Research Article
BibTex RIS Cite

Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi

Year 2022, Volume: 10 Issue: 4, 2028 - 2038, 25.10.2022

Abstract

Boşluklu bloklar, hafif ve yüksek ısıl dirençleri sayesinde, binalarda yaygın bir kullanıma sahiptir. Bu blokların kullanım koşullarına göre bloktaki hava boşluğunun oranı, geometrisi ve sayısının ısı akısına ve sıcaklık dağılımına etkilerinin incelenmesi gerekir. Bu amaçla çalışmada bir sıra iki boşluklu ve iki sıra iki boşluklu toplam sekiz farklı içyapı formunda bloğun, sabit sınır koşullarında ve zamandan bağımsız ısıl analizleri yapılmıştır. Bloklarda boşluk oranı arttıkça, boşluklardaki hava hızının arttığı ve sıcak havanın kaldırma kuvvetleri etkisiyle üst taraflarda yoğunlaştığı görülmüştür. Bu durum iç yüzey sıcaklığını düşürürken dış yüzey sıcaklığını yükseltmiş ve yaklaşık %29 fazla ısı akısına neden olmuştur. Boşluk sayısının ısı akısına etkisi incelendiğinde, çalışmada kullanılan sınır koşullarında boşluk sayısının ısı geçişi doğrultusu boyunca fazla olmasının ısı akısını yaklaşık %29 oranında düşürmekte olduğu sonucuna ulaşılmıştır. Bloklarda boşluk oranı fazla veya boşluk sayısı az olsa bile, kaldırma kuvvetleri etkilerinin azaltılabilmesi için, boşluğun ısı akısı doğrultusunda boyutunun az olması gerektiği belirlenmiştir. 

