Research Article
BibTex RIS Cite

Cam Bilya Katkılı Poliamit 6.6 Kompozitlerin Mekanik ve Mikroyapı Özelliklerine Cam Bilya Katkı Oranının Etkisi

Year 2023, Volume: 11 Issue: 1, 157 - 169, 31.01.2023
https://doi.org/10.29130/dubited.1030031

Abstract

Bu çalışma, katkısız poliamit 6.6 (PA6.6) ile ağırlıkça %10-20-30 oranlarında cam bilya içeren poliamit 6.6 kompozitlerin mekanik ve mikroyapı özelliklerini incelemek için yapılmıştır. Cam bilya katkılı Poliamit 6.6 kompozitler, endüstriyel tip ikiz vidalı bir ekstrüder makinesinde granül formda üretilmiştir. Deneylerde kullanılan mekanik test numuneleri geleneksel enjeksiyon makinesi kullanılarak basılmıştır. Çalışma sonucunda, PA6.6 polimerine ilave edilen cam bilya çekme dayanımını, kopmadaki uzama miktarını ve charpy darbe dayanımını azaltırken elastiklik modülünü artırmıştır. Mikroyapı incelemeleri için taramalı elektron mikroskobu (SEM) kullanılmıştır. Mikroyapı incelemelerinde cam bilyaların polimer matris içinde homojen olarak dağıldığı gözlenmiştir.

References

  • [1] K. Shibata, M. Fukuda, T. Yamaguchi and K. Hokkirigawa, “Relationship between sliding-induced wear and severity of sliding contact for polyamide 66 filled with hard filler,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 231, no. 6, pp. 783-790, 2017.
  • [2] M. Divekar, V.R. Gaval, A. Wonisch, and G. Jadhav. “Increase in warpage prediction accuracy for glass filled polyamide material (PA66) through ıntegrative simulation approach,” ASM Science Journal, vol. 15, pp. 1-9, 2021.
  • [3] E. Kuram, “Synergistic effect of glass bead and glass fiber on the crystalline structure, thermal stability, and mechanical, rheological, and morphological properties of polyamide 6 composites,” Journal of Composite Materials, pp. 1-13, 2021. (https://doi.org/10.1177/00219983211054190).
  • [4] D. Ye, L. Yu, G. Hou, and H. Zhu, “Processing and properties of hollow glass microsphere particulate-filled PA2200 composites produced by selective laser,” E3S Web of Conferences, vol. 261:02016, 2021.
  • [5] S. Ranganathan, H.N. Rangasamy Suguna Thangaraj, A.K. Vasudevan, and D.K. Shanmugan, “Analogy of thermal properties of polyamide 6 reinforced with glass fiber and glass beads through FDM Process,” SAE Technical Paper, 2019-28-0137, 2019.
  • [6] R. K. Dhakde, and A. Agrawal, “Mechanical properties of micro-size glass beads filled epoxy composites,” International Journal for Scientific Research & Development, vol. 6, no. 04, pp. 1194-1196, 2018.
  • [7] W. Yang, W. Shi, Z. M. Li, B. H. Xie, J. M. Feng and M. B. Yang, “Mechanical properties of glass bead-filled linear low-density polyethylene,” Journal of Elastomers and Plastıcs, vol. 36, pp. 251-265, 2004.
  • [8] C. Y. Tang, J. Z. Liang, K. C. Yung, R. K. Y. Li, and S. C. Tjong, “Mechanical properties of glass beads filled polypropylene composites,” Key Engineering Materials, vol. 145-149, pp. 823-828, 1998.
  • [9] J. Z. Liang, and R. K. Y. Li, “Mechanical properties and morphology of glass bead-filled polypropylene composites,” Polymer Composıtes, vol. 19, no. 6, pp. 698-703, 1998.
