Research Article
BibTex RIS Cite

2,6-bis-benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu ve Elektrokimyasal Özelliklerinin İncelenmesi

Year 2022, Volume: 10 Issue: 4, 1763 - 1775, 25.10.2022

Abstract

Bu çalışmada, üç-dişli bis-benzimidazol piridin türevi ligant (L) ve bu ligantın nötr Zn(II) kompleksi [ZnLCl2] sentezlendi. Elde edilen bu yeni koordinasyon bileşiğinin yapısı aydınlatılarak, elektrokimyasal özellikleri araştırıldı. Moleküllerin yapısal karakterizasyonunda çeşitli spektroskopik yöntemler (FT-IR, 1H NMR, 13C NMR, MALDI-TOF-MS, UV-Vis gibi) kullanıldı. Elektrokimyasal özellikleri ise DMF içerisinde dönüşümlü voltametri (CV) tekniği ve kare dalga voltametrisi kullanılarak araştırıldı. Tarama hızı ve pik akımı arasındaki ilişki kullanılarak kompleksin elektrokimyasal mekanizması aydınlatılmış, kompleksin yarı-tersinir ve difüzyon kontrollü bir davranış sergilediği ortaya konulmuştur. Bu nedenle, kompleksin özellikle de redoks akışlı piller, güneş pilleri ve elektrokataliz gibi alanlarda uygulanabileceği düşünülmektedir.

Supporting Institution

Zonguldak Bülent Ecevit Üniversitesi

Project Number

2020-72118496-05

Thanks

Bu çalışma Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: 2020-72118496-05). Ayrıca moleküllerin kütle analizlerinde yardımcı olan Prof. Dr. Bekir Salih hocama da teşekkür ederim

