Research Article
BibTex RIS Cite

Yüksek Al2O3 Oranları ile Takviye Edilmiş Al-Cu-Mg Alaşımlarının Sıcak Pres Yöntemi ile Üretimi

Year 2023, Volume: 11 Issue: 1, 111 - 124, 31.01.2023
https://doi.org/10.29130/dubited.1019419

Abstract

Al esaslı alaşımlar havacılık, otomotiv ve savunma sanayi gibi birçok sektörde kullanılmaktadır. Düşük yoğunlukları ve yüksek özgül mukavemet özellikleri, Al ve alaşımlarını mühendislik malzemeleri olarak kullanılabilir hale getirir. Al esaslı alaşımlar seramik partiküller ile takviye edildiğinde yüksek sertlik ve mukavemete sahip yeni nesil mühendislik malzemeleri olarak kullanılabilirler. Bu çalışmada Al2O3 partikülleri Al-Cu-Mg matrisine ağırlıkça %10, %20 ve %40 oranında mekanik alaşımlama (MA) yöntemiyle takviye edilmiş ve 560 oC, 500 MPa pres koşullarında sıcak pres (SP) yöntemiyle preslenmiştir. MA işleminden sonra partikül boyutu ölçümleri, partikül boyutlarının azaldığını ortaya çıkarmıştır. Al-Cu-Mg ve Al2O3 partiküllerinin MA işlemi öncesi partikül boyutu ölçüm sonuçları sırasıyla 212,434 μm ve 89,208 μm olarak ölçülmüştür. MA işlemi sonrası partikül boyutları %10, %20 ve %40 Al2O3 takviyeli numuneler için sırasıyla 14,224 μm, 13,747 μm ve 10,885 μm olarak ölçülmüştür. %10, %20 ve %40 Al2O3 içeriği ile üretilen numunelerin sertlik değerleri sırasıyla 146,867 HV (0,5), 165,290 HV (0,5) ve 206,843 HV (0,5) olarak ölçülmüştür.

Supporting Institution

Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinatörlüğü

Project Number

FBA-2020-8478

Thanks

Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinatörlüğü, FBA-2020-8478 numaralı proje ile bu çalışmanın yürütülmesinde maddi destek sağlamıştır. Yazarlar, desteklerinden dolayı BAP'a teşekkür etmektedir.

