Research Article
BibTex RIS Cite

Comparative Study of Improvement of Hematite as Visible Light-Driven Photocatalyst by Doping with Zinc and Copper

Year 2023, Volume: 11 Issue: 1, 502 - 512, 31.01.2023
https://doi.org/10.29130/dubited.1051644

Abstract

The low cost, earth abundance, nontoxic, and efficient photocatalysts materials have a critical role in order to solve environmental issues. In this regard, hematite (α-Fe2O3) has received significant attention due to its desirable properties. In the present study, zinc-doped and copper-doped hematite nanoparticles were synthesized by the hydrothermal method. The photocatalytic features of produced nanopowders were investigated. The evaluations of photocatalytic activities of synthesized nanoparticles were executed by monitoring the degradation rate of Rhodamine B (RhB) under the solar simulator in heterogeneous photocatalysis. Compared to commercial Degussa TiO2 powder, the transition metal doped hematite (α-Fe2O3) samples showed better photocatalytic activities against RhB under the solar simulator. It was observed that even though there were no significant differences in their characteristic properties strongly affecting photocatalytic activity such as morphological features, optical absorption characteristics, and band gaps, Cu-doped α-Fe2O3 nanoparticles exhibited higher photocatalytic activity, which is %20 higher than the Zn-doped α-Fe2O3. The synthesized Cu-doped hematite nanoparticles are hopeful materials as a visible-light-driven photocatalytic material to degrade organic pollutants in aquatic media.