References

  • [1] J.B. Wright, “The chemistry of the benzimidazoles,” Chem. Rev., vol. 48, no. 3, pp. 397-541, 1951.
  • [2] R. Bonnett, J.M. Godfrey, V.B. Math, “Cyano-13-epicobalamin (neovitamin B12) and its relatives,” J. Chem. Soc. C: Organic., vol. 0, pp. 3736-3743, 1971.
  • [3] Q.A. Mckellar, E.W. Scott, “The benzimidazole anthelmintic agents-a review,” J. Vet. Pharmacol Ther., vol. 13, no. 3, pp. 223-247, 1990.
  • [4] A.A. Spasov, I.N. Yozhitsa, L.I. Bugaeva, V.A. Anisimova, “Benzimidazole derivatives: spectrum of pharmacological activity and toxicological properties (a review),” Pharm. Chem. J., vol. 33, no. 5, pp. 232-243, 1999.
  • [5] J.F. Rossignol, H. Maisonneuve, “Benzimidazoles in the treatment of trichuriasis: a review,” Ann. Trop. Med. Parasitol., vol. 78, no. 2, pp. 135-144, 1984.
  • [6] M. Boiani, M. Gonzalez, “Imidazole and benzimidazole derivatives as chemotherapeutic agents,” Mini Rev. Med. Chem., vol. 5, no. 4, pp. 409-424, 2005.
  • [7] B. Narasimhan, D. Sharma, P. Kumar, “Benzimidazole: a medicinally important heterocyclic moiety,” Med. Chem. Res., vol. 21, no. 21, pp. 269-283, 2012.
  • [8] E. Uluçay, E. Orhan, “Biyoaktif benzimidazol aren rutenyum organometalik bileşiğinin sentezi ve karakterizasyonu,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 8, ss. 1020-1032, 2020.
  • [9] M.A. Haga, “Synthesis and protonation-deprotonation reactions of ruthenium(II) complexes containing 2, 2'-bibenzimidazole and related ligands,” Inorg. Chim. Acta, vol. 75, pp. 29-35, 1983.
  • [10] M.R. Malachowski, B. Dorsey, J.G. Sackett, R.S. Kelly, A.L. Ferko, R.N. Hardin, “Effect of ligand donors on the catalytic properties of metal complexes. Copper(II) complexes as catalysts for the oxidation of 3,5-di-tert-butylcatechol,” Inorg. Chim. Acta, vol. 249, no. 1, pp. 85-92, 1996.
  • [11] M.R. Grimmett, Imidazole and Benzimidazole Synthesis, 1st ed., San Diego, USA: Academic Press, 1997, ch. 8, pp. 227-248.
  • [12] H. Arslan, Ç. Avcı, B. Tutkun, A. Şengül, “2,6-bis-benzimidazolylpyridines as new catalyst in copper-based ATRP,” Polym. Bull., vol. 74, pp. 931-948, 2016.
  • [13] G. Muller, Christine L. Maupin, James P. Riehl, H. Birkedal, C. Piguet, J.-Claude G. Bünzli, “Structural, photophysical and chiro-optical properties of lanthanide complexes with a bis(benzimidazole)pyridine-based chiral ligand,” Eur. J. Inorg. Chem., vol. 22, pp. 4065-4072, 2003.
  • [14] N.M. Aghatabay, A. Neshat, T. Karabiyik, M. Somer, D. Haciu, B. Dülger, “Synthesis, characterization and antimicrobial activity of Fe(II), Zn(II), Cd(II) and Hg(II) complexes with 2,6-bis(benzimidazol-2-yl) pyridine ligand,” Eur. J. Med. Chem., vol. 42, no. 2, pp. 205-213, 2007.
  • [15] M. Boča, R.F. Jameson, W. Linert, “Fascinating variability in the chemistry and properties of 2,6-bis-(benzimidazol-2-yl)-pyridine and 2,6-bis-(benzthiazol-2-yl)-pyridine and their complexes,” Coord. Chem. Rev., vol. 255, pp. 290-317, 2011.
  • [16] T. Tu, J. Malineni, K.H. Dötz, “A novel pyridine-bridged bis-benzimidazolylidene pincer palladium complex: synthesis and catalytic properties,” Adv. Synt. & Catal., vol. 350, no. 11, pp. 1791-1795, 2008.
  • [17] P. Froidevaux, J.M. Harrowfield, A.N. Sobolev, “Calixarenes as scaffolds: introduction of tridentate rare earth metal binding units into calix[4]arene,” Inorg. Chem., vol. 39, no. 21, pp. 4678-4687, 2000.
  • [18] M.A. Phillips, “The formation of 2-methylbenziminazoles,” J. Chem. Soc. (Resumed), vol. 0, pp. 172-177, 1928.
