Research Article
BibTex RIS Cite

Jelatin/PAAm-tabanlı IPN Hidrojelleri Kullanarak Sulu Çözeltiden Krom (VI) Uzaklaştırmasının Değerlendirmesi

Year 2023, Volume: 11 Issue: 1, 57 - 77, 31.01.2023
https://doi.org/10.29130/dubited.949714

Abstract

Bu çalışmada, jelatin (G) -poliakrilamid (PAAm) bazlı, maleik asit (MA) içeren iç içe geçen polimer ağı (IPN) hidrojelleri, radikal polimerizasyon kullanılarak hazırlanmıştır. Tam-IPN ve yarı-IPN hidrojeller, çapraz bağlayıcı olarak glutaraldehit ve etilen glikol dimetakrilat (EGDMA) kullanılarak sentezlendi. Hidrojellerin su emiciliği incelendi ve değerler MA ve G ile arttı. Tam IPN ve yarı IPN hidrojellerin kimyasal yapıları Fourier Dönüşümü Kızılötesi Spektroskopisi (FTIR) ile test edildi. Taramalı Elektron Mikroskobu/ Enerji Dağılımlı X-ışını Spektroskopisi (SEM/EDX) kullanılarak morfolojik test yapıldı. Termal özellikler Diferansiyel taramalı kalorimetre (DSC) analizörü ve Termogravimetrik analiz (TGA) ile incelenmiştir. Mekanik analiz, Zwick Universal Test Makinesi ile yapıldı. Tam IPN hidrojelin termal ve mekanik stabiliteleri yarı IPN'den daha yüksekti. Tam-IPN hidrojelinin Krom (VI) iyonu adsorbe etme özelliği üzerindeki adsorpsiyon parametrelerinin (temas süresi, başlangıç besleme konsantrasyonu ve pH) etkinliği de belirlendi. İzotermler Langmuir veya Freundlich denklemleriyle açıklandı. Her iki izotermin sonucuna göre, hidrojel yüzeyinin homojen olduğu ve Krom (VI) adsorpsiyonunun bir tek tabakada meydana geldiği söylenebilir.