References

  • [ 1] P. Wang, B. Huang, Y. Dai and M.H. Whangbo, “Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles,” Physical Chemistry Chemical Physics, vol. 14, no. 28, pp. 9813-9825, 2012.
  • [2] K. Sivula, F. Le Formal and M. Grätzel, “Solar water splitting: progress using hematite (α‐Fe2O3) photoelectrodes,” ChemSusChem, vol. 4, no. (4), pp. 432-449, 2011.
  • [3 ] J.H. Kennedy and K.W. Frese, “Flatband Potentials and Donor Densities of Polycrystalline α‐Fe2O3 Determined from Mott‐Schottky Plots,” Journal of the Electrochemical Society, vol. 125, no. 5, pp. 723-726, 1978.
  • [4 ] A.J. Bosman and H.J. Van Daal, “Small-polaron versus band conduction in some transition-metal oxides,” Advances in Physics, vol. 19, no. 77, pp. 1-117, 1970.
  • [5 ] K. Itoh and J.M. Bockris, “Thin film photoelectrochemistry: iron oxide,” Journal of the Electrochemical Society, vol. 131, no. 6, pp. 1266-1271, 1984.
  • [6 ] N.J. Cherepy, , D.B. Liston, J.A. Lovejoy, H. Deng and J.Z. Zhang, ” Ultrafast studies of photoexcited electron dynamics in γ-and α-Fe2O3 semiconductor nanoparticles,” The Journal of Physical Chemistry B, vol. 102, no. 5, pp. 770-776, 1998.
  • [7] S.C. Warren, K. Voïtchovsky, H. Dotan, C.M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild and M. Grätzel, “Identifying champion nanostructures for solar water-splitting,” Nature materials, vol. 12, no. 9, pp.842-849, 2013.
  • [8 ] M. Li, Y. Yang, Y. Ling, W. Qiu, F. Wang, T. Liu, Y. Song, X. Liu, P. Fang, Y. Tong and Y. Li, “Morphology and doping engineering of Sn-doped hematite nanowire photoanodes,” Nano letters, vol. 17, no. 4, pp. 2490-2495, 2017.
  • [9 ] L. Xi, P.S. Bassi, S.Y. Chiam, W.F. Mak, P.D. Tran, J. Barber, J.S.C. Loo and L.H. Wong, “Surface treatment of hematite photoanodes with zinc acetate for water oxidation,” Nanoscale, vol. 4, no. 15, pp. 4430-4433, 2012.
  • [10 ] E. Alp, R. İmamoğlu, U. Savacı, S. Turan, M.K. Kazmanlı and A. Genç, “Plasmon-enhanced photocatalytic and antibacterial activity of gold nanoparticles-decorated hematite nanostructures,” Journal of Alloys and Compounds, vol. 852, pp.157021, 2021.
  • [11 ] V. Kumar, D.S. Ahlawat, S.A. Islam and A. Singh, “Ce doping induced modifications in structural, electrical and magnetic behaviour of hematite nanoparticles,” Materials Science and Engineering: B, vol. 272, pp.115327, 2021.
  • [12 ] J. Cai, H. Liu, C. Liu, Q. Xie, L. Xu, H. Li, J. Wang and S. Li, “Enhanced photoelectrochemical water oxidation in hematite: accelerated charge separation with co doping,” Applied Surface Science, vol. 568, pp. 150606, 2021.
  • [13 ] Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano letters, vol. 11, no. 5, pp.2119-2125, 2011.
  • [14 ] S.M. Tao, L.Y. Lin and D. Zhou, “Developing hematite homojunction with titanium and magnesium dopants for photocatalyzing water oxidation,” International Journal of Hydrogen Energy, vol. 46, no. 9, pp. 6321-6328, 2021.
  • [15 ] J. Huang, G. Hu, Y. Ding, M. Pang and B. Ma, “Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation,” Journal of Catalysis, vol. 340, pp. 261-269, 2016.
  • [16 ] A. Kay, D.A. Grave, D.S. Ellis, H. Dotan and A. Rothschild, “Heterogeneous doping to improve the performance of thin-film hematite photoanodes for solar water splitting,” ACS Energy Letters, vol. 1, no. 4, pp. 827-833, 2016.
  • [17 ] M. Mohapatra, S. Layek, S. Anand, H.C. Verma and B.K. Mishra, “Structural and magnetic properties of Mg‐doped nano‐α‐Fe2O3 particles synthesized by surfactant mediation–precipitation technique,” physica status solidi (b), vol. 250, no. 1, pp. 65-72, 2013.
  • [18 ] H.W. Chang, Y. Fu, W.Y. Lee, Y.R. Lu, Y.C. Huang, J.L. Chen, C.L. Chen, W.C. Chou, J.M. Chen, J.F. Lee and S. Shen, “Visible light-induced electronic structure modulation of Nb-and Ta-doped α-Fe2O3 nanorods for effective photoelectrochemical water splitting,” Nanotechnology, vol. 29, no. 6, pp. 064002, 2018.
  • [19 ] A. Ahmadi-Arpanah, H. Meleki-Ghaleh, Z. Dargahi, P. Khademi-Azandehi, G. Mirzaei, Y. Beygi-Khosrowshahi and M.H. Siadati, “The photocatalytic antibacterial behavior of Cu-doped nanocrystalline hematite prepared by mechanical alloying,” Applied Nanoscience, vol. 11, no. 3, pp. 817-832, 2021.
  • [20 ] X. Zhang, H. Li, S. Wang, F.R.F. Fan and A.J. Bard, “Improvement of hematite as photocatalyst by doping with tantalum,” The Journal of Physical Chemistry C, vol. 118, no. 30, pp. 16842-16850, 2014. [21 ] L. Wang, C.Y. Lee and P. Schmuki, “Ti and Sn co-doped anodic α-Fe2O3 films for efficient water splitting,” Electrochemistry communications, vol. 30, pp. 21-25, 2013.
  • [22 ] D. Cao, W. Luo, M. Li, J. Feng, Z. Li and Z. Zou, “A transparent Ti 4+ doped hematite photoanode protectively grown by a facile hydrothermal method” CrystEngComm, vol. 15, no. 13, pp. 2386-2391, 2013.
  • [23 ] R. Satheesh, K. Vignesh, A. Suganthi and M. Rajarajan, “Visible light responsive photocatalytic applications of transition metal (M= Cu, Ni and Co) doped α-Fe2O3 nanoparticles,” Journal of environmental chemical engineering, vol. 2, no. 4, pp. 1956-1968, 2014.
  • [24 ] P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part I,” Journal of the Optical Society of America, vol. 38, no. 5,pp. 448-457, 1948.
  • [25 ] J. Tauc, Optical properties of amorphous semiconductors, Amorphous and Liquid Semiconductors, 1st ed., Boston, USA: Springer, 1974, ch. 4, pp. 159-220.
  • [26 ] S. Piccinin, “The band structure and optical absorption of hematite (a-Fe2O3): a first-principles GW-BSE study,” Phys. Chem. Chem. Phys., vol. 21, no. 6, pp. 2957-2967, 2019.
  • [27 ] W. H. Glaze, J. W. Kang and D. H. Chapin, “The chemistry of water treatmentprocesses involving ozone, hydrogen peroxide and ultraviolet radiation,” Ozone Sci. Eng., vol. 9, no. 4, pp. 335–352, 1987.
  • [28 ] J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria and F. Osorio, “Advanced oxidation processes for wastewater treatment: state of the art,” Water, Air, and Soil Pollution, vol. 205, no. 1-4, pp. 187, 2010.
  • [29 ] M.A. Rauf and S.S. Ashraf, “Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution,” Chemical engineering journal, vol. 151, no. 1-3, pp. 10-18, 2009.
  • [30 ] D.F. Swinehart, “The beer-lambert Law,” J. Chem. Educ., vol. 39, no. 7, pp. 333, 1962.
  • [31 ] A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri and S. Ammar, “Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique,” Journal of Molecular Structure, vol. 1148, pp. 276-281, 2017.
  • [32 ] S. Chahal, A. Kumar and P. Kumar, “Zn doped α-Fe2O3: an efficient material for UV driven photocatalysis and electrical conductivity,” Crystals, vol. 10, no. 4, pp. 273, 2020.
  • [33 ] A. Yogi and D. Varshney, “Magnetic and structural properties of pure and Cr-doped haematite: α-Fe 2− x Cr x O 3 (0≤ x≤ 1),” Journal of Advanced Ceramics, vol. 2, no. 4, pp.360-369, 2013.
  • [34 ] Z.D. Pozun and G. Henkelman, “Hybrid density functional theory band structure engineering in hematite,” The Journal of chemical physics, vol. 134, no. 22, pp. 224706, 2011.
  • [35 ] X.Y. Meng, G.W. Qin, S. Li, X.H. Wen, Y.P. Ren, W.L. Pei and L. Zuo, “Enhanced photoelectrochemical activity for Cu and Ti doped hematite: The first principles calculations,” Applied Physics Letters, vol. 98, no. 11, pp.112104, 2011.