  • [19] I. Mathew, W. Sun, “Photophysics in solution and Langmuir-Blodgett film and vapochromic behavior of the Pt(II) 2,6-bis(N-alkylbenzimidazol-2'-yl)pyridine complexes with different alkyl chains and counter anions,” Dalton Trans., vol. 39, no. 25, pp. 5885-5898, 2010.
  • [20] R. Pan, G. Li, S. Liu, X. Zhou, G. Yang, “Synthesis, crystal structure, electrochemical property, and antioxidant activity of copper(II) complex based on 4-butyloxy-2,6-bis(1-methyl-2-benzimidazolyl)pyridine,” Monatsh. Chem., vol. 147, no. 7, pp. 1189-1196, 2016.
  • [21] R. K. Pan, J.-L. Song, W. Y. Su, S. G. Liu, “Zinc(II) and cobalt(II) complexes derived from 4-benzyloxy-2,6-bis(1-methyl-2-benzimidazolyl)pyridine: synthesis, crystal structures, spectroscopic properties and antitumour activities,” J. Chem. Crystallogr., vol. 50, no. 3, pp. 241-248, 2020.
  • [22] R. S. Vishwanath, M. Haga, T. Watanabe, E. W. Nery, M. J. Niedziolka, “Three-phase electrochemistry of a highly lipophilic neutral Ru-complex having a tridentate bis(benzimidazolate)pyridine ligand,” Electrochim. Acta., vol. 362, pp. 137090, 2020.
  • [23] F. Yilmaz, V. T. Yilmaz , S. Topcu, N. Menek , “Syntheses, spectral, thermal and electrochemical studies of 3-carboxylacetonehydroxamic acid and its iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes,” J. Coord. Chem., vol. 56, no. 10, pp. 903-911, 2003.
  • [24] F. Yilmaz , V. T. Yilmaz, S. Topcu “Transition metal complexes of acetamidomalondihydroxamate: synthesis, spectral, thermal and electrochemical studies,” J. Coord. Chem., vol. 57, no. 6, pp. 525-534, 2004.
  • [25] R. Sciacca, S. Zamponi, M. Berrettoni, et al., “Stable films of zinc-hexacyanoferrate: electrochemistry and ion insertion capabilities.” J. Solid State Electrochem., vol. 26, pp.63–72, 2022.
  • [26] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York, USA: Wiley, 2001, ch. 13, pp. 534-580.
  • [27] R. G. Compton and C. E., Banks, Understanding Voltammetry, 2nd ed., London, England: Imperial College Press, 2011.
  • [28] H. Wang, S. Y. Sayed, et al., “Redox flow batteries: how to determine electrochemical kinetic parameters,” ACS Nano., vol. 14, pp. 2575-2584, 2020.
  • [29] M. T. Ulhakim, M. Rezki, K. K. Dewi, et al., “Recent trend on two-dimensional metal-organic frameworks for electrochemical biosensor application,” J. Electrochem. Soc., vol. 167, pp. 136509, 2020.
  • [30] F. Pekdemir, İ. Koçak, A. Sengül, “Copper(II) and cobalt(II) tridentate complexes on modified graphene oxide as electrochemical biosensors for simultaneously detecting biomolecules,” Electrocatalysis (in press), https://doi.org/10.1007/s12678-022-00706-w, 2022.
  • [31] S. P. Singh, K. S. V. Gupta, et al., “2,6-Bis(1-methylbenzimidazol-2-yl)pyridine: A new ancillary ligand for efficient thiocyanate-free ruthenium sensitizer in dye-sensitized solar cell applications,” ACS Appl. Mater. Interfaces., vol. 5, no. 22, pp. 11623–11630, 2013.
  • [32] M. P. Motaung, P. A. Ajibade, L. J. Le Roux, “Synthesis and photophysical studies of Ru(II) and Co(II) complexes of bis-(benzimidazolyl)pyridine and evaluation of their potential as sensitizers for dyes sensitized solar cells,” Int. J. Electrochem. Sci., vol. 11, pp. 10953–10964, 2016.
  • [33] G. F. Manbeck, D. E. Polyansky and E. Fujita, “Comprehensive mechanisms of electrocatalytic CO2 reduction by [Ir(bip)(ppy)(CH3CN)](PF6)2,” ACS Catal., vol. 10, no. 11, pp. 6497–6509, 2020.
  • [34] S. Abdolmaleki, M. Ghadermazi, A. Aliabadi, “Novel Tl(III) complexes containing pyridine-2,6-dicarboxylate derivatives with selective anticancer activity through inducing mitochondria-mediated apoptosis in A375 cells,” Sci. Rep., vol. 11, pp. 15699, 2021.