References

  • [1] M. Senthil Kumar & L. Natrayan, “Processing and Characterization of AA2024/Al2O3/SiC Reinforces Hybrid Composites Using Squeeze Casting Technique,” Iranian Journal of Materials Science and Engineering, vol. 16, no. 2, pp. 55-67, 2019.
  • [2] M. Rahimian, N. Ehsani, N. Parvin, H.R. Baharvandi, “The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy,” Journal of Materials Processing Technology, vol.209, pp. 5387–5393, 2009.
  • [3] P. Sharma, S. Sharma, D. Khanduja, “ A study on microstructure of aluminium matrix composites,” Journal of Asian Ceramic Societies, vol.3, pp. 240-244, 2015.
  • [4] T. Varol, A. Canakci, S. Ozsahin, “Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al-Cu-Mg–B4C composites produced by powder metallurgy,” Composites: Part B, vol.54, pp. 224–233, 2013.
  • [5] K.H. Min, S.P. Kang, D.G. Kim, Y.D. Kim, “Sintering, characteristic of Al2O3-reinforced 2xxx series Al composite powders,” Journal of Alloys and Compounds, vol.400, pp. 150- 153, 2005.
  • [6] Ş. Karabulut, “Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method,” Measurement, vol.66, pp. 139–149, 2015.
  • [7] J. Dinwoodie, “Automotive applications for MMCs based on shortstaple alumina fibres, SAE Technical Paper Series,” International Congress on Exposition, pp. 23–27, 1987.
  • [8] M. Kök, “Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method,” Composites Part A: Applied Science and Manufacturing, vol. 37, no. 3, pp. 457-464, 2006.
  • [9] U. Gökmen, “Toz Metalurjisi Yöntemiyle Üretilmiş Al 2024 Esaslı Al2O3/SiC Parçacık Takviyeli Hibrit Kompozitlerin Karakterizasyonu,” 2. Uluslararası Savunma Sanayi Sempozyumu, Kırıkkale, Türkiye, 2017, ss. 80-86.
  • [10] E.Y. Chen, L. Lawson, M. Meshii, “The distribution of fatigue microcracks in an aluminum- matrix silicon carbide whisker composite,” Scripta Metallurgica et Materialia, vol.30, pp. 737-742, 1994.
  • [11] B. Prabhu, C. Suryanarayana, L. An, R. Vaidyanathan, “Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling,” vol. 425, no. 1-2, pp. 192– 200, 2006.
  • [12] M. Zabihi, M. R. Toroghinejad, A. Shafyei, “Evaluating the mechanical behavior of hot rolled Al/alumina composite strips using shear punch test,” Materials Science and Engineering: A, vol. 618, pp. 490–495, 2014.
  • [13] R. Pramod, G.B. Veeresh Kumar, P.S. S. Gouda, A. T. Mathew, “A Study on the Al2O3 reinforced Al7075 Metal Matrix Composites Wear behavior using Artificial Neural Networks,” Materials Today: Proceedings, vol. 5, no. 5, pp. 11376–11385, 2018.
  • [14] A.Günen, ve E. Kanca, “Investigations on Machinability of Al Reinforced Al6061 Metal Matrix Composites,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi , vol. 20 no. 3, pp.434- 441, 2016.
  • [15] C. Reddy, “Evaluation of mechanical behavior of Al-alloy/Al2O3 metal matrix composites with respect to their constituents using taguchi technique,” International Journal of Emerging Technology and Advanced Engineering, vol. 4, pp. 26–32, 2011.
  • [16] S. Ghanaraja, K. S. Ravikumar, H. P. Raju, B. M. Madhusudan, “Studies on dry sliding wear behaviour of Al2O3 reinforced Al based metal matrix composites,” Materials Today: Proceedings, vol. 4, no. 9, pp. 10043-10048, 2017.
  • [17] Z. Zhang, F. Liu, E.-H. Han, L. Xu, P. C. Uzoma, “Effects of Al2O3 on the microstructures and corrosion behavior of low-pressure cold gas sprayed Al 2024-Al2O3 composite coatings on AA 2024- T3 substrate,” Surface and Coatings Technology, 2019.
  • [18] T. Varol, A. Çanakçı, S. Özkaya, F. Erdemir, “Determining the effect of flake matrix size and Al2O3 content on microstructure and mechanical properties of Al2O3 nanoparticle reinforced Al matrix composites,” Particulate Science and Technology, vol. 36, no.3, pp. 312-323, 2018.
  • [19] A. Canakci, F. Arslan “Abrasive wear behaviour of B4C particle reinforced Al-Cu-Mg MMCs,” The International Journal of Advanced Manufacturing Technology, vol.63, no.5-8, pp. 785–795, 2012.
  • [20] J. M. Wu, Z. Z. Li, “Contributions of the particulate reinforcement to dry sliding wear resistance of rapidly solidified Al–Ti alloys,”. Wear, vol. 244, pp. 147–153, 2000.
  • [21] R. L. Deuis, C. Subramaniun, J. M. Yellup, “Abrasive wear of aluminium composites—a review,” Wear, vol. 201, pp. 132–144, 1996.
  • [22] B.J.M. Aikin, T.H. Courtney, “The kinetics of composite particle formation during mechanical alloying,” Metallurgical and Materials Transactions A, vol. 24, pp. 647–657, 1993.
  • [23] J.S. Benjamin, T.E. Volin, “The mechanism of mechanical alloying,” Metallurgical and Materials Transactions B, vol. 5, pp. 1929–1934, 1974.
  • [24] J.B. Fogagnolo, F. Velasco, M.H. Robert, J.M. Torralba, “Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders,” Materials Science and Engineering: A, vol. 342, no.1-2, pp. 131–143, 2003.
  • [25] S. Mamnooni, E. Borhani, D. Bovand, “In-Situ Synthesis of Aluminum Matrix Composite from Al–NiO System by Mechanical Alloying,” Metals and Materials International, vol. 27, pp. 1631–1638, 2021.
  • [26] V. Piriyawong, V. Thongpool, P. Asanithi, and P. Limsuwan, “Effect of Laser Pulse Energy on the Formation of Alumina Nanoparticles Synthesized by Laser Ablation in Water,” Procedia Engineering, vol. 32, pp. 1107–1112, 2012.
  • [27] S. Kumar, R. Prakash, and V. Kumar, “A novel yellowish white Dy 3+ activated α- Al 2 O 3 phosphor: Photoluminescence and optical studies,” Functional Materials Letters, vol. 08, no. 05, p. 1550061, Oct. 2015.
  • [28] F. Zoladz et al., “Enhanced magnetic properties of aluminum oxide nanopowder reinforced with carbon nanotubes,” Journal of Nanoparticle Research, vol. 22, no. 6, p. 157, 2020.
  • [29] M. Danis and M.A. Siddiqui, “Microstructural and Morphological Evolutions of Al-Al2O3 Powder Composite during Ball Milling,” International Journal of Engineering Research & Technology, vol.1, no.10, 2012.
  • [30] D. Jeyasimman, K. Sivaprasad, S. Sivasankaran, R. Ponalagusamy, R. Narayanasamy, and V. Iyer, “Microstructural observation, consolidation and mechanical behaviour of AA 6061 nanocomposites reinforced by γ-Al2O3 nanoparticles,” Advanced Powder Technology, vol. 26, no. 1, pp. 139–148, Jan. 2015.
  • [31] D. J. Lim, N. A. Marks, and M. R. Rowles, “Universal Scherrer equation for graphene fragments,” Carbon, vol. 162, pp. 475–480, 2020.
  • [32] M. Rahimian, N. Parvin, N. Ehsani, “Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy,” Materials Science and Engineering: A, vol. 527, no. 4-5, pp. 1031–1038, 2010.
  • [33] H. Ashuri, A. Hassani, “Characterization of severely deformed new composites fabricated by powder metallurgy including a stage of mechanical alloying,” Journal of Alloys and Compounds, vol. 617, pp. 444–454, 2014.