References

  • [1]T. Gerden, ''The Adoption of the Kyoto Protocol of the United Nations Framework Convention on Climate Change,'' Contributions to Contemporary History, vol. 58, no. 2, pp. 160-188, 2018.
  • [2]Anonymous, “World Energy Outlook 2020,” International Energy Agency, Paris, France, 2020.
  • [3]Directive 2012/27/EU of the European Parliament and of Council of 11 Dec 2018 on energy efficiency (2018, Dec). Official Journal of the European Union, 2018. [Online]. Available: https://eur-lex.europa.eu.
  • [4]Anonymous, “Energy Technology Perspectives 2019,” International Energy Agency, Paris, France, 2019.
  • [5]Directive 2010/31/EU of the European Parliament and of Council of 30 May 2018 on the energy performance of buildings (recast) (2020, June). Official Journal of the European Union, 2019. [Online]. Available: https://eur-lex.europa.eu.
  • [6]Anonymous, “Global Energy CO2 Status Report 2018,” International Energy Agency, Paris, France, 2020.
  • [7]J. J. del Coz Díaz, P. J. García Nieto, C. Betegón Biempica, and M. B. Prendes Gero, ''Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method,'' Applied Thermal Engineering, vol. 27, pp. 1445-1456, 2007.
  • [8]H. Syiemiong, C. Marthong, ''Effect of mortar grade on the uniaxial compression strength of low-strength hollow concrete block masonry prisms,'' Materials Today: Proceedings, vol. 28, no. 2, pp. 842-845, 2020.
  • [9]M. M. Al-Hazmy, ''Analysis of coupled natural convection–conduction effects on the heat transport through hollow building blocks,'' Energy and Buildings, vol. 38, pp. 515-21, 2006.
  • [10]M.P. Morales, M.C. Juárez, P. Muñoz, J.A. Gómez, ''Study of the geometry of avoided clay brick using non-rectangular perforations to optimise its thermal properties,'' Energy and Buildings, vol. 43, pp. 2494-98, 2011.
  • [11]A. A. Alghamdi, H. A. Alharthi, ''Multiscale 3D finite-element modelling of the thermal conductivity of clay brick walls,'' Construction and Building Materials, vol. 157, pp. 1-9, 2017.
  • [12]J. J. Zhang, C. H. Yang, J.S. Zhang, ''Thermal characteristics of aluminium hollowed bricks filled with phase change materials: Experimental and numerical analyses,'' Applied Thermal Engineering, vol. 155, pp. 70-81, 2019.
  • [13]R. D. Flack, B. Klaus ''Measurement and prediction of natural convection velocities in triangular enclosures,'' International Journal Heat and Fluid Flow, vol. 16, no. 2, pp. 106-113, 1995.
  • [14]H. Türkoğlu, N. Yücel, ''Natural convection heat transfer in enclosures with conducting multiple partitions and side walls,'' Heat and Mass Transfer, vol. 32, pp. 1-8, 1996.
  • [15]A. S. Al-Tamimi, O. S. B. Al-Amoudi, M. A. Al-Osta, M. R. Ali, A. Ahmad, ''Effect of insulation materials and cavity layout on heat transfer of concrete masonry hollow blocks,'' Construction and Building Materials, vol. 254, pp. 119300, 2020.
  • [16]M. M. Alhazmy, ''Numerical investigation on using inclined partitions to reduce natural convection inside the cavities of hollow bricks,'' International Journal of Thermal Sciences, vol. 49, pp. 2201-2210, 2010.
  • [17]J. Sun, L. Fang, ''Numerical simulation of concrete hollow bricks by the finite volume method,'' International Journal of Heat and Mass Transfer, vol. 52, pp. 5598-5607, 2009.
  • [18]M. A. Antar, H. Baig, ''Conjugate conduction-natural convection heat transfer in a hollow building block,'' Applied Thermal Engineering, vol. 29, pp. 3716-3720, 2009.
  • [19]Kâgir ve kâgir mamulleri-Isıl özelliklerinin tayini yöntemleri, TS EN 1745, Türk Standartları Enstitüsü, 2012. [Çevrimiçi]. Erişim: https://intweb.tse.org.tr/Standard
  • [20]Anonim. (2021, Şubat). İzolasyonlu Hafif Yapı Elemanları Kataloğu [Çevrimiçi]. Erişim: https://www.teknobims.com.tr/katalog.pdf
  • [21]Anonim. Denge Bims (2021, Şubat). Bims Özellikleri Kataloğu [Çevrimiçi]. Erişim: https://www.dengebims.com.tr/katalog.pdf
  • [22] Anonim. Blok Bims (2021, Ocak). Bims Özellikleri Kataloğu [Çevrimiçi]. Erişim: https://www.blokbims.com.tr/katalog/blok-bims-katalog.pdf
  • [23]Anonymous. Ansys Fluent 2020 R1 (2020, Şubat). User’s Guide [Online]. Available: https://ansyshelp.ansys.com
  • [24]Kalorifer tesisatı projelendirme kuralları, Türk Standardları Enstitüsü, TS 2164, 1983.
  • [25]V. S. Patankar, Numerical Heat Transfer and Fluid Flow, USA, Taylor and Francis, 1980, pp. 197.
  • [26]Y. Gao, F. He, X. Meng, Z. Wang, M. Zhang, H. Yu, W. Gao, ''Thermal behavior analysis of hollow bricks filled with phase-change material (PCM),'' Journal of Building Engineering, vol. 31, pp. 101447, 2020.
  • [27] X. Meng, J. Du, Y. Wang, Y. Gao, ''Thermal performance optimization of building floors under air-conditioning intermittent operation by numerical simulation,'' Journal of Building Physics, vol. 43, pp. 99-120, 2019.
  • [28]T. L. Bergman, A. S. Lavine, F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed., USA, John Wiley and Sons, 2011, pp. 1070.
  • [29]E. M. Alawadhi, ''Thermal analysis of a building brick containing phase change material,'' Energy and Buildings, vol. 40, pp. 351-57, 2008.
  • [30]G. D. V. Davis, ''Natural convection of air in a square cavity: A benchmark numerical solution,'' International Journal for Numerical Methods in Fluids, vol. 3, pp. 249-64, 1983.

