Research Article
BibTex RIS Cite

Gaz Tungsten Ark Kaynaklı 10 mm Kalınlığındaki AISI 316L Bağlantıların İçyapı ve Mekanik Karakterizasyonu

Year 2022, Volume: 10 Issue: 4, 1873 - 1889, 25.10.2022

Abstract

Östenitik paslanmaz çelikler, düşük sıcaklıklarda bile çok iyi şekillendirilebilirlik, iyi mekanik özellikler ve yüksek korozyon direnci gibi özelliklere sahiptir. Bunun sonucu, tüm paslanmaz çelikler içerisinde en fazla üretilen ve kullanılan türdür. Ancak bu çeliklerin kaynağında birçok problem söz konusudur. Bunların başında, krom karbür oluşumu sonucu ısıdan etkilenmiş bölgede korozyon direncinin düşmesi gelmektedir. Bu çalışma, gaz tungsten ark kaynağı yöntemi ile AISI 316L levhalarda kaynak hatası içermeyen bağlantıların üretilmesini amaçlamaktadır. Bu amaca yönelik, 10 mm kalınlığında AISI 316L levhalar, 2,4 mm çapında ER316L dolgu teli kullanılarak beş pasoda kaynaklanmıştır. Elde edilen kaynaklı levhanın mikroyapısal ve mekanik özelliklerini araştırmak ve karakterize etmek için çekme testi yanında detaylı optik mikroskop çalışmaları ve mikro sertlik ölçümleri gerçekleştirilmiştir. Çok pasolu kaynağın mikroyapısal değişim üzerindeki etkisi ve dolayısıyla üretilen bağlantının mekanik davranışını nasıl etkilediği de araştırılmıştır. Yapılan çalışma sonucunda, kaynak bölgesinde herhangi bir hata gözlenmemiş olup, kaynaklı bağlantının çekme mukavemeti ve uzama açısından sırası ile %104 ve %58 lik bir kaynak performansı sergilediği tespit edilmiştir. Ayrıca, ergime bölgesinde ve ısıdan etkilenen bölgede sertlik artışı gözlemlenmiştir.

Thanks

Bu çalışmada araştırılan kaynaklı bağlantının imalini gerçekleştiren TEKFEN İmalat ve Mühendislik A. Ş, İstanbul’dan Sayın Cemal TARDU ve Sayın İshak Özer KIRÇİÇEK’e, ayrıca bu çalışma kapsamında yürütülen metallografi çalışmaları, mikrosertlik ölçümleri ve mekanik testlerin (çekme ve bükme deneyleri) yapılmasındaki desteklerinden dolayı NOKSEL Çelik Boru Sanayi A.Ş., İskenderun’dan Sedat UYSAL’a (Fabrika Müdürü) ve Tuğrul YAZGAN’a da teşekkürü bir borç biliriz.