References

  • Referans1 P.Souda and L Sreejith, “Poly (acrylate-acrylic acid-co-maleic acid) hydrogel: a cost effective and efficient method for removal of metal ions from water,” Separation Science and Technology, c. 48, s. 18, ss. 2795-2803, 2013.
  • Referans2 R. Torres-García, J. Flores-Estrada, J. V. Cauich-Rodríguez, M. Flores-Reyes and M. V. Flores-Merino, “Design of a polyacrylamide and gelatin hydrogel as a synthetic extracellular matrix.” International Journal of Polymeric Materials and Polymeric Biomaterials, ss. 1-12, 2020.
  • Referans3 A. Martínez-Ruvalcaba, F. Becerra-Bracamontes, J. C. Sánchez-Díaz and A.González-Alvarez, “Polyacrylamide-gelatin polymeric networks: effect of pH and gelatin concentration on the swelling kinetics and mechanical properties,” Polymer Bulletin, c. 62, s. 4, ss. 539-548, 2009.
  • Referans4 H. Ferfera-Harrar, N. Aiouaz and N. Dairi, “Synthesis and properties of chitosan-graft polyacrylamide/gelatin superabsorbent composites for wastewater purification.,” Polymer, c. 6, s. 9, ss. 757-764, 2015.
  • Referans5 M. Jaiswal, V. Koul, A. K. Dinda, S. Mohanty and K.G. Jain, “Cell adhesion and proliferation studies on semi‐interpenetrating polymeric networks (semi‐IPNs) of polyacrylamide and gelatin,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, c. 98, s. 2, ss. 342-350, 2011.
  • Referans6 O.V. Maikovych, N.G. Nosova, M.V. Yakoviv, À. Dron, A.V. Stasiuk, V.Ya. Samaryk, S.M. Varvarenko, S.A. Voronov, “Composite materials based on polyacrylamide and gelatin reinforced wıth polypropylene microfiber,” Voprosy khimii i khimicheskoi tekhnologii, c. 1, ss. 45-54, 2021.
  • Referans7 A. K. Bajpai and H. Bundela, “Influence of gelatin on the properties of hydroxyapatite–polyacrylamide nanocomposite as a potential bone substitute,” Composite Interfaces, c. 15, s. 7-9, ss. 709-729, 2008.
  • Referans8 M. P. Das, P. R. Suguna, K. Prasad, J. V. Vijaylakshmi and M. Renuka, “Extraction and characterization of gelatin: a functional biopolymer,” International Journal of Pharmacy and Pharmaceutical Sciences, c. 9, s. 239, ss.10-22159, 2017.
  • Referans9 A. M. Patel, R. G. Patel and M. P. Patel, “Super Absorbent Hydrogel Based on Poly [acrylamide/maleic acid/2-methacryloxy ethyl trimethylammonium chloride]: Synthesis, Characterization and their Application in the Removal of Chromium (VI) from Aqueous Solution,” Journal of Macromolecular Science, Part A, c. 48, s. 5, ss. 339-347, 2011.
  • Referans10 T. Caykara, C. Özyürek, Ö. Kantoğlu and B. Erdoğan, “Thermal behavior of poly (2-hydroxyethyl methacrylate-maleic acid) networks,” Polymer Degradation and Stability, c.80, s. 2, ss. 339-343, 2003.
  • Referans11 B. Grabowska, M. Holtzer, S. Eichholz, K. Hodor, and A. Bobrowski, “Thermal analysis of a sodium salt of the maleic acid-acrylic acid copolymer used as a polymeric binder,” Polimery, c. 56, s. 2, ss. 151-155, 2011.
  • Referans12 A. Enumo Jr, I. P. Gross, R. H. Saatkamp, A. T. Pires and A. L. Parize, “Evaluation of mechanical, thermal and morphological properties of PLA films plasticized with maleic acid and its propyl ester derivatives,” Polymer Testing, c. 88, s.106552, ss. 1-9, 2020.
  • Referans13 G. O. Akalin, O.O. Taner and T. Taner, “The preparation, characterization and antibacterial properties of chitosan/pectin silver nanoparticle films,” Polymer Bulletin, ss. 1-18, 2021.
  • Referans14 T.A. Khan, M. Nazir, I. Ali and A. Kumar, “Removal of chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent,” Arabian Journal of Chemistry, c. 10, ss. 2388-2398, 2017.
  • Referans15 M. Eid, M. A. Abdel-Ghaffar and A. M. Dessouki, “Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation,” Nuclear Instruments and Methods in Physics Research Section B, c. 267, s. 1, ss. 91-98, 2009.
  • Referans16 A. B. D. Nandiyanto, R. Oktiani and R. Ragadhita, “How to read and interpret FTIR spectroscope of organic material,” Indonesian Journal of Science and Technology, c. 4, s. 1, ss. 97-118, 2019.
  • Referans17 A. Jafari, S. Hassanajili, F. Ghaffari and N. Azarpira, “Modulating the physico-mechanical properties of polyacrylamide/gelatin hydrogels for tissue engineering application,” Polymer Bulletin, ss. 1-22, 2021.
  • Referans18 S. Belkadi, H. Bendaikha, F. Lebsir and S. Ould-Kada, “Synthesis, characterization and swelling study of poly (methacrylic acid-co-maleic acid) hydrogels,” Oriental Journal of Chemistry, c. 34, s. 2, ss. 948-954, 2018.
  • Referans19 M. M. Ghobashy, B. K. El-Damhougy, N.Nady, H. Abd El-Wahab, A. M. Naser and F. Abdelhai, “Radiation crosslinking of modifying super absorbent (polyacrylamide/gelatin) hydrogel as fertilizers carrier and soil conditioner,” Journal of Polymers and the Environment, c. 26, s. 9, ss. 3981-3994, 2018.
  • Referans20 S. Bennour and Louzri, F, “Study of swelling properties and thermal behavior of poly (N, N-dimethylacrylamide-co-maleic acid) based hydrogels,” Advances in Chemistry, ss. 1-10, 2014.
  • Referans21 C. Xiao, Y. Lu, Z. Jing, L. Zhang, “Study on physical properties of blend films from gelatin and polyacrylamide solutions,” Journal of Applied Polymer Science, c. 83, s. 5, ss. 949–955, 2002.
  • Referans22 J. Filipović, L. Katsikas, I. Popović, S. Veličković, T. Djakov and D. Petrović-Djakov, “The thermal degradation of some alkali metal salts of poly (itaconic acid),” Journal of Thermal Analysis and Calorimetry, c. 49, s. 1, ss. 335-341, 1997.
  • Referans23 M.C. Chandy, V.N. Pillai, “Water sorption and water binding properties of crosslinked polyacrylamides: effect of macromolecular structure and crosslinking,” Polymer International, c. 37, s. 1, ss. 39–45, 1995.
  • Referans24 A.N. Fraga, R.J., Williams, “Thermal properties of gelatin films,” Polymer, c. 26, s. 1, ss. 113–118, 1985.
  • Referans25 M.C. Chandy, V.N. Pillai, “Water sorption and water binding properties of crosslinked polyacrylamides: effect of macromolecular structure and crosslinking,” Polymer International, c. 37, s. 1, ss. 39–45, 1995.
  • Referans26 Ö. B. Üzüm, S. Kundakci, and E. Karadağ, “Uranyl ion uptake from aqueous solutions by chemically cross-linked polyelectrolyte CAMA hydrogels,” Polymer-Plastics Technology and Engineering, c. 46, s. 8, ss. 775-780, 2007.
  • Referans27 I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, c. 40, s. 9, ss. 1361-1403, 1918.