Production of Al-Cu-Mg Alloys Reinforced with High Al2O3 Ratios by Hot-Pressing Method

Year 2023, Volume: 11 Issue: 1, 111 - 124, 31.01.2023
https://doi.org/10.29130/dubited.1019419

Abstract

Al-based alloys are used in many sectors such as aerospace, automotive and defense industries. Their low densities and high specific strength properties make Al and its alloys usable as engineering materials. When Al-based alloys are reinforced with ceramic particles, they can be used as new generation engineering materials with high hardness and strength. In this study, Al2O3 particles were reinforced to Al-Cu-Mg matrix by 10%, 20% and 40% by weight by mechanical alloying (MA) method and pressed by hot press (HP) method at 560 oC, 500 MPa pressing conditions. Particle size measurements after the MA treatment revealed that the particle sizes were reduced. The particle size measurement results of Al-Cu-Mg and Al2O3 particles before MA process were measured as 212.434 μm and 89.208 μm, respectively. The particle sizes after MA process were measured as 14.224 μm, 13.747 μm and 10.885 μm for 10%, 20% and 40% Al2O3 reinforced samples, respectively. The hardness values for the samples produced with 10%, 20% and 40% Al2O3 content were measured as 146.867 HV (0.5), 165.290 HV (0.5) and 206.843 HV (0.5), respectively.

