Research Article
BibTex RIS Cite

Comparative Vein Morphometry of Closely Related Orchid Genera Anacamptis, Neotinea and Orchis

Year 2022, Volume: 10 Issue: 4, 2067 - 2078, 25.10.2022

Abstract

This research aimed to test new orchid classifications, investigate to what extent the leaf vein pattern represents this classification, and determine the diagnostic features. Along with the species whose systematic category changed, 8 taxa with sympatric distribution were the subject of the study. Samples were collected from various localities in the Black Sea Region. The vein structures were analyzed by applying clearing and staining processes to leaves and photographed under a stereomicroscope, and 15 morphometric features were analyzed. Oneway ANOVA was applied to test whether the difference between species in terms of leaf vein characteristics is significant, and the characteristics showing significant differences were used in discriminant analysis. It provided data supporting the new classification. Among the features that distinguish Neotinea members from other taxa, areole features such as perimeter, circularity, and aspect ratio of the areoles come to the fore, while Anacamptis members differ in terms of vein features such as vascular density and vascular length per unit area. These results indicate that the topological and morphometric characteristics of venation may reflect the systematic and phylogenetic relationships of orchids and may be effective in solving problems related to classification, especially in problematic groups.

Thanks

The author wish to thank Mustafa Kemal Akbulut for providing some plant materials. The manuscript was also improved by comments from Gülcan Şenel.

References

  • [1]P. Delforge, Orchids of Europe, North Africa and the Middle East, London, England: A&C Black, 2006, pp. 623.
  • [2]The Plant List (2018). [Online]. Available from http://www.theplantlist.org/.
  • [3]R. L. Dressler, Phylogeny and Classification of the Orchid Family, Cambridge, UK: Cambridge University Press, 1993, pp. 314.
  • [4]R. M. Bateman, P. M. Hollingsworth, J. Preston, L. Yi-Bo, A. M. Pridgeon, and M. W. Chase, “Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae),” Botanical journal of the Linnean Society, vol. 142, pp. 1-40, 2003.
  • [5]D. Tyteca and E. Klein, “Genes, morphology and biology-The systematics of Orchidinae revisited,” Journal of European Orchids, vol. 40, no. 3, pp. 501-544, 2008.
  • [6]G. Scopece, S. Cozzolino, and R. M. Bateman, “Just what is a genus? Comparing levels of postzygotic isolation to test alternative taxonomic hypotheses in Orchidaceae subtribe Orchidinae,” Taxon, vol. 59, pp. 1754–1764, 2010.
  • [7]S. Aceto, P. Caputo, S. Cozzolino, L. Gaudio, and A. Moretti, “Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity,” Molecular Phylogenetics and Evolution, vol. 13, no. 1, pp. 67-76, 1999.
  • [8]R. Bateman, A. Pridgeon, and M. Chase, “Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 2. Infrageneric relationships and reclassification to achieve monophyly of Orchis sensu stricto,” Lindleyana, vol. 12, pp. 113-141, 1997.
  • [9]A. Pridgeon, R. Bateman, A. Cox, J. Hapeman, and M. Chase, “Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences: 1. Intergeneric relationships and polyphyly of Orchis sensu lato,” Lindleyana, vol. 12, pp. 89-109, 1997.
  • [10]D. Tyteca, M. Ceinos, J. L. Gathoye, R. Brys, and H. Jacquemyn, “On the morphological, biological and genetic heterogeneity of the genus Orchis (Orchidaceae, Orchidinae),” Phytotaxa, vol. 75, no. 1, pp. 19-32, 2012.
  • [11]L. A. Inda, M. Pimentel, and M. W. Chase, “Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: inferences regarding timing of diversification and evolution of pollination syndromes,” Annals of Botany, vol. 110, no. 1, pp. 71-90, 2012.
  • [12]P. A. Conklin, J. Strable, S. Li, and M. J. Scanlon, “On the mechanisms of development in monocot and eudicot leaves,” New Phytologist, vol. 221, no. 2, pp. 706-724, 2019.
  • [13]K. J. Niklas, “A mechanical perspective on foliage leaf form and function,” New Phytologist, vol. 143, no. 1, pp. 19-31, 1999.
  • [14]T. J. Givnish, J. C. Pires, S. W. Graham, M. A. McPherson, L. M. Prince, T. B. Patterson, ... and K. J. Sytsma, “Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny,” Proc. of the Royal Society B: Biological Sciences, vol. 272, no. 1571, pp. 1481-1490, 2005.
  • [15]T. J. Brodribb, T. S. Feild, and G. J. Jordan, “Leaf maximum photosynthetic rate and venation are linked by hydraulics,” Plant Physiology, vol. 144, no. 4, pp. 1890-1898, 2007.
  • [16]E. Katifori, G. J. Szöllősi, and M. O. Magnasco, “Damage and fluctuations induce loops in optimal transport networks,” Physical Review Letters, vol. 104, no. 4, pp. 048704, 2010.
  • [17]T. J. Brodribb, D. Bienaimé, and P. Marmottant, “Revealing catastrophic failure of leaf networks under stress,” Proc. of the National Academy of Sciences, vol. 113, no. 17, pp. 4865-4869, 2016.
  • [18]B. Blonder, N. Salinas, L. P. Bentley, A. Shenkin, P. O. Chambi Porroa, Y. Valdez Tejeira, ... and Y. Malhi, “Structural and defensive roles of angiosperm leaf venation network reticulation across an Andes-Amazon elevation gradient,” Journal of Ecology, vol. 106, no. 4, pp. 1683-1699, 2018.
  • [19]B. Blonder, C. Violle, L. P. Bentley, and B. J. Enquist, “Venation networks and the origin of the leaf economics spectrum,” Ecology Letters, vol. 14, no. 2, pp.91-100, 2011.
  • [20]A. Ohtsuka, L. Sack, and H. Taneda, “Bundle sheath lignification mediates the linkage of leaf hydraulics and venation,” Plant, Cell and Environment, vol. 41, no. 2, pp. 342-353, 2018.
  • [21]G. P. John, C. Scoffoni, T. N. Buckley, R. Villar, H. Poorter, and L. Sack, “The anatomical and compositional basis of leaf mass per area,” Ecology Letters, vol. 20, no. 4, pp. 412-425, 2017.
  • [22]A. A. Agrawal and K. Konno, “Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory,” Annual Review of Ecology, Evolution, and Systematics, vol. 40, pp. 311-331, 2009.
  • [23]J. F. Vincent, “The mechanical design of grass,” Journal of Materials Science, vol. 17, no.3, pp. 856-860, 1982.
  • [24]A. Vasco, M. Thadeo, M. Conover, and D. C. Daly, “Preparation of samples for leaf architecture studies, a method for mounting cleared leaves,” Applications in Plant Sciences, vol. 2, no. 9, pp. 1400038, 2014.
  • [25]J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, … and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods, vol. 9, no.7, pp. 676–682, 2012.
  • [26]R. Gamarra, E. Ortúñez, P. G. Cela, and V. Guadaño, “Anacamptis versus Orchis (Orchidaceae): seed micromorphology and its taxonomic significance,” Plant Systematics and Evolution, vol. 298, no. 3, pp. 597-607, 2012.