Görünür-Işık ile Çalışan Fotokatalizör Hematitin Çinko ve Bakır ile Katkılanmasıyla Geliştirilmesinin Karşılaştırmalı İncelenmesi

Year 2023, Volume: 11 Issue: 1, 502 - 512, 31.01.2023
https://doi.org/10.29130/dubited.1051644

Abstract

Çevre ile ilgili konuların çözümünde, ucuz, bol bulunan, toksik olmayan ve verimli çalışan fotokatalitik malzemeler kritik role sahiptir. Bu açıdan, hematit (α-Fe2O3) istenen bu özelliklerden dolayı oldukça ilgi çekmektedir. Bu çalışmada, çinko katkılı ve bakır katkılı hematit nanopartiküller hidrotermal yöntem ile sentezlenmiştir. Üretilen nanotozların fotokatalitik özellikleri incelenmiştir. Sentezlenen nanopartiküllerin fotokatalitik aktivitesi güneş simülatörü altında Rodamin b.’yi parçalama performansı izlenerek belirlenmiştir. Geçiş metalleriyle katkılanmış hematit yapıların Rodamin b.’yi (RhB) parçalama verimi, ticari ürün Degussa TiO2 tozlara göre daha yüksekti. Fotokatalitik aktiviteyi güçlü bir şekilde etkileyen ışık absorpsiyonu, morfolojik yapı ve optik bant genişliği gibi özellikler açısından büyük farklar olmasa da, Cu-katkılı α-Fe2O3 nanopartiküllerin, Zn-katkılı α-Fe2O3 nanopartiküllerden %20 kadar daha yüksek fotokatalitik aktive gösterdiği gözlemlendi. Sulu ortamlardaki organik kirliliklerin temizlenmesinde, Cu-katkılı α-Fe2O3 nanopartiküller görünür bölgede aktif fotokatalitik malzeme olarak umut verici bir malzemedir.

