Research Article
BibTex RIS Cite

Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi

Year 2022, Volume: 10 Issue: 4, 2039 - 2051, 25.10.2022

Abstract

Bu çalışmada, elektroeğirilmiş karbon nanotüp (KNT)/ termoplastik poliüretan (TPU) nanokompozitinin manyetik karıştırma (MK), ultrasonik banyo (UB) ve ultrasonikasyon (S) gibi farklı dispersiyon yöntemlerinin morfolojik ve elektromekanik özellikleri üzerindeki etkisi hakkında detaylı bir araştırma yapılmıştır. Elde edilen sonuçlar KNT’de uygulanan dispersiyon yönteminin, numunelerin fiziksel, elektromekanik ve sensör özelliklerinde çok önemli bir rol oynadığını göstermektedir. Mikroskobik incelemeler, ultrasonik kuvvetin pozitif etkisi sayesinde S numunelerin daha iyi dağılmış lifli yapılar verdiğini göstermektedir. Ayrıca özellikle S-örneklerinde, TPU çözeltisine KNT'lerin eklenmesiyle iletkenliğin lifli yapının daha iyi dağılmasına bağlı olarak yaklaşık 10 kat arttığı görülmüştür. Mekanik testlerden S numunelerinde kopma uzamasının MK numunelerine göre %31.6 ve çekme dayanımının ise yaklaşık %56 arttığı gözlemlenmiştir. Bunun yanında, çekme gerinim testinden, tüm numunelerin iki lineer bölgede gerinime duyarlı tepkiler verdiği ve S numunelerinde MK ve UB numunelerine oranla daha yüksek sayıdaki nanofiber ağlardan dolayı daha hassas tepki verdiği görülmüştür. Elde edilen sonuçlar KNT dispersiyon tekniğinin, numunelerin sadece fiziksel özellikleri değil, aynı zamanda elektromekanik ve sensör özelliklerini de ciddi oranda etkilediğini gösterirken özellikle yüksek hassasiyetli, esnek gerinim sensörleri üretiminde KNT'lerin dağılımını kontrol etmenin önemine dair yeni bakış açıları kazandırmaktadır.

Supporting Institution

Türk-Alman Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

2019BM016

Thanks

Bu çalışma Türk-Alman Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir (Proje no: 2019BM016). Bu çalışmada Marmara Üniversitesi Teknoloji Fakültesi, Tekstil Mühendisliği bölümü öğretim üyesi Doç. Dr. Muhammet Uzun ve Öğr. Gör. Kübra Yıldız taramalı elektron mikroskobu testlerinin planlanmasında katkılar sunmuşlardır.