References

  • [1] J. C. Lippold and D. J. Kotecki, “Welding Metallurgy and Weldability of Stainless Steels”. 1st ed., Hoboken: John Wiley & Sons Inc., 2005.
  • [2] G. Çam, “Science and Technology of Welding”, 1st ed., Nobel Akademik Yayıncılık, Ankara, Turkey, 2020. (in Turkish)
  • [3] M. Mukherjee, T.K. Pal, “Evaluation of microstructural and mechanical properties of Fe-16Cr-1Ni-9Mn-0.12N austenitic stainless steel welded joints”, Materials Characterization, vol. 131, pp. 406-424, 2017.
  • [4] N. Ghosh, P. K. Pal, G. Nandi, “GMAW dissimilar welding of AISI 409 ferritic stainless steel to AISI 316L austenitic stainless steel by using AISI 308 filler wire”, Engineering Science and Technology, an International Journal, vol. 27, pp.1334-1341, 2017.
  • [5] R.M. Molak, K. Paradowski, T. Brynk, L. Ciupinski, Z. Pakiela, K.J. Kurzydlowski, “Measurement of mechanical properties in a 316L stainless steel welded joint”, International Journal of Pressure Vessels and Piping, vol. 86, pp. 43-47, 2009.
  • [6] C. Balaji, S.V.A. Kumar, S.A. Kumar, R. Satish, “Evaluation of mechanical properties of SS 316 L weldments using tungsten inert gas welding”, International Journal of Engineering Science and Technology, vol. 4, pp. 2053-2057, 2012.
  • [7] R. Saluja, K.M. Moeed, “The emphasis of phase transformations and alloying constituents on hot cracking susceptibility of type 304L and 316L stainless steel welds”, International Journal of Engineering Science and Technology, vol. 4, pp. 2206-2216, 2012.
  • [8] M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, A. Saatchi, “Effect of TIG welding on corrosion behavior of 316L stainless steel”, Materials Letters, vol. 61, pp. 2343-2346, 2007.
  • [9] M.N. James, L. Matthews, D.G. Hattingh, “Weld solidification cracking in a 304L stainless steel water tank”, Engineering Failure Analysis, vol. 115, p. 104614, 2020.
  • [10] F. Ostovan, E. Shafiei, M. Toozandehjani, I.F. Mohamed, M. Soltani, “On the role of molybdenum on the microstructural, mechanical and corrosion properties of the GTAW AISI 316 stainless steel welds”, Journal of Materials Research and Technology, vol. 13, pp. 2115-2125, 2021.
  • [11] M.G. Pujar, R.K. Dayal, T.P. Gill, S.N. Malhotra, “Evaluation of microstructure and electrochemical corrosion behavior of austenitic 316 stainless steel weld metals with varying chemical compositions”, Journal of Materials Engineering and Performance, vol. 14, pp. 327-342, 2005.
  • [12] D.J. Kotecki, “Ferrite control in duplex stainless steel weld metal”, Welding Journal, vol. 65, pp. 273-278, 1986.
  • [13] M.E. Somervuori, L.S. Johansson, M.H. Heinonen, D.H.D. van Hoecke, N. Akdut, H.E. Hänninen, “Characterisation and corrosion of spot welds of austenitic stainless steels”, Materials and Corrosion, vol. 55, iss. 6, pp. 421-436, 2004.
  • [14] J. Xiong, M.Y. Tan, M. Forsyth, “The corrosion behaviors of stainless steel weldments in sodium chloride solution observed using a novel electrochemical measurement approach”, Desalination, vol. 327, pp. 39-45, 2013.
  • [15] E. Zumelzu, J. Sepulveda, M. Ibarra, “Influence of microstructure on the mechanical behaviour of welded 316 L SS joints”, Journal of Materials Processing Technology, vol. 94, iss. 1, pp. 36-40, 1999.
  • [16] J. Barcik, “Mechanism of -phase precipitation in Cr-Ni austenitic steels”. Materials Science and Technology, vol. 4, pp. 5-15, 1988.
  • [17] Y.H. Kim, D.J. Lee, J.C. Byun, K.H. Jung, J.I. Kim, H.J. Lee, Y. T. Shin, Y. T. Shin, H.W. Lee “The effect of sigma phases formation depending on Cr/Ni equivalent ratio in AISI 316L weldments”, Materials and Design, vol. 32, iss. 1, pp. 330-336, 2011.
  • [18] V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, S. Sundaresan, “Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds”, Materials Science and Engineering: A, vol. 358, pp. 9-16, 2003.
  • [19] G. Çam, V. Javaheri, A. Heidarzadeh, ‘Advances in FSW and FSSW of dissimilar Al-alloy plates’, Journal of Adhesion Science and Technology, 2022. (DOI: https://doi.org/10.1080/01694243.2022.2028073).
  • [20] N. Kashaev, V. Ventzke, G. Çam, “Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications”, Journal of Manufacturing Processes, vol. 36, pp. 571-600, 2018.
  • [21] G. Çam, G. İpekoğlu, “Recent developments in joining of aluminium alloys”, The International Journal of Advanced Manufacturing Technology, vol. 91, pp. 1851-1866, 2017.
  • [22] G. İpekoglu, G. Çam, ‘Farklı Al-Alaşımı Levhaların (AA6061/AA7075) sürtünme karıştırma kaynağına temper durumunun etkisi’, Mühendis ve Makina, 2012, c. 53, s. 629, ss. 40-47.