  • [10] J. Z. Lıang, “Tensile and flexural properties of hollow glass bead-filled ABS composites,” Journal of Elastomers and Plastıcs, vol. 37, pp. 361-370, 2005.
  • [11] H. J. O’ Connor and D. P. Dowling, “Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process,” Additive Manufacturing, vol. 31, 100961, 2020.
  • [12] S. Norwinski, P. Postawa, R. Sachajko, P. Palutkiewicz, and T. Stachowiak, “The Investigations of thermomechanical properties of polypropylene composites,” Advances in Polymer Technology, vol. 2019, Article ID 1267692, 2019.
  • [13] M. Botan, C. Georgescu, and L. Deleanu, “Influence of micro glass beads added in a PBT matrix on the mechanical properties of composites,” The Annals of “Dunarea De Jos” University of Galati. Fascicle IX. Metallurgy and Materials Science, no. 2, pp. 64-71, 2012.
  • [14] L. Ji-Zhao, “Predictions of storage modulus of glass bead-filled low-density-polyethylene composites,” Materials Sciences and Applications, vol. 1, pp. 343-349, 2010.
  • [15] A. Bongiorno, C. Pagano, S. Agnelli, F. Baldi, and I. Fassi, “Mechanical properties of micro-ınjected HDPE composites,” AIP Conference Proceedings, vol. 1713, 120006, 2016.
  • [16] S. Hashemi, “Effect of temperature on tensile properties of injection moulded short glass fibre and glass bead filled ABS hybrids,” eXPRESS Polymer Letters, vol. 2, no.7, pp. 474–484, 2008.
  • [17] K. Ermis, H. Unal, and M. Gunay, “Glass bead effects on tribological and mechanical properties of plasticized polyvinyl chloride cable used in vehicles as a filler,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 235, no. 11, pp. 2432-2439, 2021.
  • [18] Y. Wang, E. James, and O. R. Ghita, “Glass bead filled polyetherketone (PEK) composite by high temperature laser sintering (HT-LS),” Materials and Design, vol. 83, pp. 545-551, 2015.
  • [19] L. Huang, Q. Yuan, W. Jiang, L. An, S. Jiang, and R. K. Y. Li, “Mechanical and thermal properties of glass bead–filled nylon-6,” Journal of Applied Polymer Science, vol. 94, pp. 1885-1890, 2004.
  • [20] H. Unal, “Morphology and mechanical properties of composites based on polyamide 6 and mineral additives,” Materials and Design, vol. 25, pp. 483-487, 2004.
  • [21] J.G. Kovacs, and B. Solymossy, “Effect of glass bead content and diameter on shrinkage and warpage of ınjection-molded PA6,” vol. 49, no. 11, pp. 2218-2224, 2009.
  • [22] K. Shibata, T. Yamaguchı, M. Kıshı, and K. Hokkırıgawa, “The role of frictional work in tribological behavior of polyamide 66 composites containing rice bran ceramics particles or glass beads,” Trıbologıa - Finnish Journal of Tribology, vol. 32, no. 1, pp. 33-40, 2014.
  • [23] M. Ulrıch, C. Caze, and P. Laroche, “Morphological studies of glass-microbead-filled polyamide 6.6-polypropylene blends,” Journal of Applied Polymer Science, vol. 67, pp. 201-208, 1998.
  • [24] W.C. Liang, W. Chong, L. Wen-Zhi, W. Shui-Zhu, L. Shu-Mei, and Z. Jian-Qing, “Mechanical properties of polyamide 66 filled with glass beads,” Synthetic Materials Aging and Application, vol. 38, no. 1, pp. 9-12, 2009.
  • [25] D. He, and B. Jiang, “The elastic modulus of filled polymer composites,” Journal of Applied Polymer Science, vol. 49, pp. 617-621, 1993.