Project Number

FBA-2020-8478

References

  • [1] M. Senthil Kumar & L. Natrayan, “Processing and Characterization of AA2024/Al2O3/SiC Reinforces Hybrid Composites Using Squeeze Casting Technique,” Iranian Journal of Materials Science and Engineering, vol. 16, no. 2, pp. 55-67, 2019.
  • [2] M. Rahimian, N. Ehsani, N. Parvin, H.R. Baharvandi, “The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy,” Journal of Materials Processing Technology, vol.209, pp. 5387–5393, 2009.
  • [3] P. Sharma, S. Sharma, D. Khanduja, “ A study on microstructure of aluminium matrix composites,” Journal of Asian Ceramic Societies, vol.3, pp. 240-244, 2015.
  • [4] T. Varol, A. Canakci, S. Ozsahin, “Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al-Cu-Mg–B4C composites produced by powder metallurgy,” Composites: Part B, vol.54, pp. 224–233, 2013.
  • [5] K.H. Min, S.P. Kang, D.G. Kim, Y.D. Kim, “Sintering, characteristic of Al2O3-reinforced 2xxx series Al composite powders,” Journal of Alloys and Compounds, vol.400, pp. 150- 153, 2005.
  • [6] Ş. Karabulut, “Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method,” Measurement, vol.66, pp. 139–149, 2015.
  • [7] J. Dinwoodie, “Automotive applications for MMCs based on shortstaple alumina fibres, SAE Technical Paper Series,” International Congress on Exposition, pp. 23–27, 1987.
  • [8] M. Kök, “Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method,” Composites Part A: Applied Science and Manufacturing, vol. 37, no. 3, pp. 457-464, 2006.
  • [9] U. Gökmen, “Toz Metalurjisi Yöntemiyle Üretilmiş Al 2024 Esaslı Al2O3/SiC Parçacık Takviyeli Hibrit Kompozitlerin Karakterizasyonu,” 2. Uluslararası Savunma Sanayi Sempozyumu, Kırıkkale, Türkiye, 2017, ss. 80-86.
  • [10] E.Y. Chen, L. Lawson, M. Meshii, “The distribution of fatigue microcracks in an aluminum- matrix silicon carbide whisker composite,” Scripta Metallurgica et Materialia, vol.30, pp. 737-742, 1994.
  • [11] B. Prabhu, C. Suryanarayana, L. An, R. Vaidyanathan, “Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling,” vol. 425, no. 1-2, pp. 192– 200, 2006.
  • [12] M. Zabihi, M. R. Toroghinejad, A. Shafyei, “Evaluating the mechanical behavior of hot rolled Al/alumina composite strips using shear punch test,” Materials Science and Engineering: A, vol. 618, pp. 490–495, 2014.
  • [13] R. Pramod, G.B. Veeresh Kumar, P.S. S. Gouda, A. T. Mathew, “A Study on the Al2O3 reinforced Al7075 Metal Matrix Composites Wear behavior using Artificial Neural Networks,” Materials Today: Proceedings, vol. 5, no. 5, pp. 11376–11385, 2018.
  • [14] A.Günen, ve E. Kanca, “Investigations on Machinability of Al Reinforced Al6061 Metal Matrix Composites,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi , vol. 20 no. 3, pp.434- 441, 2016.
  • [15] C. Reddy, “Evaluation of mechanical behavior of Al-alloy/Al2O3 metal matrix composites with respect to their constituents using taguchi technique,” International Journal of Emerging Technology and Advanced Engineering, vol. 4, pp. 26–32, 2011.
  • [16] S. Ghanaraja, K. S. Ravikumar, H. P. Raju, B. M. Madhusudan, “Studies on dry sliding wear behaviour of Al2O3 reinforced Al based metal matrix composites,” Materials Today: Proceedings, vol. 4, no. 9, pp. 10043-10048, 2017.
  • [17] Z. Zhang, F. Liu, E.-H. Han, L. Xu, P. C. Uzoma, “Effects of Al2O3 on the microstructures and corrosion behavior of low-pressure cold gas sprayed Al 2024-Al2O3 composite coatings on AA 2024- T3 substrate,” Surface and Coatings Technology, 2019.
  • [18] T. Varol, A. Çanakçı, S. Özkaya, F. Erdemir, “Determining the effect of flake matrix size and Al2O3 content on microstructure and mechanical properties of Al2O3 nanoparticle reinforced Al matrix composites,” Particulate Science and Technology, vol. 36, no.3, pp. 312-323, 2018.
  • [19] A. Canakci, F. Arslan “Abrasive wear behaviour of B4C particle reinforced Al-Cu-Mg MMCs,” The International Journal of Advanced Manufacturing Technology, vol.63, no.5-8, pp. 785–795, 2012.
  • [20] J. M. Wu, Z. Z. Li, “Contributions of the particulate reinforcement to dry sliding wear resistance of rapidly solidified Al–Ti alloys,”. Wear, vol. 244, pp. 147–153, 2000.
  • [21] R. L. Deuis, C. Subramaniun, J. M. Yellup, “Abrasive wear of aluminium composites—a review,” Wear, vol. 201, pp. 132–144, 1996.
  • [22] B.J.M. Aikin, T.H. Courtney, “The kinetics of composite particle formation during mechanical alloying,” Metallurgical and Materials Transactions A, vol. 24, pp. 647–657, 1993.
  • [23] J.S. Benjamin, T.E. Volin, “The mechanism of mechanical alloying,” Metallurgical and Materials Transactions B, vol. 5, pp. 1929–1934, 1974.
  • [24] J.B. Fogagnolo, F. Velasco, M.H. Robert, J.M. Torralba, “Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders,” Materials Science and Engineering: A, vol. 342, no.1-2, pp. 131–143, 2003.
  • [25] S. Mamnooni, E. Borhani, D. Bovand, “In-Situ Synthesis of Aluminum Matrix Composite from Al–NiO System by Mechanical Alloying,” Metals and Materials International, vol. 27, pp. 1631–1638, 2021.
  • [26] V. Piriyawong, V. Thongpool, P. Asanithi, and P. Limsuwan, “Effect of Laser Pulse Energy on the Formation of Alumina Nanoparticles Synthesized by Laser Ablation in Water,” Procedia Engineering, vol. 32, pp. 1107–1112, 2012.
  • [27] S. Kumar, R. Prakash, and V. Kumar, “A novel yellowish white Dy 3+ activated α- Al 2 O 3 phosphor: Photoluminescence and optical studies,” Functional Materials Letters, vol. 08, no. 05, p. 1550061, Oct. 2015.
  • [28] F. Zoladz et al., “Enhanced magnetic properties of aluminum oxide nanopowder reinforced with carbon nanotubes,” Journal of Nanoparticle Research, vol. 22, no. 6, p. 157, 2020.
  • [29] M. Danis and M.A. Siddiqui, “Microstructural and Morphological Evolutions of Al-Al2O3 Powder Composite during Ball Milling,” International Journal of Engineering Research & Technology, vol.1, no.10, 2012.
  • [30] D. Jeyasimman, K. Sivaprasad, S. Sivasankaran, R. Ponalagusamy, R. Narayanasamy, and V. Iyer, “Microstructural observation, consolidation and mechanical behaviour of AA 6061 nanocomposites reinforced by γ-Al2O3 nanoparticles,” Advanced Powder Technology, vol. 26, no. 1, pp. 139–148, Jan. 2015.
  • [31] D. J. Lim, N. A. Marks, and M. R. Rowles, “Universal Scherrer equation for graphene fragments,” Carbon, vol. 162, pp. 475–480, 2020.
  • [32] M. Rahimian, N. Parvin, N. Ehsani, “Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy,” Materials Science and Engineering: A, vol. 527, no. 4-5, pp. 1031–1038, 2010.
  • [33] H. Ashuri, A. Hassani, “Characterization of severely deformed new composites fabricated by powder metallurgy including a stage of mechanical alloying,” Journal of Alloys and Compounds, vol. 617, pp. 444–454, 2014.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Serhatcan Berk Akçay 0000-0002-7492-4287