  • [23] G. Çam, “Sürtünme Karıştırma Kaynağı (SKK) – Al-Alaşımları İçin Geliştirilmiş Yeni Bir Kaynak Teknolojisi”, Mühendis ve Makina, c. 46, s. 541, ss. 30-39, 2005.
  • [24] G. İpekoğlu, G. Çam, “Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys”, Metallurgical and Materials Transactions A, vol. 45, no. 7, pp. 3074-3087, 2014.
  • [25] G. İpekoğlu, S. Erim, G. Çam, “Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions”, Metallurgical and Materials Transactions A, vol. 45, no. 2, pp. 864-877, 2014.
  • [26] G. İpekoğlu, S. Erim, G. Çam, “Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt welded AA7075 Al-alloy plates”, The International Journal of Advanced Manufacturing Technology, vol. 70, no. 1, pp. 201-213, 2014.
  • [27] G. Çam, G. İpekoğlu, H.T. Serindağ, “Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints”, Science and Technology of Welding and Joining, vol. 19, no. 8, pp. 715-720, 2014.
  • [28] T. Küçükömeroğlu, E. Şentürk, L. Kara, G. İpekoğlu, G. Çam, “Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy”, Journal of Materials Engineering and Performance, vol. 25, no. 1, pp. 320-326, 2016.
  • [29] G. Çam, S. Mistikoglu, M. Pakdil, “Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu-37%Zn brass plate”, Welding Journal, vol. 88, no. 11, pp. 225-232, 2009.
  • [30] G. Çam, H.T. Serindağ, A. Çakan, S. Mıstıkoğlu, H. Yavuz, “The effect of weld parameters on friction stir welding of brass plates”, Materialwissenschaft und Werkstofftechnik, vol. 39, no. 6, pp. 394-399, 2008.
  • [31] A. Günen, E. Kanca, M. Demir, F. Çavdar, S. Mistikoğlu, G. Çam, “Microstructural and mechanical properties of friction stir welded pure lead”, Indian Journal of Engineering & Materials Sciences, vol. 25, no. 1, pp. 26-32, 2018.
  • [32] G. Çam, “Friction stir welded structural materials: Beyond Al-alloys”, International Materials Reviews, vol. 56, no. 1, pp. 1-48, 2011.
  • [33] G. İpekoğlu, T. Küçükömeroğlu, S.M. Aktarer, D.M. Sekban, G. Çam, “Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints”, Materials Research Express, vol. 6, no. 4, p. 046537, 2019.
  • [34] T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, G. Çam, “Mechanical properties of friction stir welded St 37 and St 44 steel joints”, Materials Testing, vol. 60, no. 12, pp. 1163-1170, 2018.
  • [35] T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, G. Çam, “Microstructure and mechanical properties of friction stir welded St52 steel joints”, International Journal of Minerals, Metallurgy and Materials, vol. 25, no. 12, pp. 1457-1464, 2018.
  • [36] T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, G. Çam, “Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel”, IOP Conference Series: Materials Science and Engineering, vol. 629, p. 012010, 2019.
  • [37] L. Cui, H. Fujii, N. Tsuji, K. Nogi, “Friction stir welding of a high carbon steel”, Scripta Materialia, vol. 56, pp. 637-640, 2007.
  • [38] P. Chansoria, P. Solanki, M.S. Dasgupta, “Parametric study of transient temperature distribution in FSW of 304L stainless steel”, International Journal of Advanced Manufacturing Technology, vol. 80, pp. 1223-1239, 2015.
  • [39] H. Kokawa, S.H.C. Park, Y.S. Sato, K. Okamoto, S. Hirano, M. Inagaki, “Microstructures in friction stir welded 304 austenitic stainless steel”, Welding in The World, vol. 49, pp. 34-40, 2005.
  • [40] A.P. Reynolds, W. Tang, T. Gnaupel-Herold, H. Prask, “Structure, properties, and residual stress of 304L stainless steel friction stir welds”, Scripta Materialia, vol. 48, no. 9, pp. 1289-1294, 2003.
  • [41] A. Durgutlu, T. Fındık, B. Gülenç, B. Çevik, Y. Kaya, N. Kahraman, “Effect of continuous and pulsed currents on microstructural evolution of stainless steel joined by TIG welding”, Practical Metallography, vol. 52, pp. 627-637, 2015.
  • [42] G. Chandrasekar, C. Kailasanathan, D.K. Verma, K. Nandagopal, “Optimization of welding parameters, influence of activating flux and investigation on the mechanical and metallurgical properties of activated TIG weldments of AISI 316 L stainless steel”, Trans Indian Inst Met, vol. 70, no. 3, pp. 671–684, 2017.
  • [43] R. Silverstein, D. Eliezer, Th. Boellinghaus, “Hydrogen-trapping mechanisms of TIG-welded 316L austenitic stainless steels”, J Mater Sci, vol. 53, pp. 10457–10468, 2018.
  • [44] A. Kulkarni, D.K. Dwivedi, M. Vasudevan, “Microstructure and mechanical properties of A-TIG welded AISI 316L SS-Alloy 800 dissimilar metal joint”, Materials Science & Engineering A, vol. 790, p. 139685, 2020.