References

  • [ 1] P. Wang, B. Huang, Y. Dai and M.H. Whangbo, “Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles,” Physical Chemistry Chemical Physics, vol. 14, no. 28, pp. 9813-9825, 2012.
  • [2] K. Sivula, F. Le Formal and M. Grätzel, “Solar water splitting: progress using hematite (α‐Fe2O3) photoelectrodes,” ChemSusChem, vol. 4, no. (4), pp. 432-449, 2011.
  • [3 ] J.H. Kennedy and K.W. Frese, “Flatband Potentials and Donor Densities of Polycrystalline α‐Fe2O3 Determined from Mott‐Schottky Plots,” Journal of the Electrochemical Society, vol. 125, no. 5, pp. 723-726, 1978.
  • [4 ] A.J. Bosman and H.J. Van Daal, “Small-polaron versus band conduction in some transition-metal oxides,” Advances in Physics, vol. 19, no. 77, pp. 1-117, 1970.
  • [5 ] K. Itoh and J.M. Bockris, “Thin film photoelectrochemistry: iron oxide,” Journal of the Electrochemical Society, vol. 131, no. 6, pp. 1266-1271, 1984.
  • [6 ] N.J. Cherepy, , D.B. Liston, J.A. Lovejoy, H. Deng and J.Z. Zhang, ” Ultrafast studies of photoexcited electron dynamics in γ-and α-Fe2O3 semiconductor nanoparticles,” The Journal of Physical Chemistry B, vol. 102, no. 5, pp. 770-776, 1998.
  • [7] S.C. Warren, K. Voïtchovsky, H. Dotan, C.M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild and M. Grätzel, “Identifying champion nanostructures for solar water-splitting,” Nature materials, vol. 12, no. 9, pp.842-849, 2013.
  • [8 ] M. Li, Y. Yang, Y. Ling, W. Qiu, F. Wang, T. Liu, Y. Song, X. Liu, P. Fang, Y. Tong and Y. Li, “Morphology and doping engineering of Sn-doped hematite nanowire photoanodes,” Nano letters, vol. 17, no. 4, pp. 2490-2495, 2017.
  • [9 ] L. Xi, P.S. Bassi, S.Y. Chiam, W.F. Mak, P.D. Tran, J. Barber, J.S.C. Loo and L.H. Wong, “Surface treatment of hematite photoanodes with zinc acetate for water oxidation,” Nanoscale, vol. 4, no. 15, pp. 4430-4433, 2012.
  • [10 ] E. Alp, R. İmamoğlu, U. Savacı, S. Turan, M.K. Kazmanlı and A. Genç, “Plasmon-enhanced photocatalytic and antibacterial activity of gold nanoparticles-decorated hematite nanostructures,” Journal of Alloys and Compounds, vol. 852, pp.157021, 2021.
  • [11 ] V. Kumar, D.S. Ahlawat, S.A. Islam and A. Singh, “Ce doping induced modifications in structural, electrical and magnetic behaviour of hematite nanoparticles,” Materials Science and Engineering: B, vol. 272, pp.115327, 2021.
  • [12 ] J. Cai, H. Liu, C. Liu, Q. Xie, L. Xu, H. Li, J. Wang and S. Li, “Enhanced photoelectrochemical water oxidation in hematite: accelerated charge separation with co doping,” Applied Surface Science, vol. 568, pp. 150606, 2021.
  • [13 ] Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano letters, vol. 11, no. 5, pp.2119-2125, 2011.
  • [14 ] S.M. Tao, L.Y. Lin and D. Zhou, “Developing hematite homojunction with titanium and magnesium dopants for photocatalyzing water oxidation,” International Journal of Hydrogen Energy, vol. 46, no. 9, pp. 6321-6328, 2021.
  • [15 ] J. Huang, G. Hu, Y. Ding, M. Pang and B. Ma, “Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation,” Journal of Catalysis, vol. 340, pp. 261-269, 2016.
  • [16 ] A. Kay, D.A. Grave, D.S. Ellis, H. Dotan and A. Rothschild, “Heterogeneous doping to improve the performance of thin-film hematite photoanodes for solar water splitting,” ACS Energy Letters, vol. 1, no. 4, pp. 827-833, 2016.
  • [17 ] M. Mohapatra, S. Layek, S. Anand, H.C. Verma and B.K. Mishra, “Structural and magnetic properties of Mg‐doped nano‐α‐Fe2O3 particles synthesized by surfactant mediation–precipitation technique,” physica status solidi (b), vol. 250, no. 1, pp. 65-72, 2013.
