Research Article
BibTex RIS Cite

Employing of 2-Acetylpyridine Based Chalcone as Hg2+ Sensing Material: Experimental and Theoretical Examination

Year 2022, Volume: 10 Issue: 4, 2133 - 2143, 25.10.2022

Abstract

This study reports the evaluation of 2-acetylpyridine based chalcone structure as a useful sensing material for Hg2+ ion detection by the means of UV-visible spectroscopy. In this context, firstly, the most common twenty metal ions were treated by the chalcone structure which was synthesized from 2-acetylpyridine and 4-diphenylaminobenzaldehyde according to the known procedures. As result, the studied chalcone compound exhibited good sensing activity towards Hg2+ ion in acetonitrile/water medium with significant red-shift phenomenon. In addition, some photophysical/electronic parameters of the chalcone and its Hg2+ complex were determined experimentally and theoretically. B3LYP, PBE0 methods and SVP, TVZP, and TVZPP basis sets were used for theoretical calculations in acetonitrile media. Finally, experimental results were explained and the proposed sensing mechanism was supported via density functional theory (DFT) outputs.

Thanks

The authors are thankful to Department of Chemistry of Düzce University and Department of Chemistry of Sakarya University for the laboratory facilities.

References

  • [1]T.W. Clarkson, “The toxicology of mercury, critical reviews in clinical laboratory sciences,” Crit Rev Clin Lab Sci, vol. 34, no. 4, pp. 369-403, 1997.
  • [2]L. Bensefa-Colas, P. Andujar, A. Descatha, “Intoxication par le mercure,” Rev Med Interne, vol. 32, no. 7 pp. 416-424, 2011.
  • [3]K. Lohman, P. Pai, C. Seigneur, L. Levin. “Sensitivity analysis of mercury human exposure,” Sci Total Environ, vol. 259, pp. 3-11, 2000.
  • [4]T. W. Clarkson, “Human toxicology of mercury,” J Trace Elem Exp Med, vol. 11, pp. 303-317, 1998.
  • [5]S. K. Pandey, K.H Kim, R.J.C Brown, “Measurement techniques for mercury species in ambient air,” RJC Trends Anal Chem, vol. 30, no. 6, pp. 899-917, 2011.
  • [6]S.M. Wilhelm, N. Bloom, “Mercury in petroleum,” Fuel Process Technol, vol. 63, pp 1-27. 2000.
  • [7]R. Wagemann, E. Trebacz, G. Boila, W.L. Lockhart, “Mercury species in the liver of ringed seals,” Sci Total Environ, vol. 261, pp. 21-32 2000.
  • [8]N.J. Langford, R.E. Ferner J, Hum, “Toxicity of mercury,” Hypertens, vol. 13, pp. 651-656.
  • [9]E. Orhan, E. Ergun, K. Şarkaya, Ü. Ergun, “A novel benzimidazole‑based chemosensor for fluorometric determination of zinc ions,” J Fluoresc, vol. 31, pp. 1833-1842, 2021.
  • [10]E. Halay, “Cation sensing by a novel triazine‑cored intermediate as a fluorescent chemosensor incorporating benzothiazole fluorophore,” Res Chem Intermed, vol. 47, pp. 4281-4295, 2021.
  • [11]A. Ciupa, M.F. Mahon, P.A. De Bank, L. Caggiano, “Simple pyrazoline and pyrazole “turn on” fluorescent sensors selective for Cd2+ and Zn2+ in MeCN,” Org. Biomol. Chem, vol. 10, pp. 8753-8757, 2012
  • [12]Y. Chen, T. Tang, Y. Chen, D. Xu, “Novel 1,8-naphthalimide dye for multichannel sensing of H+ and Cu2+,” Res Chem Intermed, vol. 44, pp. 2379-2393, 2018.
  • [13]B. Ngameni, K. Cedric, A.T. Mbaveng, M. Erdoğan, I. Simo, V. Kuete, A. Daştan, “Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives,” Bioorg Med Chem Lett, vol. 35 no. 127827, 2021.
  • [14]N. Gencer, C. Bilen, D. Demir, A. Atahan, M. Ceylan, M. Kucukislamoglu, “In vitro inhibition effect of some chalcones on erythrocyte carbonic anhydrase I and II,” Artif Cells Nanomed Biotechnol, vol. 41, no. 6, pp. 384-388, 2013.
  • [15]S. Narwal, S. Kumar, P, Kumar Verma, “Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents,” Res Chem Intermed, vol. 47, pp. 1625-1641, 2021.
  • [16]I. Karaman, H. Gezegen, M.B. Gürdere, A. Dingil, M. Ceylan, “Screening of biological activities of a series of chalcone derivatives against human pathogenic microorganisms,” Chem Biodivers, vol. 7, no. 2, pp. 400-408, 2010.
  • [17] A. Gupta, S. Garg, H Singh, "Development of chalcone based derivatives for sensing applications,” Anal Methods, vol. 12, pp. 5022-5045, 2020.
  • [18]S.W. Khor, Y.K. Lee, M.R. Bin Abas, K.S. Tay, “Application of chalcone-based dithiocarbamate derivative incorporated sol–gel for the removal of Hg (II) ion from water,” J Sol-Gel Sci Technol, vol. 82, pp. 834-845, 2017.
  • [19]S.H. Mashraqui, T. Khan, S. Sundaram, S. Ghadigaonkar, “Phenothiazine-pyridyl chalcone: an easily accessible colorimetric and fluorimetric ‘on-off’ dual sensing probe for Cu2+,” Tetrahedron Lett, vol. 49, pp. 3739-3743, 2008.
  • [20]A.M. Asiri, M.M. Al-Amari, S.A. Khan, “Synthesis of nitrogen containing chalcone: a highly sensitive and selective fluorescent chemosensor for the Fe3+ metal ion in aqueous media,” J Fluoresc, vol. 30, pp. 969-974, 2020.
  • [21] C. Fan, X. Wang, “(E)-3-[4-(Diphenylamino)phenyl]-1-(pyridin-2-yl)prop-2-en-1-one,” Acta Cryst, vol. 68, pp. o417, (2012)
  • [22] Z. Liang, X. Wang, G. Dai, C. Ye, Y. Zhou, X. Tao, “The solvatochromism and aggregation-induced enhanced emission based on triphenylamine-propenone,” New J Chem, vol. 39, pp. 8874-8880, 2015.
  • [23] C .Fan, C. Ye, X. Wang, Z. Chen, Y. Zhou, Z. Liang, X. Tao, “Synthesis and electrochromic properties of new terpyridine-triphenylamine hybrid polymers,” Macromolecules, vol. 48, no. 18, 6465-6473, 2015.
  • [24] J. Tauc “Optical properties and electronic structure of amorphous Ge and Si,” Mater Res Bull, vol. 3, no. 37-46, 1968.
  • [25] F. Neese, “The ORCA program system,” Wiley Interdiscip Rev Comput Mol Sci, vol. 2 no. 1, pp. 73-78, 2012.
  • [26]S. Majumder, A. Pramanik, S. Mandal, S. Mohanta, “Experimental and theoretical exploration of sensing and magnetic properties of a triply bridged dicopper(ii) complex: the first discrete metal complex to sense picric acid in pure water,” J Photochem Photobiol, vol. 38 no. 111987, 2019. J
  • [27] T. Cornell, G.R. Hutchison. (2022, July 20). Avogadro: An Open-Source Molecular Builder and Visualization Tool [Online]. Available: http://avogadro.cc
  • [28]M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J Cheminformatics vol. 4, no. 1, pp. 1-17, 2012.
  • [29]V. Barone, M. Cossi, “Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model,” J Phys Chem A, vol. 102, no. 11, pp. 1995-2001, 1998.