References

  • [1]I. Kang, M.J. Schulz, J.H. Kim, V. Shanov V, D. Shi, “A carbon nanotube strain sensor for structural health monitoring, ”Smart materials and structures, vol.15, no.3, pp.737, 2016.
  • [2]H. Jo, J.W. Park, B.F. Spencer, H.J. Jung, “Develoment of high-sensitivity wireless strain sensor for structural health monitoring, ” Smart Strucures and Systems, vol.11, no.5, pp. 477-496, 2013.
  • [3]A. Sanli, O. Kanoun, “Electrical impedance analysis of carbon nanotube/epoxy nanocomposite-based piezoresistive strain sensors under uniaxial cyclic static tensile loading,” Journal of Composite Materials, vol.54, no.6, pp. 845-855, 2020.
  • [4]A. Sanli, “Investigation of temperature effect on the electrical properties of MWCNTs/epoxy nanocomposites by electrochemical impedance spectroscopy,” Advanced Composite Materials, vol.29, no.1, pp.31-41, 2020.
  • [5]A. Sanli, A. Benchirouf, C. Müller, O. Kanoun, “Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites, ” Sensors and Actuators A: Physical, vol.254, pp.61-68, 2017.
  • [6]A. Sanli, C. Müller, O. Kanoun, C. Elibol, M.F.X.Wagner, “Piezoresistive characterization of multi-walled carbon nanotube-epoxy based flexible strain sensitive films by impedance spectroscopy,” Composites Science and Technology, vol.122, pp.18-26, 2016.
  • [7]A. Sanli, R. Ramalingame, O. Kanoun, “Piezoresistive pressure sensor based on carbon nanotubes/epoxy composite under cyclic loading,” IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, pp.14-17, 2018.
  • [8]Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, ... & H. Zhu, “Wearable and highly sensitive graphene strain sensors for human motion monitoring,” Advanced Functional Materials, vol.24, no.29, pp.4666-4670, 2014.
  • [9]T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata K, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nature nanotechnology, vol.6, no.5, pp.296-301, 2011.
  • [10]O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T.N. Dinh, A. Al-Hamry, ... & A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors, vol.14, no.6, pp.10042-10071, 2014.
  • [11]Y. Qin, M. Qu, Y. Pan, C. Zhang, D.W. Schubert, “Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing, ” Composites Part A: Applied Science and Manufacturing, vol.129, pp.105724, 2020.
  • [12]N. Hu, H. Fukunaga, S. Atobe, Y. Liu, J. Li, “Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites, ” Sensors, vol.11, no.11, pp.10691-10723, 2011.
  • [13] J.J. Park, W.J. Hyun, S.C. Mun, Y.T. Park, O.O Park, “Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring, ” ACS applied materials & interfaces, vol.7, no.11, pp. 6317-6324, 2015.
  • [14]L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang, Q. Gao, ... & W. Zhou, “Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection,” Scientific reports, no.3, pp.3048, 2013.
  • [15]J.K.W. Sandler, S. Pegel, M. Cadek, F. Gojny, M. Van Es, J. Lohmar, ... & M.S.P. Shaffer, “A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres,” Polymer,vol. 45, no.6, pp.2001-2015, 2004.
  • [16]D.S. McLachlan, C. Chiteme, C. Park C, K.E. Wise, S.E. Lowther, P.T. Lillehei, ... & J.S. Harrison, “AC and DC percolative conductivity of single wall carbon nanotube polymer composites, ” Journal of Polymer Science Part B: Polymer Physics, vol. 43, no.22, pp.3273-3287, 2005.
  • [17]R. Karslıoğlu, “MWCNT Oranının MWCNT ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı ve Mekanik Özelliklerine Etkisi, ” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 7, no.3, pp.1922-1930.
  • [18]K. A. Narh, L. Jallo, K.Y. Rhee, “The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide, ”Polymer Composites, vol. 29, no.7, pp.809-817, 2008.
  • [19]C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, ... & P.S. Lee, “Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors, ”Advanced materials, vol. 26, , no.13, pp.2022-2027, 2014.
  • [20]H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.H. Jeong, E. Lee, ... & I. Park, “Ag@ Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small, vol. 10, no.20, pp.4171-4181, 2014.
  • [21]S. Yao, Y. Zhu, “Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires,” Nanoscale, vol. 6,no.4, pp. 2345-2352, 2014.
  • [22] H. Lee, B. Seong, H. Moon, D. Byun, “Directly printed stretchable strain sensor based on ring and diamond shaped silver nanowire electrodes, ” Rsc Advances, vol. 5, no.36, pp.28379-28384, 2015.
  • [23]D.J. Cohen, D. Mitra, K. Peterson, M.M. Maharbiz, “A highly elastic, capacitive strain gauge based on percolating nanotube networks, ” Nano letters, vol. 12, no.4, pp.1821-1825, 2012.
  • [24]W. Obitayo, T. Liu, “Effect of orientation on the piezoresistivity of mechanically drawn single walled carbon nanotube (SWCNT) thin films, ” Carbon, vol. 85, pp.372-382, 2015.
  • [25]N. Hu, T. Itoi, T. Akagi, T. Kojima, J. Xue, C. Yan, ... & Y. Liu, “Ultrasensitive strain sensors made from metal-coated carbon nanofiller/epoxy composites,” Carbon, vol. 51, pp.202-212, 2013.