Temel Varol 0000-0002-1159-5383

Hüseyin Can Aksa 0000-0001-9086-6526

Onur Güler 0000-0002-9696-3287

Project Number FBA-2020-8478
Publication Date January 31, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Akçay, S. B., Varol, T., Aksa, H. C., Güler, O. (2023). Yüksek Al2O3 Oranları ile Takviye Edilmiş Al-Cu-Mg Alaşımlarının Sıcak Pres Yöntemi ile Üretimi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(1), 111-124. https://doi.org/10.29130/dubited.1019419
AMA Akçay SB, Varol T, Aksa HC, Güler O. Yüksek Al2O3 Oranları ile Takviye Edilmiş Al-Cu-Mg Alaşımlarının Sıcak Pres Yöntemi ile Üretimi. DUBİTED. January 2023;11(1):111-124. doi:10.29130/dubited.1019419
Chicago Akçay, Serhatcan Berk, Temel Varol, Hüseyin Can Aksa, and Onur Güler. “Yüksek Al2O3 Oranları Ile Takviye Edilmiş Al-Cu-Mg Alaşımlarının Sıcak Pres Yöntemi Ile Üretimi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 11, no. 1 (January 2023): 111-24. https://doi.org/10.29130/dubited.1019419.
EndNote Akçay SB, Varol T, Aksa HC, Güler O (January 1, 2023) Yüksek Al2O3 Oranları ile Takviye Edilmiş Al-Cu-Mg Alaşımlarının Sıcak Pres Yöntemi ile Üretimi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11 1 111–124.
IEEE S. B. Akçay, T. Varol, H. C. Aksa, and O. Güler, “Yüksek Al2O3 Oranları ile Takviye Edilmiş Al-Cu-Mg Alaşımlarının Sıcak Pres Yöntemi ile Üretimi”, DUBİTED, vol. 11, no. 1, pp. 111–124, 2023, doi: 10.29130/dubited.1019419.
ISNAD Akçay, Serhatcan Berk et al. “Yüksek Al2O3 Oranları Ile Takviye Edilmiş Al-Cu-Mg Alaşımlarının Sıcak Pres Yöntemi Ile Üretimi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11/1 (January 2023), 111-124. https://doi.org/10.29130/dubited.1019419.
JAMA Akçay SB, Varol T, Aksa HC, Güler O. Yüksek Al2O3 Oranları ile Takviye Edilmiş Al-Cu-Mg Alaşımlarının Sıcak Pres Yöntemi ile Üretimi. DUBİTED. 2023;11:111–124.
MLA Akçay, Serhatcan Berk et al. “Yüksek Al2O3 Oranları Ile Takviye Edilmiş Al-Cu-Mg Alaşımlarının Sıcak Pres Yöntemi Ile Üretimi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 11, no. 1, 2023, pp. 111-24, doi:10.29130/dubited.1019419.
Vancouver Akçay SB, Varol T, Aksa HC, Güler O. Yüksek Al2O3 Oranları ile Takviye Edilmiş Al-Cu-Mg Alaşımlarının Sıcak Pres Yöntemi ile Üretimi. DUBİTED. 2023;11(1):111-24.