The Effect of Glass Beads Content on the Mechanical Behaviour of Glass Beads Filled Polyamide-6.6 Composites

Year 2023, Volume: 11 Issue: 1, 157 - 169, 31.01.2023
https://doi.org/10.29130/dubited.1030031

Abstract

This study was carried out to investigate the mechanical and microstructural properties of unfilled polyamide 6.6 (PA6.6) and glass bead filled polyamide 6.6 composites at 10-20-30% by weight. Glass bead filled Polyamide 6.6 composites were produced in granule form in an industrial type twin screw extruder machine. The mechanical test specimens used in the experiments were molded using a conventional injection molding machine. As a result of the study, glass beads filled to PA6.6 polymer matrix decreased the tensile strength, elongation at break and charpy impact strength, while increasing the tensile modulus. Scanning electron microscope (SEM) was used for microstructure studies. In the microstructure investigations, it was observed that the glass beads were homogeneously dispersed in the polymer matrix.

References

  • [1] K. Shibata, M. Fukuda, T. Yamaguchi and K. Hokkirigawa, “Relationship between sliding-induced wear and severity of sliding contact for polyamide 66 filled with hard filler,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 231, no. 6, pp. 783-790, 2017.
  • [2] M. Divekar, V.R. Gaval, A. Wonisch, and G. Jadhav. “Increase in warpage prediction accuracy for glass filled polyamide material (PA66) through ıntegrative simulation approach,” ASM Science Journal, vol. 15, pp. 1-9, 2021.
  • [3] E. Kuram, “Synergistic effect of glass bead and glass fiber on the crystalline structure, thermal stability, and mechanical, rheological, and morphological properties of polyamide 6 composites,” Journal of Composite Materials, pp. 1-13, 2021. (https://doi.org/10.1177/00219983211054190).
  • [4] D. Ye, L. Yu, G. Hou, and H. Zhu, “Processing and properties of hollow glass microsphere particulate-filled PA2200 composites produced by selective laser,” E3S Web of Conferences, vol. 261:02016, 2021.
  • [5] S. Ranganathan, H.N. Rangasamy Suguna Thangaraj, A.K. Vasudevan, and D.K. Shanmugan, “Analogy of thermal properties of polyamide 6 reinforced with glass fiber and glass beads through FDM Process,” SAE Technical Paper, 2019-28-0137, 2019.
  • [6] R. K. Dhakde, and A. Agrawal, “Mechanical properties of micro-size glass beads filled epoxy composites,” International Journal for Scientific Research & Development, vol. 6, no. 04, pp. 1194-1196, 2018.
  • [7] W. Yang, W. Shi, Z. M. Li, B. H. Xie, J. M. Feng and M. B. Yang, “Mechanical properties of glass bead-filled linear low-density polyethylene,” Journal of Elastomers and Plastıcs, vol. 36, pp. 251-265, 2004.
  • [8] C. Y. Tang, J. Z. Liang, K. C. Yung, R. K. Y. Li, and S. C. Tjong, “Mechanical properties of glass beads filled polypropylene composites,” Key Engineering Materials, vol. 145-149, pp. 823-828, 1998.
  • [9] J. Z. Liang, and R. K. Y. Li, “Mechanical properties and morphology of glass bead-filled polypropylene composites,” Polymer Composıtes, vol. 19, no. 6, pp. 698-703, 1998.
  • [10] J. Z. Lıang, “Tensile and flexural properties of hollow glass bead-filled ABS composites,” Journal of Elastomers and Plastıcs, vol. 37, pp. 361-370, 2005.
  • [11] H. J. O’ Connor and D. P. Dowling, “Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process,” Additive Manufacturing, vol. 31, 100961, 2020.
  • [12] S. Norwinski, P. Postawa, R. Sachajko, P. Palutkiewicz, and T. Stachowiak, “The Investigations of thermomechanical properties of polypropylene composites,” Advances in Polymer Technology, vol. 2019, Article ID 1267692, 2019.
  • [13] M. Botan, C. Georgescu, and L. Deleanu, “Influence of micro glass beads added in a PBT matrix on the mechanical properties of composites,” The Annals of “Dunarea De Jos” University of Galati. Fascicle IX. Metallurgy and Materials Science, no. 2, pp. 64-71, 2012.
  • [14] L. Ji-Zhao, “Predictions of storage modulus of glass bead-filled low-density-polyethylene composites,” Materials Sciences and Applications, vol. 1, pp. 343-349, 2010.
  • [15] A. Bongiorno, C. Pagano, S. Agnelli, F. Baldi, and I. Fassi, “Mechanical properties of micro-ınjected HDPE composites,” AIP Conference Proceedings, vol. 1713, 120006, 2016.
  • [16] S. Hashemi, “Effect of temperature on tensile properties of injection moulded short glass fibre and glass bead filled ABS hybrids,” eXPRESS Polymer Letters, vol. 2, no.7, pp. 474–484, 2008.
  • [17] K. Ermis, H. Unal, and M. Gunay, “Glass bead effects on tribological and mechanical properties of plasticized polyvinyl chloride cable used in vehicles as a filler,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 235, no. 11, pp. 2432-2439, 2021.
  • [18] Y. Wang, E. James, and O. R. Ghita, “Glass bead filled polyetherketone (PEK) composite by high temperature laser sintering (HT-LS),” Materials and Design, vol. 83, pp. 545-551, 2015.
  • [19] L. Huang, Q. Yuan, W. Jiang, L. An, S. Jiang, and R. K. Y. Li, “Mechanical and thermal properties of glass bead–filled nylon-6,” Journal of Applied Polymer Science, vol. 94, pp. 1885-1890, 2004.
  • [20] H. Unal, “Morphology and mechanical properties of composites based on polyamide 6 and mineral additives,” Materials and Design, vol. 25, pp. 483-487, 2004.
  • [21] J.G. Kovacs, and B. Solymossy, “Effect of glass bead content and diameter on shrinkage and warpage of ınjection-molded PA6,” vol. 49, no. 11, pp. 2218-2224, 2009.
  • [22] K. Shibata, T. Yamaguchı, M. Kıshı, and K. Hokkırıgawa, “The role of frictional work in tribological behavior of polyamide 66 composites containing rice bran ceramics particles or glass beads,” Trıbologıa - Finnish Journal of Tribology, vol. 32, no. 1, pp. 33-40, 2014.
  • [23] M. Ulrıch, C. Caze, and P. Laroche, “Morphological studies of glass-microbead-filled polyamide 6.6-polypropylene blends,” Journal of Applied Polymer Science, vol. 67, pp. 201-208, 1998.
  • [24] W.C. Liang, W. Chong, L. Wen-Zhi, W. Shui-Zhu, L. Shu-Mei, and Z. Jian-Qing, “Mechanical properties of polyamide 66 filled with glass beads,” Synthetic Materials Aging and Application, vol. 38, no. 1, pp. 9-12, 2009.
  • [25] D. He, and B. Jiang, “The elastic modulus of filled polymer composites,” Journal of Applied Polymer Science, vol. 49, pp. 617-621, 1993.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hüseyin Ünal 0000-0003-0521-6647