  • [26]C.S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane,... & J.N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites,” ACS nano, vol. 8, no.9, pp.8819-8830, 2014.
  • [27] Y. Wang, L.Wang, T.Yang, X. Li, X. Zang, M. Zhu, ... & H. Zhu, “Wearable and highly sensitive graphene strain sensors for human motion monitoring,” Advanced Functional Materials, vol. 24, , no.29, pp.4666-4670, 2014.
  • [28]S.H. Bae, Y. Lee, B.K. Sharma, H.J. Lee, J.H. Kim, J.H. Ahn, “Graphene-based transparent strain sensor, ” Carbon, vol. 51, pp.236-242, 2013.
  • [29]Y. İkiz, “Effect of Process Parameters on Morphology of Electrospun PVA Nanofibers, ” Pamukkale University Journal of Engineering Sciences, vol. 15, , no.3, pp.363-369, 2009.
  • [30]F.C. Çallıoğlu, H.K. Güler, “Production of essential oil-based composite nanofibers by emulsion electrospinning,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 26, no.7, pp.1178-1185, 2020.
  • [31] N. Bhardwaj, S.C. Kundu, “Electrospinning: a fascinating fiber fabrication technique, ”Biotechnology advances, vol. 28, no.3, pp.325-347, 2010.
  • [32]M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, ... & J.H. Wendorff JH, “Nanostructured fibers via electrospinning,” Advanced materials, vol. 13, no.1, pp.70-72, 2001.
  • [33]G. Liu, Z. Gu, Y. Hong, L. Cheng, C. Li, “Electrospun starch nanofibers: Recent advances, challenges, and strategies for potential pharmaceutical applications,” Journal of Controlled Release, vol. 252, pp.95-107, 2017.
  • [34]G.H. Kim, H. Yoon, “A direct-electrospinning process by combined electric field and air-blowing system for nanofibrous wound-dressings,” Applied Physics A, vol.90 , no.3, pp.389-394, 2008.
  • [35]X.H. Qin, S.Y. Wang, “Filtration properties of electrospinning nanofibers,” Journal of applied polymer science, vol. 102, no.2, pp.1285-1290, 2006.
  • [36]Y. Wang, J. Cheng, Y. Xing, M. Shahid, H. Nishijima, W. Pan, “Stretchable Platinum Network‐Based Transparent Electrodes for Highly Sensitive Wearable Electronics,” small, vol. 13, no.27, pp.1604291, 2017.
  • [37] B. Yin, Y. Wen, T. Hong, Z. Xie, G. Yuan, Q. Ji, H. Jia, “Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame,” ACS applied materials & interfaces, vol. 9, no.37, pp.32054-32064, 2017.
  • [38]Y. Jia, X. Yue, Y. Wang, C. Yan, G. Zheng, K. Dai, ... & C. Shen, “Multifunctional stretchable strain sensor based on polydopamine/reduced graphene oxide/electrospun thermoplastic polyurethane fibrous mats for human motion detection and environment monitoring,” Composites Part B: Engineering, vol. 183, pp.107696, 2020.
  • [39]H. Liu, Y. Li, K. Dai, G. Zheng, C. Liu, C. Shen, ... & Z. Guo, “Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications, ” Journal of Materials Chemistry C, vol. 4, , no.1, pp. 157-166, 2016.
  • [40]M. Ren, Y. Zhou, Y. Wang, G. Zheng, K. Dai, C. Liu, C. Shen, “Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure,” Chemical Engineering Journal, vol. 360, pp. 762-777, 2019.
  • [41]F. Fang, H. Wang, H. Wang, X. Gu, J. Zeng, Z. Wang, ... & M. Chen, “Stretchable MXene/ Thermoplastic Polyurethanes based Strain Sensor Fabricated Using a Combined Electrospinning and Electrostatic Spray Deposition Technique,” Micromachines, vol. 12,no.3, pp. 252, 2021.
  • [42]X. Wang, X. Liu, D.W. Schubert, “Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks,” Nano-micro letters, vol. 13, no.1, pp.1-19, 2021.
  • [43]S. Li, R. Li, O.G. González, T. Chen, X. Xiao, “Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection,”Composites Science and Technology, vol. 203, pp. 108617, 2021.
  • [44]G. Liu, Y. Chen, M. Gong, X. Liu, Z.K. Cui, Q. Pei, ... & Q. Zhuang, “Enhanced dielectric performance of PDMS-based three-phase percolative nanocomposite films incorporating a high dielectric constant ceramic and conductive multi-walled carbon nanotubes,” Journal of Materials Chemistry C, vol. 6, , no.40, pp. 10829-10837, 2018.
  • [45]C.A. Schneider, W.S. Rasband, K.W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis, ” Nature Methods, vol. 9, , no.7, pp. 671–675, 2012.
  • [46]K. Yang, Z. Yi, Q. Jing, R. Yue, W. Jiang, D. Lin D, “Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy,” Chinese science bulletin, vol. 58, no. 17, pp. 2082-2090, 2013.
  • [47]R. Arrigo, R. Teresi, C. Gambarotti, F. Parisi, G. Lazzara, N.T. Dintcheva, “Sonication-induced modification of carbon nanotubes: Effect on the rheological and thermo-oxidative behaviour of polymer-based nanocomposites,” Materials, vol. 11, no.3, pp.383, 2018.
  • [48]J.T. Choi, D.H. Kim, K.S. Ryu, , H.I. Lee, H.M. Jeong, C.M. Shin, ... & B.K. Kim, “Functionalized graphene sheet/polyurethane nanocomposites: effect of particle size on physical properties,”Macromolecular Research, vol. 19, , no. 8, pp. 809-814, 2011.
  • [49]H. Liu, Q. Li, S. Zhang, R. Yin, X. Liu, Y. He , ... & Z. Guo, “Electrically conductive polymer composites for smart flexible strain sensors: a critical review,” Journal of Materials Chemistry C, vol. 6, , no. 45, pp.12121-12141, 2018.