  • [18 ] H.W. Chang, Y. Fu, W.Y. Lee, Y.R. Lu, Y.C. Huang, J.L. Chen, C.L. Chen, W.C. Chou, J.M. Chen, J.F. Lee and S. Shen, “Visible light-induced electronic structure modulation of Nb-and Ta-doped α-Fe2O3 nanorods for effective photoelectrochemical water splitting,” Nanotechnology, vol. 29, no. 6, pp. 064002, 2018.
  • [19 ] A. Ahmadi-Arpanah, H. Meleki-Ghaleh, Z. Dargahi, P. Khademi-Azandehi, G. Mirzaei, Y. Beygi-Khosrowshahi and M.H. Siadati, “The photocatalytic antibacterial behavior of Cu-doped nanocrystalline hematite prepared by mechanical alloying,” Applied Nanoscience, vol. 11, no. 3, pp. 817-832, 2021.
  • [20 ] X. Zhang, H. Li, S. Wang, F.R.F. Fan and A.J. Bard, “Improvement of hematite as photocatalyst by doping with tantalum,” The Journal of Physical Chemistry C, vol. 118, no. 30, pp. 16842-16850, 2014. [21 ] L. Wang, C.Y. Lee and P. Schmuki, “Ti and Sn co-doped anodic α-Fe2O3 films for efficient water splitting,” Electrochemistry communications, vol. 30, pp. 21-25, 2013.
  • [22 ] D. Cao, W. Luo, M. Li, J. Feng, Z. Li and Z. Zou, “A transparent Ti 4+ doped hematite photoanode protectively grown by a facile hydrothermal method” CrystEngComm, vol. 15, no. 13, pp. 2386-2391, 2013.
  • [23 ] R. Satheesh, K. Vignesh, A. Suganthi and M. Rajarajan, “Visible light responsive photocatalytic applications of transition metal (M= Cu, Ni and Co) doped α-Fe2O3 nanoparticles,” Journal of environmental chemical engineering, vol. 2, no. 4, pp. 1956-1968, 2014.
  • [24 ] P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part I,” Journal of the Optical Society of America, vol. 38, no. 5,pp. 448-457, 1948.
  • [25 ] J. Tauc, Optical properties of amorphous semiconductors, Amorphous and Liquid Semiconductors, 1st ed., Boston, USA: Springer, 1974, ch. 4, pp. 159-220.
  • [26 ] S. Piccinin, “The band structure and optical absorption of hematite (a-Fe2O3): a first-principles GW-BSE study,” Phys. Chem. Chem. Phys., vol. 21, no. 6, pp. 2957-2967, 2019.
  • [27 ] W. H. Glaze, J. W. Kang and D. H. Chapin, “The chemistry of water treatmentprocesses involving ozone, hydrogen peroxide and ultraviolet radiation,” Ozone Sci. Eng., vol. 9, no. 4, pp. 335–352, 1987.
  • [28 ] J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria and F. Osorio, “Advanced oxidation processes for wastewater treatment: state of the art,” Water, Air, and Soil Pollution, vol. 205, no. 1-4, pp. 187, 2010.
  • [29 ] M.A. Rauf and S.S. Ashraf, “Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution,” Chemical engineering journal, vol. 151, no. 1-3, pp. 10-18, 2009.
  • [30 ] D.F. Swinehart, “The beer-lambert Law,” J. Chem. Educ., vol. 39, no. 7, pp. 333, 1962.
  • [31 ] A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri and S. Ammar, “Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique,” Journal of Molecular Structure, vol. 1148, pp. 276-281, 2017.
  • [32 ] S. Chahal, A. Kumar and P. Kumar, “Zn doped α-Fe2O3: an efficient material for UV driven photocatalysis and electrical conductivity,” Crystals, vol. 10, no. 4, pp. 273, 2020.
  • [33 ] A. Yogi and D. Varshney, “Magnetic and structural properties of pure and Cr-doped haematite: α-Fe 2− x Cr x O 3 (0≤ x≤ 1),” Journal of Advanced Ceramics, vol. 2, no. 4, pp.360-369, 2013.
  • [34 ] Z.D. Pozun and G. Henkelman, “Hybrid density functional theory band structure engineering in hematite,” The Journal of chemical physics, vol. 134, no. 22, pp. 224706, 2011.
  • [35 ] X.Y. Meng, G.W. Qin, S. Li, X.H. Wen, Y.P. Ren, W.L. Pei and L. Zuo, “Enhanced photoelectrochemical activity for Cu and Ti doped hematite: The first principles calculations,” Applied Physics Letters, vol. 98, no. 11, pp.112104, 2011.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emre Alp 0000-0002-3857-0880