Yakın İlişkili Orkide Cinsleri Anacamptis, Neotinea ve Orchis'in Karşılaştırmalı Damar Morfometrisi

Year 2022, Volume: 10 Issue: 4, 2067 - 2078, 25.10.2022

Abstract

Bu çalışmada farklı bir yaklaşımla yeni orkide sınıflandırmalarını test etmek, yaprak damar deseninin bu sınıflandırmaları ne derecede temsil ettiğini araştırmak ve diagnostik olan damarlanma özelliklerinin belirlenmesi amaçlanmıştır. Sistematik kategorisi değişen türler ile birlikte Orchis üyelerinden simpatrik yayılış gösteren 8 tür araştırmaya konu edilmiştir. Bitki örnekleri Karadeniz Bölgesi’ndeki çeşitli lokalitelerden toplanmıştır. Olgun yapraklara saydamlaştırma ve boyama işlemi uygulanarak stereo mikroskopta fotoğraflanmış, damar ve areol yapılarına ait 15 morfometrik özellik analiz edilmiştir. Yaprak damar özellikleri açısından türler arasındaki farklılığın anlamlı olup olmadığını test etmek amacıyla oneway ANOVA uygulanmış ve analiz sonucunda gruplandırmada etkili olanlar ayrım analizi ile belirlenmiştir. Analiz sonucunda yeni sınıflandırmayı destekleyen veriler elde edilmiştir. Neotinea üyelerini diğer taksonlardan ayıran özellikler arasında areollerin çevresi, daireselliği, en/boy oranı gibi areol özellikleri ön plana çıkarken Anacamptis üyeleri birim alandaki damar yoğunluğu, damar uzunluğu gibi özellikler açısından farklılaşmaktadır. Bu sonuçlar damarlanmanın topolojik ve morfometrik karakterlerinin orkidelerin sistematik ve filogenetik ilişkilerini yansıtabileceğini ve özellikle problemli gruplarda sınıflandırmaya ilişkin problemlerin çözümünde etkili olabileceğini işaret etmektedir.