Experimental Investigation of The Effects of Different Dispersion Techniques on The Electromechanical Properties of Electrospun Carbon Nanotube/ Thermoplastic Polyurethane Nanocomposites

Year 2022, Volume: 10 Issue: 4, 2039 - 2051, 25.10.2022

Abstract

In this study, a detailed investigation on the influence of different dispersion methods that are magnetic stirring (MK), ultrasonic bath (UB), and ultrasonication (S) of the electrospun CNTs/ TPU nanocomposite on their morphological and electromechanical properties was conducted. Obtained results suggest that the dispersion method of the CNTs plays a significant role in their physical electromechanical and sensory properties tremendously. Microscopic investigations show that ultrasonicated samples give better dispersed fibrous structures owing to the positive effect of the ultrasonic force. It is also seen that especially for the S-samples, by addition of CNTs to the TPU solution conductivity increases almost 10 times which is attributed to the better dispersion of the fibrous structure. From the mechanical tests, it was observed that the elongation at break in S-samples increased by 31.6%, and the tensile strength increased by approximately 56% compared to MK-samples. Subsequently, from the tensile strain test, it is observed that all probes give strain-sensitive responses in two linear regions and S-samples are the most sensitive among others that are due to higher total amount of nanofiber networks. All the results prove that the importance of good CNTs dispersion that affects not only physical properties but also their electromechanical and sensory properties. Results obtained from this study can shed a light on the importance of controlling the dispersion of the CNTs for fabricating highly sensitive, flexible strain sensors through electrospinning technology.