Analysis of the Effect of Hollow Geometry of Wall Blocks on Heat Transfer

Year 2022, Volume: 10 Issue: 4, 2028 - 2038, 25.10.2022

Abstract

Hollow blocks have widespread use on building envelopes thanks to their lightweight and high thermal resistance. According to the usage conditions of these blocks, the effects of the ratio, geometry and number of the cavities in the block on the heat flux and temperature distribution should be examined. For this purpose, thermal analyses of the block in the form of eight different inner forms with one row of two cavities and two rows of two cavities in the market and literature were carried out under fixed boundary conditions and steady-state. It was observed that as the hollow ratio increased in the blocks, the air velocity in the cavities increased and the hot air clustered on the upper sides due to the buoyancy forces. This situation caused the inner surface temperature to decrease, the outer surface temperature increased, and %29 more heat flux. When the effect of the number of cavities on the heat flux was examined, it was found that, under the boundary conditions used in the study, the higher the number of cavities along the heat transfer direction, 29% reduced the heat flux. It was determined that the size of the cavity in the direction of the heat flux should be small to reduce the effects of the buoyancy forces, even if the hollow ratio is high or the number of cavities is low in the blocks. 

References

  • [1]T. Gerden, ''The Adoption of the Kyoto Protocol of the United Nations Framework Convention on Climate Change,'' Contributions to Contemporary History, vol. 58, no. 2, pp. 160-188, 2018.
  • [2]Anonymous, “World Energy Outlook 2020,” International Energy Agency, Paris, France, 2020.
  • [3]Directive 2012/27/EU of the European Parliament and of Council of 11 Dec 2018 on energy efficiency (2018, Dec). Official Journal of the European Union, 2018. [Online]. Available: https://eur-lex.europa.eu.
  • [4]Anonymous, “Energy Technology Perspectives 2019,” International Energy Agency, Paris, France, 2019.
  • [5]Directive 2010/31/EU of the European Parliament and of Council of 30 May 2018 on the energy performance of buildings (recast) (2020, June). Official Journal of the European Union, 2019. [Online]. Available: https://eur-lex.europa.eu.
  • [6]Anonymous, “Global Energy CO2 Status Report 2018,” International Energy Agency, Paris, France, 2020.
  • [7]J. J. del Coz Díaz, P. J. García Nieto, C. Betegón Biempica, and M. B. Prendes Gero, ''Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method,'' Applied Thermal Engineering, vol. 27, pp. 1445-1456, 2007.
  • [8]H. Syiemiong, C. Marthong, ''Effect of mortar grade on the uniaxial compression strength of low-strength hollow concrete block masonry prisms,'' Materials Today: Proceedings, vol. 28, no. 2, pp. 842-845, 2020.
  • [9]M. M. Al-Hazmy, ''Analysis of coupled natural convection–conduction effects on the heat transport through hollow building blocks,'' Energy and Buildings, vol. 38, pp. 515-21, 2006.
  • [10]M.P. Morales, M.C. Juárez, P. Muñoz, J.A. Gómez, ''Study of the geometry of avoided clay brick using non-rectangular perforations to optimise its thermal properties,'' Energy and Buildings, vol. 43, pp. 2494-98, 2011.
  • [11]A. A. Alghamdi, H. A. Alharthi, ''Multiscale 3D finite-element modelling of the thermal conductivity of clay brick walls,'' Construction and Building Materials, vol. 157, pp. 1-9, 2017.
  • [12]J. J. Zhang, C. H. Yang, J.S. Zhang, ''Thermal characteristics of aluminium hollowed bricks filled with phase change materials: Experimental and numerical analyses,'' Applied Thermal Engineering, vol. 155, pp. 70-81, 2019.
  • [13]R. D. Flack, B. Klaus ''Measurement and prediction of natural convection velocities in triangular enclosures,'' International Journal Heat and Fluid Flow, vol. 16, no. 2, pp. 106-113, 1995.
  • [14]H. Türkoğlu, N. Yücel, ''Natural convection heat transfer in enclosures with conducting multiple partitions and side walls,'' Heat and Mass Transfer, vol. 32, pp. 1-8, 1996.
  • [15]A. S. Al-Tamimi, O. S. B. Al-Amoudi, M. A. Al-Osta, M. R. Ali, A. Ahmad, ''Effect of insulation materials and cavity layout on heat transfer of concrete masonry hollow blocks,'' Construction and Building Materials, vol. 254, pp. 119300, 2020.
  • [16]M. M. Alhazmy, ''Numerical investigation on using inclined partitions to reduce natural convection inside the cavities of hollow bricks,'' International Journal of Thermal Sciences, vol. 49, pp. 2201-2210, 2010.
  • [17]J. Sun, L. Fang, ''Numerical simulation of concrete hollow bricks by the finite volume method,'' International Journal of Heat and Mass Transfer, vol. 52, pp. 5598-5607, 2009.
  • [18]M. A. Antar, H. Baig, ''Conjugate conduction-natural convection heat transfer in a hollow building block,'' Applied Thermal Engineering, vol. 29, pp. 3716-3720, 2009.
  • [19]Kâgir ve kâgir mamulleri-Isıl özelliklerinin tayini yöntemleri, TS EN 1745, Türk Standartları Enstitüsü, 2012. [Çevrimiçi]. Erişim: https://intweb.tse.org.tr/Standard
  • [20]Anonim. (2021, Şubat). İzolasyonlu Hafif Yapı Elemanları Kataloğu [Çevrimiçi]. Erişim: https://www.teknobims.com.tr/katalog.pdf
  • [21]Anonim. Denge Bims (2021, Şubat). Bims Özellikleri Kataloğu [Çevrimiçi]. Erişim: https://www.dengebims.com.tr/katalog.pdf
  • [22] Anonim. Blok Bims (2021, Ocak). Bims Özellikleri Kataloğu [Çevrimiçi]. Erişim: https://www.blokbims.com.tr/katalog/blok-bims-katalog.pdf
  • [23]Anonymous. Ansys Fluent 2020 R1 (2020, Şubat). User’s Guide [Online]. Available: https://ansyshelp.ansys.com
  • [24]Kalorifer tesisatı projelendirme kuralları, Türk Standardları Enstitüsü, TS 2164, 1983.
  • [25]V. S. Patankar, Numerical Heat Transfer and Fluid Flow, USA, Taylor and Francis, 1980, pp. 197.
  • [26]Y. Gao, F. He, X. Meng, Z. Wang, M. Zhang, H. Yu, W. Gao, ''Thermal behavior analysis of hollow bricks filled with phase-change material (PCM),'' Journal of Building Engineering, vol. 31, pp. 101447, 2020.
  • [27] X. Meng, J. Du, Y. Wang, Y. Gao, ''Thermal performance optimization of building floors under air-conditioning intermittent operation by numerical simulation,'' Journal of Building Physics, vol. 43, pp. 99-120, 2019.
  • [28]T. L. Bergman, A. S. Lavine, F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed., USA, John Wiley and Sons, 2011, pp. 1070.
  • [29]E. M. Alawadhi, ''Thermal analysis of a building brick containing phase change material,'' Energy and Buildings, vol. 40, pp. 351-57, 2008.
  • [30]G. D. V. Davis, ''Natural convection of air in a square cavity: A benchmark numerical solution,'' International Journal for Numerical Methods in Fluids, vol. 3, pp. 249-64, 1983.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ersin Haydaraslan 0000-0002-3142-9518