  • [45] S. Selvi, A. Vishvaksenan, E. Rajasekar, “Cold metal transfer (CMT) technology - An overview, Cold metal transfer (CMT) technology - An overview”, Defence Technology, vol. 14, pp. 28-44, 2018.
  • [46] H.M. Soltani, M. Tayebi, “Comparative study of AISI 304L to AISI 316L stainless steels joints by TIG and Nd:YAG laser welding”, Journal of Alloys and Compounds, vol. 767, pp. 112-121, 2018.
  • [47] J. Yan, M. Gao, X. Zeng, “Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding”, Optics and Lasers in Engineering, vol. 48, pp. 512-517, 2010.
  • [48] S. Rajasekhara, L.P. Karjalainen, A. Kyröläinen, P.J. Ferreira, “Microstructure evolution in nano/submicron grained AISI 301LN stainless steel”, Materials Science and Engineering: A, vol. 527, pp.1986-1996, 2010.
  • [49] S. Gnanasekaran, S.S. Kumar, N. Venugopal, M. Upadhyaya, T.C. Manjunath, S.J.S. Chelladurai, G. Padmanaban, “Effect of laser power on microstructure and tensile properties of pulsed Nd:YAG laser beam welded AISI 301 austenitic stainless steel joints”, Materials Today: Proceedings, vol. 37, pp. 934-939, 2021.
  • [50] A. Kumar, B. Singh, S.S. Sandhu, “Effect of thermal aging on metallurgical, tensile and impact toughness performance of electron beam welded AISI 316 SS joints”, Fusion Engineering and Design, vol. 159, p. 111949, 2020.
  • [51] G. Çam, Ç. Yeni, S. Erim, V. Ventzke, M. Koçak, “Investigation into properties of laser welded similar and dissimilar steel joints”, Science and Technology of Welding and Joining, vol. 3, no. 4, pp. 177-189, 1998.
  • [52] G. Çam, S. Erim, Ç. Yeni, M. Koçak, “Determination of mechanical and fracture properties of laser beam welded steel joints”, Welding Journal, vol. 78, no. 6, pp. 193-201, 1999.
  • [53] S. Mohanty, M. Arivarasu, N. Arivazhagan, K.V.P. Prabhakar, “The residual stress distribution of CO2 laser beam welded AISI 316 austenitic stainless steel and the effect of vibratory stress relief”, Materials Science and Engineering: A, vol. 703, pp. 227-235, 2017.
  • [54] B. Liu, W. Jin, A. Lu, K. Liu, C. Wang, G. Mi, “Optimal design for dual laser beam butt welding process parameter using artificial neural networks and genetic algorithm for SUS316L austenitic stainless steel”, Optics and Laser Technology, vol. 125, p. 106027, 2020.
  • [55] A. Kumar, B. Singh, S.S. Sandhu, “Influence of thermal aging on metallurgical, mechanical and corrosion performance of electron beam welded 18mm thick AISI 316”, Fusion Engineering and Design, vol. 161, p. 112092, 2020.
  • [56] M. Alali, I. Todd, B.P. Wynne, “Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel”, Materials & Design, vol. 130, pp. 488-500, 2017.
  • [57] X. Xia, , J. Wu, , Z. Liu, H. Ji, X. Shen, J. Ma, P. Zhuang, “Correlation between microstructure evolution and mechanical properties of 50 mm 316L electron beam welds”, Fusion Engineering and Design, vol. 147, p. 111245, 2019.
  • [58] G. İpekoğlu, G. Çam, “Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance”, IOP Conference Series: Materials Science and Engineering, vol. 629, p. 012007, 2019.
  • [59] G. İpekoğlu, S. Erim, B. Gören Kıral, G. Çam, “Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates”, Kovove Materialy, vol. 51, no. 3, pp. 155-163, 2013.
  • [60] G. İpekoğlu, B. Gören Kıral, S. Erim, G. Çam, “Investigation of the effect of temper condition friction stir weldability of AA7075 Al-alloy plates”, Materiali in Tehnologije, vol. 46, no. 6, pp. 627-632, 2012.
  • [61] G. Çam, ‘Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)’, Materials Today: Proceedings, vol. 62, pp. 77-85, 2022.
  • [62] G. Çam, M. Koçak, “Microstructural and mechanical characterization of electron beam welded Al-alloy 7020”, Journal of Materials Science, vol. 42, no. 17, pp. 7154-7161, 2007.
  • [63] G. Çam, V. Ventzke, J.F. dos Santos, M. Koçak, G. Jennequin, P. Gonthier-Maurin, “Characterisation of electron beam welded aluminium alloys”, Science and Technology of Welding & Joining, vol. 4, no. 5, pp. 317-323, 1999.
  • [64] G. Çam, S. Güçlüer, A. Çakan, H.T. Serindağ, “Mechanical properties of friction stir butt-welded Al-5086 H32 plate”, Materialwissenschaft und Werkstofftechnik, vol. 40, pp. 638-642, 2009.
  • [65] G. Çam, , V. Ventzke, , J.F. dos Santos, M. Koçak, G. Jennequin, P. Gonthier-Maurin, M. Penasa, C. Rivezla, “Characterization of laser and electron beam welded Al-alloys”, Practical Metallography, vol. 37, no. 2, pp. 59-89, 2000.