References

  • [1]P. Delforge, Orchids of Europe, North Africa and the Middle East, London, England: A&C Black, 2006, pp. 623.
  • [2]The Plant List (2018). [Online]. Available from http://www.theplantlist.org/.
  • [3]R. L. Dressler, Phylogeny and Classification of the Orchid Family, Cambridge, UK: Cambridge University Press, 1993, pp. 314.
  • [4]R. M. Bateman, P. M. Hollingsworth, J. Preston, L. Yi-Bo, A. M. Pridgeon, and M. W. Chase, “Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae),” Botanical journal of the Linnean Society, vol. 142, pp. 1-40, 2003.
  • [5]D. Tyteca and E. Klein, “Genes, morphology and biology-The systematics of Orchidinae revisited,” Journal of European Orchids, vol. 40, no. 3, pp. 501-544, 2008.
  • [6]G. Scopece, S. Cozzolino, and R. M. Bateman, “Just what is a genus? Comparing levels of postzygotic isolation to test alternative taxonomic hypotheses in Orchidaceae subtribe Orchidinae,” Taxon, vol. 59, pp. 1754–1764, 2010.
  • [7]S. Aceto, P. Caputo, S. Cozzolino, L. Gaudio, and A. Moretti, “Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity,” Molecular Phylogenetics and Evolution, vol. 13, no. 1, pp. 67-76, 1999.
  • [8]R. Bateman, A. Pridgeon, and M. Chase, “Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 2. Infrageneric relationships and reclassification to achieve monophyly of Orchis sensu stricto,” Lindleyana, vol. 12, pp. 113-141, 1997.
  • [9]A. Pridgeon, R. Bateman, A. Cox, J. Hapeman, and M. Chase, “Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences: 1. Intergeneric relationships and polyphyly of Orchis sensu lato,” Lindleyana, vol. 12, pp. 89-109, 1997.
  • [10]D. Tyteca, M. Ceinos, J. L. Gathoye, R. Brys, and H. Jacquemyn, “On the morphological, biological and genetic heterogeneity of the genus Orchis (Orchidaceae, Orchidinae),” Phytotaxa, vol. 75, no. 1, pp. 19-32, 2012.
  • [11]L. A. Inda, M. Pimentel, and M. W. Chase, “Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: inferences regarding timing of diversification and evolution of pollination syndromes,” Annals of Botany, vol. 110, no. 1, pp. 71-90, 2012.
  • [12]P. A. Conklin, J. Strable, S. Li, and M. J. Scanlon, “On the mechanisms of development in monocot and eudicot leaves,” New Phytologist, vol. 221, no. 2, pp. 706-724, 2019.
  • [13]K. J. Niklas, “A mechanical perspective on foliage leaf form and function,” New Phytologist, vol. 143, no. 1, pp. 19-31, 1999.
  • [14]T. J. Givnish, J. C. Pires, S. W. Graham, M. A. McPherson, L. M. Prince, T. B. Patterson, ... and K. J. Sytsma, “Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny,” Proc. of the Royal Society B: Biological Sciences, vol. 272, no. 1571, pp. 1481-1490, 2005.
  • [15]T. J. Brodribb, T. S. Feild, and G. J. Jordan, “Leaf maximum photosynthetic rate and venation are linked by hydraulics,” Plant Physiology, vol. 144, no. 4, pp. 1890-1898, 2007.
  • [16]E. Katifori, G. J. Szöllősi, and M. O. Magnasco, “Damage and fluctuations induce loops in optimal transport networks,” Physical Review Letters, vol. 104, no. 4, pp. 048704, 2010.
  • [17]T. J. Brodribb, D. Bienaimé, and P. Marmottant, “Revealing catastrophic failure of leaf networks under stress,” Proc. of the National Academy of Sciences, vol. 113, no. 17, pp. 4865-4869, 2016.
  • [18]B. Blonder, N. Salinas, L. P. Bentley, A. Shenkin, P. O. Chambi Porroa, Y. Valdez Tejeira, ... and Y. Malhi, “Structural and defensive roles of angiosperm leaf venation network reticulation across an Andes-Amazon elevation gradient,” Journal of Ecology, vol. 106, no. 4, pp. 1683-1699, 2018.
  • [19]B. Blonder, C. Violle, L. P. Bentley, and B. J. Enquist, “Venation networks and the origin of the leaf economics spectrum,” Ecology Letters, vol. 14, no. 2, pp.91-100, 2011.
  • [20]A. Ohtsuka, L. Sack, and H. Taneda, “Bundle sheath lignification mediates the linkage of leaf hydraulics and venation,” Plant, Cell and Environment, vol. 41, no. 2, pp. 342-353, 2018.
  • [21]G. P. John, C. Scoffoni, T. N. Buckley, R. Villar, H. Poorter, and L. Sack, “The anatomical and compositional basis of leaf mass per area,” Ecology Letters, vol. 20, no. 4, pp. 412-425, 2017.
  • [22]A. A. Agrawal and K. Konno, “Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory,” Annual Review of Ecology, Evolution, and Systematics, vol. 40, pp. 311-331, 2009.
  • [23]J. F. Vincent, “The mechanical design of grass,” Journal of Materials Science, vol. 17, no.3, pp. 856-860, 1982.
  • [24]A. Vasco, M. Thadeo, M. Conover, and D. C. Daly, “Preparation of samples for leaf architecture studies, a method for mounting cleared leaves,” Applications in Plant Sciences, vol. 2, no. 9, pp. 1400038, 2014.
  • [25]J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, … and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods, vol. 9, no.7, pp. 676–682, 2012.
  • [26]R. Gamarra, E. Ortúñez, P. G. Cela, and V. Guadaño, “Anacamptis versus Orchis (Orchidaceae): seed micromorphology and its taxonomic significance,” Plant Systematics and Evolution, vol. 298, no. 3, pp. 597-607, 2012.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şenay Süngü Şeker 0000-0003-4993-988X