Synthesis, Characterization and Investigation of Electrochemical Properties of Zinc(II) Complex Based on 2,6-bis-benzimidazolepyridine

Year 2022, Volume: 10 Issue: 4, 1763 - 1775, 25.10.2022

Abstract

In this study, tridendate bis-benzimidazole pyridine derivative ligand and its neutral Zn(II) complex [ZnLCl2] were synthesized. The structure of this novel coordination compound obtained was elucidated and its electrochemical properties were investigated. In the structural characterization of the compounds were used various spectroscopic methods (such as FT-IR, 1H-NMR, 13C-NMR, MALDI-TOF-MS, UV-Vis). Its electrochemical properties were investigated in DMF using cyclic voltammetry (CV) technique. The obtained results showed that the complex exhibits quasi-reversible redox potential. Its electrochemical properties were investigated using cyclic voltammetry (CV) technique and square wave voltammetry in DMF. Using the relationship between the scanning rate and the peak current, the electrochemical mechanism of the complex was elucidated and it was lay out shown that the complex exhibits a quasi-reversible and diffusion-controlled behavior. Therefore, it is thought that the complex can be applied especially in fields such as redox flow cells, solar cells, and electrocatalysis.

Project Number

2020-72118496-05

References

  • [1] J.B. Wright, “The chemistry of the benzimidazoles,” Chem. Rev., vol. 48, no. 3, pp. 397-541, 1951.
  • [2] R. Bonnett, J.M. Godfrey, V.B. Math, “Cyano-13-epicobalamin (neovitamin B12) and its relatives,” J. Chem. Soc. C: Organic., vol. 0, pp. 3736-3743, 1971.
  • [3] Q.A. Mckellar, E.W. Scott, “The benzimidazole anthelmintic agents-a review,” J. Vet. Pharmacol Ther., vol. 13, no. 3, pp. 223-247, 1990.
  • [4] A.A. Spasov, I.N. Yozhitsa, L.I. Bugaeva, V.A. Anisimova, “Benzimidazole derivatives: spectrum of pharmacological activity and toxicological properties (a review),” Pharm. Chem. J., vol. 33, no. 5, pp. 232-243, 1999.
  • [5] J.F. Rossignol, H. Maisonneuve, “Benzimidazoles in the treatment of trichuriasis: a review,” Ann. Trop. Med. Parasitol., vol. 78, no. 2, pp. 135-144, 1984.
  • [6] M. Boiani, M. Gonzalez, “Imidazole and benzimidazole derivatives as chemotherapeutic agents,” Mini Rev. Med. Chem., vol. 5, no. 4, pp. 409-424, 2005.
  • [7] B. Narasimhan, D. Sharma, P. Kumar, “Benzimidazole: a medicinally important heterocyclic moiety,” Med. Chem. Res., vol. 21, no. 21, pp. 269-283, 2012.
  • [8] E. Uluçay, E. Orhan, “Biyoaktif benzimidazol aren rutenyum organometalik bileşiğinin sentezi ve karakterizasyonu,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 8, ss. 1020-1032, 2020.
  • [9] M.A. Haga, “Synthesis and protonation-deprotonation reactions of ruthenium(II) complexes containing 2, 2'-bibenzimidazole and related ligands,” Inorg. Chim. Acta, vol. 75, pp. 29-35, 1983.
  • [10] M.R. Malachowski, B. Dorsey, J.G. Sackett, R.S. Kelly, A.L. Ferko, R.N. Hardin, “Effect of ligand donors on the catalytic properties of metal complexes. Copper(II) complexes as catalysts for the oxidation of 3,5-di-tert-butylcatechol,” Inorg. Chim. Acta, vol. 249, no. 1, pp. 85-92, 1996.
  • [11] M.R. Grimmett, Imidazole and Benzimidazole Synthesis, 1st ed., San Diego, USA: Academic Press, 1997, ch. 8, pp. 227-248.
  • [12] H. Arslan, Ç. Avcı, B. Tutkun, A. Şengül, “2,6-bis-benzimidazolylpyridines as new catalyst in copper-based ATRP,” Polym. Bull., vol. 74, pp. 931-948, 2016.
  • [13] G. Muller, Christine L. Maupin, James P. Riehl, H. Birkedal, C. Piguet, J.-Claude G. Bünzli, “Structural, photophysical and chiro-optical properties of lanthanide complexes with a bis(benzimidazole)pyridine-based chiral ligand,” Eur. J. Inorg. Chem., vol. 22, pp. 4065-4072, 2003.
  • [14] N.M. Aghatabay, A. Neshat, T. Karabiyik, M. Somer, D. Haciu, B. Dülger, “Synthesis, characterization and antimicrobial activity of Fe(II), Zn(II), Cd(II) and Hg(II) complexes with 2,6-bis(benzimidazol-2-yl) pyridine ligand,” Eur. J. Med. Chem., vol. 42, no. 2, pp. 205-213, 2007.
  • [15] M. Boča, R.F. Jameson, W. Linert, “Fascinating variability in the chemistry and properties of 2,6-bis-(benzimidazol-2-yl)-pyridine and 2,6-bis-(benzthiazol-2-yl)-pyridine and their complexes,” Coord. Chem. Rev., vol. 255, pp. 290-317, 2011.