Burhan Çuhadaroğlu 0000-0002-9144-498X

Publication Date October 25, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Haydaraslan, E., & Çuhadaroğlu, B. (2022). Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(4), 2028-2038. https://doi.org/10.29130/dubited.1002564
AMA Haydaraslan E, Çuhadaroğlu B. Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi. DUBİTED. October 2022;10(4):2028-2038. doi:10.29130/dubited.1002564
Chicago Haydaraslan, Ersin, and Burhan Çuhadaroğlu. “Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, no. 4 (October 2022): 2028-38. https://doi.org/10.29130/dubited.1002564.
EndNote Haydaraslan E, Çuhadaroğlu B (October 1, 2022) Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 4 2028–2038.
IEEE E. Haydaraslan and B. Çuhadaroğlu, “Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi”, DUBİTED, vol. 10, no. 4, pp. 2028–2038, 2022, doi: 10.29130/dubited.1002564.
ISNAD Haydaraslan, Ersin - Çuhadaroğlu, Burhan. “Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/4 (October 2022), 2028-2038. https://doi.org/10.29130/dubited.1002564.
JAMA Haydaraslan E, Çuhadaroğlu B. Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi. DUBİTED. 2022;10:2028–2038.
MLA Haydaraslan, Ersin and Burhan Çuhadaroğlu. “Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 10, no. 4, 2022, pp. 2028-3, doi:10.29130/dubited.1002564.
Vancouver Haydaraslan E, Çuhadaroğlu B. Duvar Bloklarında Boşluk Geometrisinin Isı Transferine Etkisinin İncelenmesi. DUBİTED. 2022;10(4):2028-3.