Project Number

2019BM016

References

  • [1]I. Kang, M.J. Schulz, J.H. Kim, V. Shanov V, D. Shi, “A carbon nanotube strain sensor for structural health monitoring, ”Smart materials and structures, vol.15, no.3, pp.737, 2016.
  • [2]H. Jo, J.W. Park, B.F. Spencer, H.J. Jung, “Develoment of high-sensitivity wireless strain sensor for structural health monitoring, ” Smart Strucures and Systems, vol.11, no.5, pp. 477-496, 2013.
  • [3]A. Sanli, O. Kanoun, “Electrical impedance analysis of carbon nanotube/epoxy nanocomposite-based piezoresistive strain sensors under uniaxial cyclic static tensile loading,” Journal of Composite Materials, vol.54, no.6, pp. 845-855, 2020.
  • [4]A. Sanli, “Investigation of temperature effect on the electrical properties of MWCNTs/epoxy nanocomposites by electrochemical impedance spectroscopy,” Advanced Composite Materials, vol.29, no.1, pp.31-41, 2020.
  • [5]A. Sanli, A. Benchirouf, C. Müller, O. Kanoun, “Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites, ” Sensors and Actuators A: Physical, vol.254, pp.61-68, 2017.
  • [6]A. Sanli, C. Müller, O. Kanoun, C. Elibol, M.F.X.Wagner, “Piezoresistive characterization of multi-walled carbon nanotube-epoxy based flexible strain sensitive films by impedance spectroscopy,” Composites Science and Technology, vol.122, pp.18-26, 2016.
  • [7]A. Sanli, R. Ramalingame, O. Kanoun, “Piezoresistive pressure sensor based on carbon nanotubes/epoxy composite under cyclic loading,” IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, pp.14-17, 2018.
  • [8]Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, ... & H. Zhu, “Wearable and highly sensitive graphene strain sensors for human motion monitoring,” Advanced Functional Materials, vol.24, no.29, pp.4666-4670, 2014.
  • [9]T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata K, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nature nanotechnology, vol.6, no.5, pp.296-301, 2011.
  • [10]O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T.N. Dinh, A. Al-Hamry, ... & A. Bouhamed, “Flexible carbon nanotube films for high performance strain sensors,” Sensors, vol.14, no.6, pp.10042-10071, 2014.
  • [11]Y. Qin, M. Qu, Y. Pan, C. Zhang, D.W. Schubert, “Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing, ” Composites Part A: Applied Science and Manufacturing, vol.129, pp.105724, 2020.
  • [12]N. Hu, H. Fukunaga, S. Atobe, Y. Liu, J. Li, “Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites, ” Sensors, vol.11, no.11, pp.10691-10723, 2011.
  • [13] J.J. Park, W.J. Hyun, S.C. Mun, Y.T. Park, O.O Park, “Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring, ” ACS applied materials & interfaces, vol.7, no.11, pp. 6317-6324, 2015.
  • [14]L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang, Q. Gao, ... & W. Zhou, “Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection,” Scientific reports, no.3, pp.3048, 2013.
  • [15]J.K.W. Sandler, S. Pegel, M. Cadek, F. Gojny, M. Van Es, J. Lohmar, ... & M.S.P. Shaffer, “A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres,” Polymer,vol. 45, no.6, pp.2001-2015, 2004.
  • [16]D.S. McLachlan, C. Chiteme, C. Park C, K.E. Wise, S.E. Lowther, P.T. Lillehei, ... & J.S. Harrison, “AC and DC percolative conductivity of single wall carbon nanotube polymer composites, ” Journal of Polymer Science Part B: Polymer Physics, vol. 43, no.22, pp.3273-3287, 2005.
  • [17]R. Karslıoğlu, “MWCNT Oranının MWCNT ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı ve Mekanik Özelliklerine Etkisi, ” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 7, no.3, pp.1922-1930.
  • [18]K. A. Narh, L. Jallo, K.Y. Rhee, “The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide, ”Polymer Composites, vol. 29, no.7, pp.809-817, 2008.
  • [19]C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, ... & P.S. Lee, “Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors, ”Advanced materials, vol. 26, , no.13, pp.2022-2027, 2014.
  • [20]H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.H. Jeong, E. Lee, ... & I. Park, “Ag@ Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small, vol. 10, no.20, pp.4171-4181, 2014.
  • [21]S. Yao, Y. Zhu, “Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires,” Nanoscale, vol. 6,no.4, pp. 2345-2352, 2014.
  • [22] H. Lee, B. Seong, H. Moon, D. Byun, “Directly printed stretchable strain sensor based on ring and diamond shaped silver nanowire electrodes, ” Rsc Advances, vol. 5, no.36, pp.28379-28384, 2015.
  • [23]D.J. Cohen, D. Mitra, K. Peterson, M.M. Maharbiz, “A highly elastic, capacitive strain gauge based on percolating nanotube networks, ” Nano letters, vol. 12, no.4, pp.1821-1825, 2012.
  • [24]W. Obitayo, T. Liu, “Effect of orientation on the piezoresistivity of mechanically drawn single walled carbon nanotube (SWCNT) thin films, ” Carbon, vol. 85, pp.372-382, 2015.
  • [25]N. Hu, T. Itoi, T. Akagi, T. Kojima, J. Xue, C. Yan, ... & Y. Liu, “Ultrasensitive strain sensors made from metal-coated carbon nanofiller/epoxy composites,” Carbon, vol. 51, pp.202-212, 2013.