  • [16] T. Tu, J. Malineni, K.H. Dötz, “A novel pyridine-bridged bis-benzimidazolylidene pincer palladium complex: synthesis and catalytic properties,” Adv. Synt. & Catal., vol. 350, no. 11, pp. 1791-1795, 2008.
  • [17] P. Froidevaux, J.M. Harrowfield, A.N. Sobolev, “Calixarenes as scaffolds: introduction of tridentate rare earth metal binding units into calix[4]arene,” Inorg. Chem., vol. 39, no. 21, pp. 4678-4687, 2000.
  • [18] M.A. Phillips, “The formation of 2-methylbenziminazoles,” J. Chem. Soc. (Resumed), vol. 0, pp. 172-177, 1928.
  • [19] I. Mathew, W. Sun, “Photophysics in solution and Langmuir-Blodgett film and vapochromic behavior of the Pt(II) 2,6-bis(N-alkylbenzimidazol-2'-yl)pyridine complexes with different alkyl chains and counter anions,” Dalton Trans., vol. 39, no. 25, pp. 5885-5898, 2010.
  • [20] R. Pan, G. Li, S. Liu, X. Zhou, G. Yang, “Synthesis, crystal structure, electrochemical property, and antioxidant activity of copper(II) complex based on 4-butyloxy-2,6-bis(1-methyl-2-benzimidazolyl)pyridine,” Monatsh. Chem., vol. 147, no. 7, pp. 1189-1196, 2016.
  • [21] R. K. Pan, J.-L. Song, W. Y. Su, S. G. Liu, “Zinc(II) and cobalt(II) complexes derived from 4-benzyloxy-2,6-bis(1-methyl-2-benzimidazolyl)pyridine: synthesis, crystal structures, spectroscopic properties and antitumour activities,” J. Chem. Crystallogr., vol. 50, no. 3, pp. 241-248, 2020.
  • [22] R. S. Vishwanath, M. Haga, T. Watanabe, E. W. Nery, M. J. Niedziolka, “Three-phase electrochemistry of a highly lipophilic neutral Ru-complex having a tridentate bis(benzimidazolate)pyridine ligand,” Electrochim. Acta., vol. 362, pp. 137090, 2020.
  • [23] F. Yilmaz, V. T. Yilmaz , S. Topcu, N. Menek , “Syntheses, spectral, thermal and electrochemical studies of 3-carboxylacetonehydroxamic acid and its iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes,” J. Coord. Chem., vol. 56, no. 10, pp. 903-911, 2003.
  • [24] F. Yilmaz , V. T. Yilmaz, S. Topcu “Transition metal complexes of acetamidomalondihydroxamate: synthesis, spectral, thermal and electrochemical studies,” J. Coord. Chem., vol. 57, no. 6, pp. 525-534, 2004.
  • [25] R. Sciacca, S. Zamponi, M. Berrettoni, et al., “Stable films of zinc-hexacyanoferrate: electrochemistry and ion insertion capabilities.” J. Solid State Electrochem., vol. 26, pp.63–72, 2022.
  • [26] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York, USA: Wiley, 2001, ch. 13, pp. 534-580.
  • [27] R. G. Compton and C. E., Banks, Understanding Voltammetry, 2nd ed., London, England: Imperial College Press, 2011.
  • [28] H. Wang, S. Y. Sayed, et al., “Redox flow batteries: how to determine electrochemical kinetic parameters,” ACS Nano., vol. 14, pp. 2575-2584, 2020.
  • [29] M. T. Ulhakim, M. Rezki, K. K. Dewi, et al., “Recent trend on two-dimensional metal-organic frameworks for electrochemical biosensor application,” J. Electrochem. Soc., vol. 167, pp. 136509, 2020.
  • [30] F. Pekdemir, İ. Koçak, A. Sengül, “Copper(II) and cobalt(II) tridentate complexes on modified graphene oxide as electrochemical biosensors for simultaneously detecting biomolecules,” Electrocatalysis (in press), https://doi.org/10.1007/s12678-022-00706-w, 2022.
  • [31] S. P. Singh, K. S. V. Gupta, et al., “2,6-Bis(1-methylbenzimidazol-2-yl)pyridine: A new ancillary ligand for efficient thiocyanate-free ruthenium sensitizer in dye-sensitized solar cell applications,” ACS Appl. Mater. Interfaces., vol. 5, no. 22, pp. 11623–11630, 2013.
  • [32] M. P. Motaung, P. A. Ajibade, L. J. Le Roux, “Synthesis and photophysical studies of Ru(II) and Co(II) complexes of bis-(benzimidazolyl)pyridine and evaluation of their potential as sensitizers for dyes sensitized solar cells,” Int. J. Electrochem. Sci., vol. 11, pp. 10953–10964, 2016.
  • [33] G. F. Manbeck, D. E. Polyansky and E. Fujita, “Comprehensive mechanisms of electrocatalytic CO2 reduction by [Ir(bip)(ppy)(CH3CN)](PF6)2,” ACS Catal., vol. 10, no. 11, pp. 6497–6509, 2020.
  • [34] S. Abdolmaleki, M. Ghadermazi, A. Aliabadi, “Novel Tl(III) complexes containing pyridine-2,6-dicarboxylate derivatives with selective anticancer activity through inducing mitochondria-mediated apoptosis in A375 cells,” Sci. Rep., vol. 11, pp. 15699, 2021.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fatih Pekdemir 0000-0001-9819-7929