2-Asetilpiridin Bazlı Kalkonun Hg2+ Sensör Malzemesi Olarak Kullanılması: Deneysel ve Teorik İnceleme

Year 2022, Volume: 10 Issue: 4, 2133 - 2143, 25.10.2022

Abstract

Bu çalışma, Hg2+ iyonunun belirlenmesinde 2-asetilpiridin bazlı kalkon yapısının UV-görünür bölge spektroskopisi yardımıyla kullanışlı bir sensör malzemesi olarak değerlendirilmesini rapor etmektedir. Bu bağlamda, ilk olarak, en yaygın yirmi metal iyonu, bilinen reaksiyonlara göre 2-asetilpiridin ve 4-difenilaminobenzaldehitten sentezlenen kalkon yapısı ile etkileştirildi. Sonuç olarak, çalışılan kalkon bileşiği asetonitril/su ortamında önemli oranda kırmızıya kayarak Hg2+ iyonuna karşı oldukça iyi sensör aktivitesi gösterdi. Ayrıca, kalkonun ve onun Hg2+ kompleksinin bazı fotofiziksel/elektronik parametreleri deneysel ve teorik olarak belirlendi. Asetonitril ortamındaki teorik hesaplamalar için B3LYP, PBE0 metotları ile SVP, TVZP ve TVZPP temel setleri kullanıldı. En son olarak ise, deneysel sonuçlar açıklandı ve önerilen sensör mekanizması yoğunluk fonksiyon teorisi (DFT) çıktıları ile desteklendi.