  • [26]C.S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane,... & J.N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites,” ACS nano, vol. 8, no.9, pp.8819-8830, 2014.
  • [27] Y. Wang, L.Wang, T.Yang, X. Li, X. Zang, M. Zhu, ... & H. Zhu, “Wearable and highly sensitive graphene strain sensors for human motion monitoring,” Advanced Functional Materials, vol. 24, , no.29, pp.4666-4670, 2014.
  • [28]S.H. Bae, Y. Lee, B.K. Sharma, H.J. Lee, J.H. Kim, J.H. Ahn, “Graphene-based transparent strain sensor, ” Carbon, vol. 51, pp.236-242, 2013.
  • [29]Y. İkiz, “Effect of Process Parameters on Morphology of Electrospun PVA Nanofibers, ” Pamukkale University Journal of Engineering Sciences, vol. 15, , no.3, pp.363-369, 2009.
  • [30]F.C. Çallıoğlu, H.K. Güler, “Production of essential oil-based composite nanofibers by emulsion electrospinning,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 26, no.7, pp.1178-1185, 2020.
  • [31] N. Bhardwaj, S.C. Kundu, “Electrospinning: a fascinating fiber fabrication technique, ”Biotechnology advances, vol. 28, no.3, pp.325-347, 2010.
  • [32]M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, ... & J.H. Wendorff JH, “Nanostructured fibers via electrospinning,” Advanced materials, vol. 13, no.1, pp.70-72, 2001.
  • [33]G. Liu, Z. Gu, Y. Hong, L. Cheng, C. Li, “Electrospun starch nanofibers: Recent advances, challenges, and strategies for potential pharmaceutical applications,” Journal of Controlled Release, vol. 252, pp.95-107, 2017.
  • [34]G.H. Kim, H. Yoon, “A direct-electrospinning process by combined electric field and air-blowing system for nanofibrous wound-dressings,” Applied Physics A, vol.90 , no.3, pp.389-394, 2008.
  • [35]X.H. Qin, S.Y. Wang, “Filtration properties of electrospinning nanofibers,” Journal of applied polymer science, vol. 102, no.2, pp.1285-1290, 2006.
  • [36]Y. Wang, J. Cheng, Y. Xing, M. Shahid, H. Nishijima, W. Pan, “Stretchable Platinum Network‐Based Transparent Electrodes for Highly Sensitive Wearable Electronics,” small, vol. 13, no.27, pp.1604291, 2017.
  • [37] B. Yin, Y. Wen, T. Hong, Z. Xie, G. Yuan, Q. Ji, H. Jia, “Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame,” ACS applied materials & interfaces, vol. 9, no.37, pp.32054-32064, 2017.
  • [38]Y. Jia, X. Yue, Y. Wang, C. Yan, G. Zheng, K. Dai, ... & C. Shen, “Multifunctional stretchable strain sensor based on polydopamine/reduced graphene oxide/electrospun thermoplastic polyurethane fibrous mats for human motion detection and environment monitoring,” Composites Part B: Engineering, vol. 183, pp.107696, 2020.
  • [39]H. Liu, Y. Li, K. Dai, G. Zheng, C. Liu, C. Shen, ... & Z. Guo, “Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications, ” Journal of Materials Chemistry C, vol. 4, , no.1, pp. 157-166, 2016.
  • [40]M. Ren, Y. Zhou, Y. Wang, G. Zheng, K. Dai, C. Liu, C. Shen, “Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure,” Chemical Engineering Journal, vol. 360, pp. 762-777, 2019.
  • [41]F. Fang, H. Wang, H. Wang, X. Gu, J. Zeng, Z. Wang, ... & M. Chen, “Stretchable MXene/ Thermoplastic Polyurethanes based Strain Sensor Fabricated Using a Combined Electrospinning and Electrostatic Spray Deposition Technique,” Micromachines, vol. 12,no.3, pp. 252, 2021.
  • [42]X. Wang, X. Liu, D.W. Schubert, “Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks,” Nano-micro letters, vol. 13, no.1, pp.1-19, 2021.
  • [43]S. Li, R. Li, O.G. González, T. Chen, X. Xiao, “Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection,”Composites Science and Technology, vol. 203, pp. 108617, 2021.
  • [44]G. Liu, Y. Chen, M. Gong, X. Liu, Z.K. Cui, Q. Pei, ... & Q. Zhuang, “Enhanced dielectric performance of PDMS-based three-phase percolative nanocomposite films incorporating a high dielectric constant ceramic and conductive multi-walled carbon nanotubes,” Journal of Materials Chemistry C, vol. 6, , no.40, pp. 10829-10837, 2018.
  • [45]C.A. Schneider, W.S. Rasband, K.W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis, ” Nature Methods, vol. 9, , no.7, pp. 671–675, 2012.
  • [46]K. Yang, Z. Yi, Q. Jing, R. Yue, W. Jiang, D. Lin D, “Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy,” Chinese science bulletin, vol. 58, no. 17, pp. 2082-2090, 2013.
  • [47]R. Arrigo, R. Teresi, C. Gambarotti, F. Parisi, G. Lazzara, N.T. Dintcheva, “Sonication-induced modification of carbon nanotubes: Effect on the rheological and thermo-oxidative behaviour of polymer-based nanocomposites,” Materials, vol. 11, no.3, pp.383, 2018.
  • [48]J.T. Choi, D.H. Kim, K.S. Ryu, , H.I. Lee, H.M. Jeong, C.M. Shin, ... & B.K. Kim, “Functionalized graphene sheet/polyurethane nanocomposites: effect of particle size on physical properties,”Macromolecular Research, vol. 19, , no. 8, pp. 809-814, 2011.
  • [49]H. Liu, Q. Li, S. Zhang, R. Yin, X. Liu, Y. He , ... & Z. Guo, “Electrically conductive polymer composites for smart flexible strain sensors: a critical review,” Journal of Materials Chemistry C, vol. 6, , no. 45, pp.12121-12141, 2018.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Abdulkadir Şanlı 0000-0002-9768-9005