Publication Date October 25, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Süngü Şeker, Ş. (2022). Yakın İlişkili Orkide Cinsleri Anacamptis, Neotinea ve Orchis’in Karşılaştırmalı Damar Morfometrisi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(4), 2067-2078.
AMA Süngü Şeker Ş. Yakın İlişkili Orkide Cinsleri Anacamptis, Neotinea ve Orchis’in Karşılaştırmalı Damar Morfometrisi. DUBİTED. October 2022;10(4):2067-2078.
Chicago Süngü Şeker, Şenay. “Yakın İlişkili Orkide Cinsleri Anacamptis, Neotinea Ve Orchis’in Karşılaştırmalı Damar Morfometrisi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, no. 4 (October 2022): 2067-78.
EndNote Süngü Şeker Ş (October 1, 2022) Yakın İlişkili Orkide Cinsleri Anacamptis, Neotinea ve Orchis’in Karşılaştırmalı Damar Morfometrisi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 4 2067–2078.
IEEE Ş. Süngü Şeker, “Yakın İlişkili Orkide Cinsleri Anacamptis, Neotinea ve Orchis’in Karşılaştırmalı Damar Morfometrisi”, DUBİTED, vol. 10, no. 4, pp. 2067–2078, 2022.
ISNAD Süngü Şeker, Şenay. “Yakın İlişkili Orkide Cinsleri Anacamptis, Neotinea Ve Orchis’in Karşılaştırmalı Damar Morfometrisi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/4 (October 2022), 2067-2078.
JAMA Süngü Şeker Ş. Yakın İlişkili Orkide Cinsleri Anacamptis, Neotinea ve Orchis’in Karşılaştırmalı Damar Morfometrisi. DUBİTED. 2022;10:2067–2078.
MLA Süngü Şeker, Şenay. “Yakın İlişkili Orkide Cinsleri Anacamptis, Neotinea Ve Orchis’in Karşılaştırmalı Damar Morfometrisi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 10, no. 4, 2022, pp. 2067-78.
Vancouver Süngü Şeker Ş. Yakın İlişkili Orkide Cinsleri Anacamptis, Neotinea ve Orchis’in Karşılaştırmalı Damar Morfometrisi. DUBİTED. 2022;10(4):2067-78.