References

  • [1]T.W. Clarkson, “The toxicology of mercury, critical reviews in clinical laboratory sciences,” Crit Rev Clin Lab Sci, vol. 34, no. 4, pp. 369-403, 1997.
  • [2]L. Bensefa-Colas, P. Andujar, A. Descatha, “Intoxication par le mercure,” Rev Med Interne, vol. 32, no. 7 pp. 416-424, 2011.
  • [3]K. Lohman, P. Pai, C. Seigneur, L. Levin. “Sensitivity analysis of mercury human exposure,” Sci Total Environ, vol. 259, pp. 3-11, 2000.
  • [4]T. W. Clarkson, “Human toxicology of mercury,” J Trace Elem Exp Med, vol. 11, pp. 303-317, 1998.
  • [5]S. K. Pandey, K.H Kim, R.J.C Brown, “Measurement techniques for mercury species in ambient air,” RJC Trends Anal Chem, vol. 30, no. 6, pp. 899-917, 2011.
  • [6]S.M. Wilhelm, N. Bloom, “Mercury in petroleum,” Fuel Process Technol, vol. 63, pp 1-27. 2000.
  • [7]R. Wagemann, E. Trebacz, G. Boila, W.L. Lockhart, “Mercury species in the liver of ringed seals,” Sci Total Environ, vol. 261, pp. 21-32 2000.
  • [8]N.J. Langford, R.E. Ferner J, Hum, “Toxicity of mercury,” Hypertens, vol. 13, pp. 651-656.
  • [9]E. Orhan, E. Ergun, K. Şarkaya, Ü. Ergun, “A novel benzimidazole‑based chemosensor for fluorometric determination of zinc ions,” J Fluoresc, vol. 31, pp. 1833-1842, 2021.
  • [10]E. Halay, “Cation sensing by a novel triazine‑cored intermediate as a fluorescent chemosensor incorporating benzothiazole fluorophore,” Res Chem Intermed, vol. 47, pp. 4281-4295, 2021.
  • [11]A. Ciupa, M.F. Mahon, P.A. De Bank, L. Caggiano, “Simple pyrazoline and pyrazole “turn on” fluorescent sensors selective for Cd2+ and Zn2+ in MeCN,” Org. Biomol. Chem, vol. 10, pp. 8753-8757, 2012
  • [12]Y. Chen, T. Tang, Y. Chen, D. Xu, “Novel 1,8-naphthalimide dye for multichannel sensing of H+ and Cu2+,” Res Chem Intermed, vol. 44, pp. 2379-2393, 2018.
  • [13]B. Ngameni, K. Cedric, A.T. Mbaveng, M. Erdoğan, I. Simo, V. Kuete, A. Daştan, “Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives,” Bioorg Med Chem Lett, vol. 35 no. 127827, 2021.
  • [14]N. Gencer, C. Bilen, D. Demir, A. Atahan, M. Ceylan, M. Kucukislamoglu, “In vitro inhibition effect of some chalcones on erythrocyte carbonic anhydrase I and II,” Artif Cells Nanomed Biotechnol, vol. 41, no. 6, pp. 384-388, 2013.
  • [15]S. Narwal, S. Kumar, P, Kumar Verma, “Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents,” Res Chem Intermed, vol. 47, pp. 1625-1641, 2021.
  • [16]I. Karaman, H. Gezegen, M.B. Gürdere, A. Dingil, M. Ceylan, “Screening of biological activities of a series of chalcone derivatives against human pathogenic microorganisms,” Chem Biodivers, vol. 7, no. 2, pp. 400-408, 2010.
  • [17] A. Gupta, S. Garg, H Singh, "Development of chalcone based derivatives for sensing applications,” Anal Methods, vol. 12, pp. 5022-5045, 2020.
  • [18]S.W. Khor, Y.K. Lee, M.R. Bin Abas, K.S. Tay, “Application of chalcone-based dithiocarbamate derivative incorporated sol–gel for the removal of Hg (II) ion from water,” J Sol-Gel Sci Technol, vol. 82, pp. 834-845, 2017.
  • [19]S.H. Mashraqui, T. Khan, S. Sundaram, S. Ghadigaonkar, “Phenothiazine-pyridyl chalcone: an easily accessible colorimetric and fluorimetric ‘on-off’ dual sensing probe for Cu2+,” Tetrahedron Lett, vol. 49, pp. 3739-3743, 2008.
  • [20]A.M. Asiri, M.M. Al-Amari, S.A. Khan, “Synthesis of nitrogen containing chalcone: a highly sensitive and selective fluorescent chemosensor for the Fe3+ metal ion in aqueous media,” J Fluoresc, vol. 30, pp. 969-974, 2020.
  • [21] C. Fan, X. Wang, “(E)-3-[4-(Diphenylamino)phenyl]-1-(pyridin-2-yl)prop-2-en-1-one,” Acta Cryst, vol. 68, pp. o417, (2012)
  • [22] Z. Liang, X. Wang, G. Dai, C. Ye, Y. Zhou, X. Tao, “The solvatochromism and aggregation-induced enhanced emission based on triphenylamine-propenone,” New J Chem, vol. 39, pp. 8874-8880, 2015.
  • [23] C .Fan, C. Ye, X. Wang, Z. Chen, Y. Zhou, Z. Liang, X. Tao, “Synthesis and electrochromic properties of new terpyridine-triphenylamine hybrid polymers,” Macromolecules, vol. 48, no. 18, 6465-6473, 2015.
  • [24] J. Tauc “Optical properties and electronic structure of amorphous Ge and Si,” Mater Res Bull, vol. 3, no. 37-46, 1968.
  • [25] F. Neese, “The ORCA program system,” Wiley Interdiscip Rev Comput Mol Sci, vol. 2 no. 1, pp. 73-78, 2012.
  • [26]S. Majumder, A. Pramanik, S. Mandal, S. Mohanta, “Experimental and theoretical exploration of sensing and magnetic properties of a triply bridged dicopper(ii) complex: the first discrete metal complex to sense picric acid in pure water,” J Photochem Photobiol, vol. 38 no. 111987, 2019. J
  • [27] T. Cornell, G.R. Hutchison. (2022, July 20). Avogadro: An Open-Source Molecular Builder and Visualization Tool [Online]. Available: http://avogadro.cc
  • [28]M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J Cheminformatics vol. 4, no. 1, pp. 1-17, 2012.
  • [29]V. Barone, M. Cossi, “Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model,” J Phys Chem A, vol. 102, no. 11, pp. 1995-2001, 1998.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ahmad Badreddin Musatat 0000-0002-4137-4901