Microstructural and Mechanical Characterization of Gas Tungsten Arc Welded 10 mm Thick AISI 316L Joints

Year 2022, Volume: 10 Issue: 4, 1873 - 1889, 25.10.2022

Abstract

Austenitic stainless steels possess properties such as very good formability, good mechanical properties and high corrosion resistance even at low temperatures. As a result, it is the most produced and most widely used type among all stainless steels. However, there are many problems in welding of these steels. The most common of these problems is the decrease in corrosion resistance in the heat-affected zone as a result of the formation of chromium carbide. This study aims to produce defect-free joints in AISI 316L plates by gas tungsten arc welding method. For this purpose, 10 mm thick AISI 316L plates were welded in five passes using 2.4 mm diameter ER316L filler wire. In order to investigate and characterize the microstructural and mechanical properties of the welded plate, detailed optical microscopy studies and microhardness measurements were conducted as well as tensile testing. The effect of multi-pass welding on microstructural evolution and in turn on the mechanical behavior of the joint fabricated was also investigated. As a result of the study, no defects were observed in the weld region, and it was determined that the welded joint exhibited a weld performance of 104% and 58%, in terms of tensile strength and elongation, respectively. In addition, an increase in hardness was observed in the fusion zone and the heat affected zone.  

References

  • [1] J. C. Lippold and D. J. Kotecki, “Welding Metallurgy and Weldability of Stainless Steels”. 1st ed., Hoboken: John Wiley & Sons Inc., 2005.
  • [2] G. Çam, “Science and Technology of Welding”, 1st ed., Nobel Akademik Yayıncılık, Ankara, Turkey, 2020. (in Turkish)
  • [3] M. Mukherjee, T.K. Pal, “Evaluation of microstructural and mechanical properties of Fe-16Cr-1Ni-9Mn-0.12N austenitic stainless steel welded joints”, Materials Characterization, vol. 131, pp. 406-424, 2017.
  • [4] N. Ghosh, P. K. Pal, G. Nandi, “GMAW dissimilar welding of AISI 409 ferritic stainless steel to AISI 316L austenitic stainless steel by using AISI 308 filler wire”, Engineering Science and Technology, an International Journal, vol. 27, pp.1334-1341, 2017.
  • [5] R.M. Molak, K. Paradowski, T. Brynk, L. Ciupinski, Z. Pakiela, K.J. Kurzydlowski, “Measurement of mechanical properties in a 316L stainless steel welded joint”, International Journal of Pressure Vessels and Piping, vol. 86, pp. 43-47, 2009.
  • [6] C. Balaji, S.V.A. Kumar, S.A. Kumar, R. Satish, “Evaluation of mechanical properties of SS 316 L weldments using tungsten inert gas welding”, International Journal of Engineering Science and Technology, vol. 4, pp. 2053-2057, 2012.
  • [7] R. Saluja, K.M. Moeed, “The emphasis of phase transformations and alloying constituents on hot cracking susceptibility of type 304L and 316L stainless steel welds”, International Journal of Engineering Science and Technology, vol. 4, pp. 2206-2216, 2012.
  • [8] M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, A. Saatchi, “Effect of TIG welding on corrosion behavior of 316L stainless steel”, Materials Letters, vol. 61, pp. 2343-2346, 2007.
  • [9] M.N. James, L. Matthews, D.G. Hattingh, “Weld solidification cracking in a 304L stainless steel water tank”, Engineering Failure Analysis, vol. 115, p. 104614, 2020.
  • [10] F. Ostovan, E. Shafiei, M. Toozandehjani, I.F. Mohamed, M. Soltani, “On the role of molybdenum on the microstructural, mechanical and corrosion properties of the GTAW AISI 316 stainless steel welds”, Journal of Materials Research and Technology, vol. 13, pp. 2115-2125, 2021.
  • [11] M.G. Pujar, R.K. Dayal, T.P. Gill, S.N. Malhotra, “Evaluation of microstructure and electrochemical corrosion behavior of austenitic 316 stainless steel weld metals with varying chemical compositions”, Journal of Materials Engineering and Performance, vol. 14, pp. 327-342, 2005.
  • [12] D.J. Kotecki, “Ferrite control in duplex stainless steel weld metal”, Welding Journal, vol. 65, pp. 273-278, 1986.
  • [13] M.E. Somervuori, L.S. Johansson, M.H. Heinonen, D.H.D. van Hoecke, N. Akdut, H.E. Hänninen, “Characterisation and corrosion of spot welds of austenitic stainless steels”, Materials and Corrosion, vol. 55, iss. 6, pp. 421-436, 2004.
  • [14] J. Xiong, M.Y. Tan, M. Forsyth, “The corrosion behaviors of stainless steel weldments in sodium chloride solution observed using a novel electrochemical measurement approach”, Desalination, vol. 327, pp. 39-45, 2013.
  • [15] E. Zumelzu, J. Sepulveda, M. Ibarra, “Influence of microstructure on the mechanical behaviour of welded 316 L SS joints”, Journal of Materials Processing Technology, vol. 94, iss. 1, pp. 36-40, 1999.
  • [16] J. Barcik, “Mechanism of -phase precipitation in Cr-Ni austenitic steels”. Materials Science and Technology, vol. 4, pp. 5-15, 1988.
  • [17] Y.H. Kim, D.J. Lee, J.C. Byun, K.H. Jung, J.I. Kim, H.J. Lee, Y. T. Shin, Y. T. Shin, H.W. Lee “The effect of sigma phases formation depending on Cr/Ni equivalent ratio in AISI 316L weldments”, Materials and Design, vol. 32, iss. 1, pp. 330-336, 2011.