Project Number 2019BM016
Publication Date October 25, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Şanlı, A. (2022). Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi. Duzce University Journal of Science and Technology, 10(4), 2039-2051. https://doi.org/10.29130/dubited.1009022
AMA Şanlı A. Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi. DUBİTED. October 2022;10(4):2039-2051. doi:10.29130/dubited.1009022
Chicago Şanlı, Abdulkadir. “Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi”. Duzce University Journal of Science and Technology 10, no. 4 (October 2022): 2039-51. https://doi.org/10.29130/dubited.1009022.
EndNote Şanlı A (October 1, 2022) Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi. Duzce University Journal of Science and Technology 10 4 2039–2051.
IEEE A. Şanlı, “Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi”, DUBİTED, vol. 10, no. 4, pp. 2039–2051, 2022, doi: 10.29130/dubited.1009022.
ISNAD Şanlı, Abdulkadir. “Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi”. Duzce University Journal of Science and Technology 10/4 (October 2022), 2039-2051. https://doi.org/10.29130/dubited.1009022.
JAMA Şanlı A. Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi. DUBİTED. 2022;10:2039–2051.
MLA Şanlı, Abdulkadir. “Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi”. Duzce University Journal of Science and Technology, vol. 10, no. 4, 2022, pp. 2039-51, doi:10.29130/dubited.1009022.
Vancouver Şanlı A. Farklı Dispersiyon Tekniklerinin Elektroeğirilmiş Karbon Nanotüp/ Termoplastik Poliüretan Nanokompozitlerin Elektromekanik Özelliklerine Etkisinin Deneysel İncelenmesi. DUBİTED. 2022;10(4):2039-51.