Salih Hakan Yetgin 0000-0002-6068-9204

Veysel Furkan Ünal This is me 0000-0002-6639-0393

Publication Date January 31, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Ünal, H., Yetgin, S. H., & Ünal, V. F. (2023). Cam Bilya Katkılı Poliamit 6.6 Kompozitlerin Mekanik ve Mikroyapı Özelliklerine Cam Bilya Katkı Oranının Etkisi. Duzce University Journal of Science and Technology, 11(1), 157-169. https://doi.org/10.29130/dubited.1030031
AMA Ünal H, Yetgin SH, Ünal VF. Cam Bilya Katkılı Poliamit 6.6 Kompozitlerin Mekanik ve Mikroyapı Özelliklerine Cam Bilya Katkı Oranının Etkisi. DUBİTED. January 2023;11(1):157-169. doi:10.29130/dubited.1030031
Chicago Ünal, Hüseyin, Salih Hakan Yetgin, and Veysel Furkan Ünal. “Cam Bilya Katkılı Poliamit 6.6 Kompozitlerin Mekanik Ve Mikroyapı Özelliklerine Cam Bilya Katkı Oranının Etkisi”. Duzce University Journal of Science and Technology 11, no. 1 (January 2023): 157-69. https://doi.org/10.29130/dubited.1030031.
EndNote Ünal H, Yetgin SH, Ünal VF (January 1, 2023) Cam Bilya Katkılı Poliamit 6.6 Kompozitlerin Mekanik ve Mikroyapı Özelliklerine Cam Bilya Katkı Oranının Etkisi. Duzce University Journal of Science and Technology 11 1 157–169.
IEEE H. Ünal, S. H. Yetgin, and V. F. Ünal, “Cam Bilya Katkılı Poliamit 6.6 Kompozitlerin Mekanik ve Mikroyapı Özelliklerine Cam Bilya Katkı Oranının Etkisi”, DUBİTED, vol. 11, no. 1, pp. 157–169, 2023, doi: 10.29130/dubited.1030031.
ISNAD Ünal, Hüseyin et al. “Cam Bilya Katkılı Poliamit 6.6 Kompozitlerin Mekanik Ve Mikroyapı Özelliklerine Cam Bilya Katkı Oranının Etkisi”. Duzce University Journal of Science and Technology 11/1 (January 2023), 157-169. https://doi.org/10.29130/dubited.1030031.
JAMA Ünal H, Yetgin SH, Ünal VF. Cam Bilya Katkılı Poliamit 6.6 Kompozitlerin Mekanik ve Mikroyapı Özelliklerine Cam Bilya Katkı Oranının Etkisi. DUBİTED. 2023;11:157–169.
MLA Ünal, Hüseyin et al. “Cam Bilya Katkılı Poliamit 6.6 Kompozitlerin Mekanik Ve Mikroyapı Özelliklerine Cam Bilya Katkı Oranının Etkisi”. Duzce University Journal of Science and Technology, vol. 11, no. 1, 2023, pp. 157-69, doi:10.29130/dubited.1030031.
Vancouver Ünal H, Yetgin SH, Ünal VF. Cam Bilya Katkılı Poliamit 6.6 Kompozitlerin Mekanik ve Mikroyapı Özelliklerine Cam Bilya Katkı Oranının Etkisi. DUBİTED. 2023;11(1):157-69.