  • [18] V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, S. Sundaresan, “Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds”, Materials Science and Engineering: A, vol. 358, pp. 9-16, 2003.
  • [19] G. Çam, V. Javaheri, A. Heidarzadeh, ‘Advances in FSW and FSSW of dissimilar Al-alloy plates’, Journal of Adhesion Science and Technology, 2022. (DOI: https://doi.org/10.1080/01694243.2022.2028073).
  • [20] N. Kashaev, V. Ventzke, G. Çam, “Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications”, Journal of Manufacturing Processes, vol. 36, pp. 571-600, 2018.
  • [21] G. Çam, G. İpekoğlu, “Recent developments in joining of aluminium alloys”, The International Journal of Advanced Manufacturing Technology, vol. 91, pp. 1851-1866, 2017.
  • [22] G. İpekoglu, G. Çam, ‘Farklı Al-Alaşımı Levhaların (AA6061/AA7075) sürtünme karıştırma kaynağına temper durumunun etkisi’, Mühendis ve Makina, 2012, c. 53, s. 629, ss. 40-47.
  • [23] G. Çam, “Sürtünme Karıştırma Kaynağı (SKK) – Al-Alaşımları İçin Geliştirilmiş Yeni Bir Kaynak Teknolojisi”, Mühendis ve Makina, c. 46, s. 541, ss. 30-39, 2005.
  • [24] G. İpekoğlu, G. Çam, “Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys”, Metallurgical and Materials Transactions A, vol. 45, no. 7, pp. 3074-3087, 2014.
  • [25] G. İpekoğlu, S. Erim, G. Çam, “Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions”, Metallurgical and Materials Transactions A, vol. 45, no. 2, pp. 864-877, 2014.
  • [26] G. İpekoğlu, S. Erim, G. Çam, “Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt welded AA7075 Al-alloy plates”, The International Journal of Advanced Manufacturing Technology, vol. 70, no. 1, pp. 201-213, 2014.
  • [27] G. Çam, G. İpekoğlu, H.T. Serindağ, “Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints”, Science and Technology of Welding and Joining, vol. 19, no. 8, pp. 715-720, 2014.
  • [28] T. Küçükömeroğlu, E. Şentürk, L. Kara, G. İpekoğlu, G. Çam, “Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy”, Journal of Materials Engineering and Performance, vol. 25, no. 1, pp. 320-326, 2016.
  • [29] G. Çam, S. Mistikoglu, M. Pakdil, “Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu-37%Zn brass plate”, Welding Journal, vol. 88, no. 11, pp. 225-232, 2009.
  • [30] G. Çam, H.T. Serindağ, A. Çakan, S. Mıstıkoğlu, H. Yavuz, “The effect of weld parameters on friction stir welding of brass plates”, Materialwissenschaft und Werkstofftechnik, vol. 39, no. 6, pp. 394-399, 2008.
  • [31] A. Günen, E. Kanca, M. Demir, F. Çavdar, S. Mistikoğlu, G. Çam, “Microstructural and mechanical properties of friction stir welded pure lead”, Indian Journal of Engineering & Materials Sciences, vol. 25, no. 1, pp. 26-32, 2018.
  • [32] G. Çam, “Friction stir welded structural materials: Beyond Al-alloys”, International Materials Reviews, vol. 56, no. 1, pp. 1-48, 2011.
  • [33] G. İpekoğlu, T. Küçükömeroğlu, S.M. Aktarer, D.M. Sekban, G. Çam, “Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints”, Materials Research Express, vol. 6, no. 4, p. 046537, 2019.
  • [34] T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, G. Çam, “Mechanical properties of friction stir welded St 37 and St 44 steel joints”, Materials Testing, vol. 60, no. 12, pp. 1163-1170, 2018.
  • [35] T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, G. Çam, “Microstructure and mechanical properties of friction stir welded St52 steel joints”, International Journal of Minerals, Metallurgy and Materials, vol. 25, no. 12, pp. 1457-1464, 2018.
  • [36] T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, G. Çam, “Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel”, IOP Conference Series: Materials Science and Engineering, vol. 629, p. 012010, 2019.
  • [37] L. Cui, H. Fujii, N. Tsuji, K. Nogi, “Friction stir welding of a high carbon steel”, Scripta Materialia, vol. 56, pp. 637-640, 2007.
  • [38] P. Chansoria, P. Solanki, M.S. Dasgupta, “Parametric study of transient temperature distribution in FSW of 304L stainless steel”, International Journal of Advanced Manufacturing Technology, vol. 80, pp. 1223-1239, 2015.
  • [39] H. Kokawa, S.H.C. Park, Y.S. Sato, K. Okamoto, S. Hirano, M. Inagaki, “Microstructures in friction stir welded 304 austenitic stainless steel”, Welding in The World, vol. 49, pp. 34-40, 2005.
  • [40] A.P. Reynolds, W. Tang, T. Gnaupel-Herold, H. Prask, “Structure, properties, and residual stress of 304L stainless steel friction stir welds”, Scripta Materialia, vol. 48, no. 9, pp. 1289-1294, 2003.
  • [41] A. Durgutlu, T. Fındık, B. Gülenç, B. Çevik, Y. Kaya, N. Kahraman, “Effect of continuous and pulsed currents on microstructural evolution of stainless steel joined by TIG welding”, Practical Metallography, vol. 52, pp. 627-637, 2015.
  • [42] G. Chandrasekar, C. Kailasanathan, D.K. Verma, K. Nandagopal, “Optimization of welding parameters, influence of activating flux and investigation on the mechanical and metallurgical properties of activated TIG weldments of AISI 316 L stainless steel”, Trans Indian Inst Met, vol. 70, no. 3, pp. 671–684, 2017.