Publication Date January 31, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Alp, E. (2023). Comparative Study of Improvement of Hematite as Visible Light-Driven Photocatalyst by Doping with Zinc and Copper. Duzce University Journal of Science and Technology, 11(1), 502-512. https://doi.org/10.29130/dubited.1051644
AMA Alp E. Comparative Study of Improvement of Hematite as Visible Light-Driven Photocatalyst by Doping with Zinc and Copper. DUBİTED. January 2023;11(1):502-512. doi:10.29130/dubited.1051644
Chicago Alp, Emre. “Comparative Study of Improvement of Hematite As Visible Light-Driven Photocatalyst by Doping With Zinc and Copper”. Duzce University Journal of Science and Technology 11, no. 1 (January 2023): 502-12. https://doi.org/10.29130/dubited.1051644.
EndNote Alp E (January 1, 2023) Comparative Study of Improvement of Hematite as Visible Light-Driven Photocatalyst by Doping with Zinc and Copper. Duzce University Journal of Science and Technology 11 1 502–512.
IEEE E. Alp, “Comparative Study of Improvement of Hematite as Visible Light-Driven Photocatalyst by Doping with Zinc and Copper”, DUBİTED, vol. 11, no. 1, pp. 502–512, 2023, doi: 10.29130/dubited.1051644.
ISNAD Alp, Emre. “Comparative Study of Improvement of Hematite As Visible Light-Driven Photocatalyst by Doping With Zinc and Copper”. Duzce University Journal of Science and Technology 11/1 (January 2023), 502-512. https://doi.org/10.29130/dubited.1051644.
JAMA Alp E. Comparative Study of Improvement of Hematite as Visible Light-Driven Photocatalyst by Doping with Zinc and Copper. DUBİTED. 2023;11:502–512.
MLA Alp, Emre. “Comparative Study of Improvement of Hematite As Visible Light-Driven Photocatalyst by Doping With Zinc and Copper”. Duzce University Journal of Science and Technology, vol. 11, no. 1, 2023, pp. 502-1, doi:10.29130/dubited.1051644.
Vancouver Alp E. Comparative Study of Improvement of Hematite as Visible Light-Driven Photocatalyst by Doping with Zinc and Copper. DUBİTED. 2023;11(1):502-1.