Alparslan Atahan 0000-0001-8904-9377

Mecit Aksu 0000-0002-9405-1217

Mustafa Zengin 0000-0002-0243-1432

Publication Date October 25, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Musatat, A. B., Atahan, A., Aksu, M., Zengin, M. (2022). Employing of 2-Acetylpyridine Based Chalcone as Hg2+ Sensing Material: Experimental and Theoretical Examination. Duzce University Journal of Science and Technology, 10(4), 2133-2143. https://doi.org/10.29130/dubited.1148897
AMA Musatat AB, Atahan A, Aksu M, Zengin M. Employing of 2-Acetylpyridine Based Chalcone as Hg2+ Sensing Material: Experimental and Theoretical Examination. DUBİTED. October 2022;10(4):2133-2143. doi:10.29130/dubited.1148897
Chicago Musatat, Ahmad Badreddin, Alparslan Atahan, Mecit Aksu, and Mustafa Zengin. “Employing of 2-Acetylpyridine Based Chalcone As Hg2+ Sensing Material: Experimental and Theoretical Examination”. Duzce University Journal of Science and Technology 10, no. 4 (October 2022): 2133-43. https://doi.org/10.29130/dubited.1148897.
EndNote Musatat AB, Atahan A, Aksu M, Zengin M (October 1, 2022) Employing of 2-Acetylpyridine Based Chalcone as Hg2+ Sensing Material: Experimental and Theoretical Examination. Duzce University Journal of Science and Technology 10 4 2133–2143.
IEEE A. B. Musatat, A. Atahan, M. Aksu, and M. Zengin, “Employing of 2-Acetylpyridine Based Chalcone as Hg2+ Sensing Material: Experimental and Theoretical Examination”, DUBİTED, vol. 10, no. 4, pp. 2133–2143, 2022, doi: 10.29130/dubited.1148897.
ISNAD Musatat, Ahmad Badreddin et al. “Employing of 2-Acetylpyridine Based Chalcone As Hg2+ Sensing Material: Experimental and Theoretical Examination”. Duzce University Journal of Science and Technology 10/4 (October 2022), 2133-2143. https://doi.org/10.29130/dubited.1148897.
JAMA Musatat AB, Atahan A, Aksu M, Zengin M. Employing of 2-Acetylpyridine Based Chalcone as Hg2+ Sensing Material: Experimental and Theoretical Examination. DUBİTED. 2022;10:2133–2143.
MLA Musatat, Ahmad Badreddin et al. “Employing of 2-Acetylpyridine Based Chalcone As Hg2+ Sensing Material: Experimental and Theoretical Examination”. Duzce University Journal of Science and Technology, vol. 10, no. 4, 2022, pp. 2133-4, doi:10.29130/dubited.1148897.
Vancouver Musatat AB, Atahan A, Aksu M, Zengin M. Employing of 2-Acetylpyridine Based Chalcone as Hg2+ Sensing Material: Experimental and Theoretical Examination. DUBİTED. 2022;10(4):2133-4.