  • [43] R. Silverstein, D. Eliezer, Th. Boellinghaus, “Hydrogen-trapping mechanisms of TIG-welded 316L austenitic stainless steels”, J Mater Sci, vol. 53, pp. 10457–10468, 2018.
  • [44] A. Kulkarni, D.K. Dwivedi, M. Vasudevan, “Microstructure and mechanical properties of A-TIG welded AISI 316L SS-Alloy 800 dissimilar metal joint”, Materials Science & Engineering A, vol. 790, p. 139685, 2020.
  • [45] S. Selvi, A. Vishvaksenan, E. Rajasekar, “Cold metal transfer (CMT) technology - An overview, Cold metal transfer (CMT) technology - An overview”, Defence Technology, vol. 14, pp. 28-44, 2018.
  • [46] H.M. Soltani, M. Tayebi, “Comparative study of AISI 304L to AISI 316L stainless steels joints by TIG and Nd:YAG laser welding”, Journal of Alloys and Compounds, vol. 767, pp. 112-121, 2018.
  • [47] J. Yan, M. Gao, X. Zeng, “Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding”, Optics and Lasers in Engineering, vol. 48, pp. 512-517, 2010.
  • [48] S. Rajasekhara, L.P. Karjalainen, A. Kyröläinen, P.J. Ferreira, “Microstructure evolution in nano/submicron grained AISI 301LN stainless steel”, Materials Science and Engineering: A, vol. 527, pp.1986-1996, 2010.
  • [49] S. Gnanasekaran, S.S. Kumar, N. Venugopal, M. Upadhyaya, T.C. Manjunath, S.J.S. Chelladurai, G. Padmanaban, “Effect of laser power on microstructure and tensile properties of pulsed Nd:YAG laser beam welded AISI 301 austenitic stainless steel joints”, Materials Today: Proceedings, vol. 37, pp. 934-939, 2021.
  • [50] A. Kumar, B. Singh, S.S. Sandhu, “Effect of thermal aging on metallurgical, tensile and impact toughness performance of electron beam welded AISI 316 SS joints”, Fusion Engineering and Design, vol. 159, p. 111949, 2020.
  • [51] G. Çam, Ç. Yeni, S. Erim, V. Ventzke, M. Koçak, “Investigation into properties of laser welded similar and dissimilar steel joints”, Science and Technology of Welding and Joining, vol. 3, no. 4, pp. 177-189, 1998.
  • [52] G. Çam, S. Erim, Ç. Yeni, M. Koçak, “Determination of mechanical and fracture properties of laser beam welded steel joints”, Welding Journal, vol. 78, no. 6, pp. 193-201, 1999.
  • [53] S. Mohanty, M. Arivarasu, N. Arivazhagan, K.V.P. Prabhakar, “The residual stress distribution of CO2 laser beam welded AISI 316 austenitic stainless steel and the effect of vibratory stress relief”, Materials Science and Engineering: A, vol. 703, pp. 227-235, 2017.
  • [54] B. Liu, W. Jin, A. Lu, K. Liu, C. Wang, G. Mi, “Optimal design for dual laser beam butt welding process parameter using artificial neural networks and genetic algorithm for SUS316L austenitic stainless steel”, Optics and Laser Technology, vol. 125, p. 106027, 2020.
  • [55] A. Kumar, B. Singh, S.S. Sandhu, “Influence of thermal aging on metallurgical, mechanical and corrosion performance of electron beam welded 18mm thick AISI 316”, Fusion Engineering and Design, vol. 161, p. 112092, 2020.
  • [56] M. Alali, I. Todd, B.P. Wynne, “Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel”, Materials & Design, vol. 130, pp. 488-500, 2017.
  • [57] X. Xia, , J. Wu, , Z. Liu, H. Ji, X. Shen, J. Ma, P. Zhuang, “Correlation between microstructure evolution and mechanical properties of 50 mm 316L electron beam welds”, Fusion Engineering and Design, vol. 147, p. 111245, 2019.
  • [58] G. İpekoğlu, G. Çam, “Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance”, IOP Conference Series: Materials Science and Engineering, vol. 629, p. 012007, 2019.
  • [59] G. İpekoğlu, S. Erim, B. Gören Kıral, G. Çam, “Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates”, Kovove Materialy, vol. 51, no. 3, pp. 155-163, 2013.
  • [60] G. İpekoğlu, B. Gören Kıral, S. Erim, G. Çam, “Investigation of the effect of temper condition friction stir weldability of AA7075 Al-alloy plates”, Materiali in Tehnologije, vol. 46, no. 6, pp. 627-632, 2012.
  • [61] G. Çam, ‘Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)’, Materials Today: Proceedings, vol. 62, pp. 77-85, 2022.
  • [62] G. Çam, M. Koçak, “Microstructural and mechanical characterization of electron beam welded Al-alloy 7020”, Journal of Materials Science, vol. 42, no. 17, pp. 7154-7161, 2007.
  • [63] G. Çam, V. Ventzke, J.F. dos Santos, M. Koçak, G. Jennequin, P. Gonthier-Maurin, “Characterisation of electron beam welded aluminium alloys”, Science and Technology of Welding & Joining, vol. 4, no. 5, pp. 317-323, 1999.
  • [64] G. Çam, S. Güçlüer, A. Çakan, H.T. Serindağ, “Mechanical properties of friction stir butt-welded Al-5086 H32 plate”, Materialwissenschaft und Werkstofftechnik, vol. 40, pp. 638-642, 2009.
  • [65] G. Çam, , V. Ventzke, , J.F. dos Santos, M. Koçak, G. Jennequin, P. Gonthier-Maurin, M. Penasa, C. Rivezla, “Characterization of laser and electron beam welded Al-alloys”, Practical Metallography, vol. 37, no. 2, pp. 59-89, 2000.
There are 65 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hüseyin Tarık Serindağ 0000-0003-3864-8147

