–1507.
IEEE E. Bayrakdar Ateş and A. Ege, “Optimization Oxygen and Hydrogen Input Velocities by Golden Section Method with 3D Multifluid Model in COMSOL for PEMFCs”, DUBİTED, vol. 10, no. 3, pp. 1489–1507, 2022, doi: 10.29130/dubited.995420.
ISNAD Bayrakdar Ateş, Ezgi - Ege, Ahmet. “Optimization Oxygen and Hydrogen Input Velocities by Golden Section Method With 3D Multifluid Model in COMSOL for PEMFCs”. Duzce University Journal of Science and Technology 10/3 (July 2022), 1489-1507. https://doi.org/10.29130/dubited.995420.
JAMA Bayrakdar Ateş E, Ege A. Optimization Oxygen and Hydrogen Input Velocities by Golden Section Method with 3D Multifluid Model in COMSOL for PEMFCs. DUBİTED. 2022;10:1489–1507.
MLA Bayrakdar Ateş, Ezgi and Ahmet Ege. “Optimization Oxygen and Hydrogen Input Velocities by Golden Section Method With 3D Multifluid Model in COMSOL for PEMFCs”. Duzce University Journal of Science and Technology, vol. 10, no. 3, 2022, pp. 1489-07, doi:10.29130/dubited.995420.
Vancouver Bayrakdar Ateş E, Ege A. Optimization Oxygen and Hydrogen Input Velocities by Golden Section Method with 3D Multifluid Model in COMSOL for PEMFCs. DUBİTED. 2022;10(3):1489-507.