Project Number 2020-72118496-05
Publication Date October 25, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Pekdemir, F. (2022). 2,6-bis-benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu ve Elektrokimyasal Özelliklerinin İncelenmesi. Duzce University Journal of Science and Technology, 10(4), 1763-1775. https://doi.org/10.29130/dubited.1023528
AMA Pekdemir F. 2,6-bis-benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu ve Elektrokimyasal Özelliklerinin İncelenmesi. DUBİTED. October 2022;10(4):1763-1775. doi:10.29130/dubited.1023528
Chicago Pekdemir, Fatih. “2,6-Bis-Benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu Ve Elektrokimyasal Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology 10, no. 4 (October 2022): 1763-75. https://doi.org/10.29130/dubited.1023528.
EndNote Pekdemir F (October 1, 2022) 2,6-bis-benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu ve Elektrokimyasal Özelliklerinin İncelenmesi. Duzce University Journal of Science and Technology 10 4 1763–1775.
IEEE F. Pekdemir, “2,6-bis-benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu ve Elektrokimyasal Özelliklerinin İncelenmesi”, DUBİTED, vol. 10, no. 4, pp. 1763–1775, 2022, doi: 10.29130/dubited.1023528.
ISNAD Pekdemir, Fatih. “2,6-Bis-Benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu Ve Elektrokimyasal Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology 10/4 (October 2022), 1763-1775. https://doi.org/10.29130/dubited.1023528.
JAMA Pekdemir F. 2,6-bis-benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu ve Elektrokimyasal Özelliklerinin İncelenmesi. DUBİTED. 2022;10:1763–1775.
MLA Pekdemir, Fatih. “2,6-Bis-Benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu Ve Elektrokimyasal Özelliklerinin İncelenmesi”. Duzce University Journal of Science and Technology, vol. 10, no. 4, 2022, pp. 1763-75, doi:10.29130/dubited.1023528.
Vancouver Pekdemir F. 2,6-bis-benzimidazolpiridin Esaslı Çinko(II) Kompleksinin Sentezi, Karakterizasyonu ve Elektrokimyasal Özelliklerinin İncelenmesi. DUBİTED. 2022;10(4):1763-75.