Gürel Çam 0000-0003-0222-9274

Publication Date October 25, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Serindağ, H. T., & Çam, G. (2022). Gaz Tungsten Ark Kaynaklı 10 mm Kalınlığındaki AISI 316L Bağlantıların İçyapı ve Mekanik Karakterizasyonu. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(4), 1873-1889. https://doi.org/10.29130/dubited.1015580
AMA Serindağ HT, Çam G. Gaz Tungsten Ark Kaynaklı 10 mm Kalınlığındaki AISI 316L Bağlantıların İçyapı ve Mekanik Karakterizasyonu. DUBİTED. October 2022;10(4):1873-1889. doi:10.29130/dubited.1015580
Chicago Serindağ, Hüseyin Tarık, and Gürel Çam. “Gaz Tungsten Ark Kaynaklı 10 Mm Kalınlığındaki AISI 316L Bağlantıların İçyapı Ve Mekanik Karakterizasyonu”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, no. 4 (October 2022): 1873-89. https://doi.org/10.29130/dubited.1015580.
EndNote Serindağ HT, Çam G (October 1, 2022) Gaz Tungsten Ark Kaynaklı 10 mm Kalınlığındaki AISI 316L Bağlantıların İçyapı ve Mekanik Karakterizasyonu. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 4 1873–1889.
IEEE H. T. Serindağ and G. Çam, “Gaz Tungsten Ark Kaynaklı 10 mm Kalınlığındaki AISI 316L Bağlantıların İçyapı ve Mekanik Karakterizasyonu”, DUBİTED, vol. 10, no. 4, pp. 1873–1889, 2022, doi: 10.29130/dubited.1015580.
ISNAD Serindağ, Hüseyin Tarık - Çam, Gürel. “Gaz Tungsten Ark Kaynaklı 10 Mm Kalınlığındaki AISI 316L Bağlantıların İçyapı Ve Mekanik Karakterizasyonu”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/4 (October 2022), 1873-1889. https://doi.org/10.29130/dubited.1015580.
JAMA Serindağ HT, Çam G. Gaz Tungsten Ark Kaynaklı 10 mm Kalınlığındaki AISI 316L Bağlantıların İçyapı ve Mekanik Karakterizasyonu. DUBİTED. 2022;10:1873–1889.
MLA Serindağ, Hüseyin Tarık and Gürel Çam. “Gaz Tungsten Ark Kaynaklı 10 Mm Kalınlığındaki AISI 316L Bağlantıların İçyapı Ve Mekanik Karakterizasyonu”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 10, no. 4, 2022, pp. 1873-89, doi:10.29130/dubited.1015580.
Vancouver Serindağ HT, Çam G. Gaz Tungsten Ark Kaynaklı 10 mm Kalınlığındaki AISI 316L Bağlantıların İçyapı ve Mekanik Karakterizasyonu. DUBİTED. 2022;10(4):1873-89.