An Assessment of Chromium (VI) Removal from Aqueous Solution Using Gelatin/PAAm-based IPN Hydrogels

Year 2023, Volume: 11 Issue: 1, 57 - 77, 31.01.2023
https://doi.org/10.29130/dubited.949714

Abstract

In this work, gelatin (G)-polyacrylamide (PAAm)-based interpenetrating polymer network (IPN) hydrogels involving maleic acid (MA) was prepared using by radical polymerization. Full-IPN and semi-IPN hydrogels were synthesized by using glutaraldehyde and ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The water absorbency of hydrogels was investigated, and the values increased with MA and G. The chemical structures of full-IPN and semi-IPN hydrogels were tested by Fourier Transform Infrared Spectroscopy (FTIR). Morphological test was done by using Scanning Electron Microscope/ Energy Dispersive X-ray Spectroscopy (SEM/EDX). Thermal properties were examined with Differential scanning calorimeter (DSC) analyzer and Thermogravimetric analysis (TGA). The mechanical analysis was performed with Zwick Universal Testing Machine. Thermal and mechanical stabilities of full-IPN hydrogel was higher than semi-IPN. The efficiency of adsorption parameters (contact time, initial feed concentration, and pH) on Chromium (VI) ion adsorbing property of Full-IPN hydrogel was also determined. Isotherms were explained with the Langmuir or Freundlich equations. According to the results of both isotherms, it can be said that the hydrogel surface was homogeneous, and the adsorption of Chromium (VI) occurred in a monolayer.

References

  • Referans1 P.Souda and L Sreejith, “Poly (acrylate-acrylic acid-co-maleic acid) hydrogel: a cost effective and efficient method for removal of metal ions from water,” Separation Science and Technology, c. 48, s. 18, ss. 2795-2803, 2013.
  • Referans2 R. Torres-García, J. Flores-Estrada, J. V. Cauich-Rodríguez, M. Flores-Reyes and M. V. Flores-Merino, “Design of a polyacrylamide and gelatin hydrogel as a synthetic extracellular matrix.” International Journal of Polymeric Materials and Polymeric Biomaterials, ss. 1-12, 2020.
  • Referans3 A. Martínez-Ruvalcaba, F. Becerra-Bracamontes, J. C. Sánchez-Díaz and A.González-Alvarez, “Polyacrylamide-gelatin polymeric networks: effect of pH and gelatin concentration on the swelling kinetics and mechanical properties,” Polymer Bulletin, c. 62, s. 4, ss. 539-548, 2009.
  • Referans4 H. Ferfera-Harrar, N. Aiouaz and N. Dairi, “Synthesis and properties of chitosan-graft polyacrylamide/gelatin superabsorbent composites for wastewater purification.,” Polymer, c. 6, s. 9, ss. 757-764, 2015.
  • Referans5 M. Jaiswal, V. Koul, A. K. Dinda, S. Mohanty and K.G. Jain, “Cell adhesion and proliferation studies on semi‐interpenetrating polymeric networks (semi‐IPNs) of polyacrylamide and gelatin,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, c. 98, s. 2, ss. 342-350, 2011.
  • Referans6 O.V. Maikovych, N.G. Nosova, M.V. Yakoviv, À. Dron, A.V. Stasiuk, V.Ya. Samaryk, S.M. Varvarenko, S.A. Voronov, “Composite materials based on polyacrylamide and gelatin reinforced wıth polypropylene microfiber,” Voprosy khimii i khimicheskoi tekhnologii, c. 1, ss. 45-54, 2021.
  • Referans7 A. K. Bajpai and H. Bundela, “Influence of gelatin on the properties of hydroxyapatite–polyacrylamide nanocomposite as a potential bone substitute,” Composite Interfaces, c. 15, s. 7-9, ss. 709-729, 2008.
  • Referans8 M. P. Das, P. R. Suguna, K. Prasad, J. V. Vijaylakshmi and M. Renuka, “Extraction and characterization of gelatin: a functional biopolymer,” International Journal of Pharmacy and Pharmaceutical Sciences, c. 9, s. 239, ss.10-22159, 2017.
  • Referans9 A. M. Patel, R. G. Patel and M. P. Patel, “Super Absorbent Hydrogel Based on Poly [acrylamide/maleic acid/2-methacryloxy ethyl trimethylammonium chloride]: Synthesis, Characterization and their Application in the Removal of Chromium (VI) from Aqueous Solution,” Journal of Macromolecular Science, Part A, c. 48, s. 5, ss. 339-347, 2011.
  • Referans10 T. Caykara, C. Özyürek, Ö. Kantoğlu and B. Erdoğan, “Thermal behavior of poly (2-hydroxyethyl methacrylate-maleic acid) networks,” Polymer Degradation and Stability, c.80, s. 2, ss. 339-343, 2003.
  • Referans11 B. Grabowska, M. Holtzer, S. Eichholz, K. Hodor, and A. Bobrowski, “Thermal analysis of a sodium salt of the maleic acid-acrylic acid copolymer used as a polymeric binder,” Polimery, c. 56, s. 2, ss. 151-155, 2011.
  • Referans12 A. Enumo Jr, I. P. Gross, R. H. Saatkamp, A. T. Pires and A. L. Parize, “Evaluation of mechanical, thermal and morphological properties of PLA films plasticized with maleic acid and its propyl ester derivatives,” Polymer Testing, c. 88, s.106552, ss. 1-9, 2020.
  • Referans13 G. O. Akalin, O.O. Taner and T. Taner, “The preparation, characterization and antibacterial properties of chitosan/pectin silver nanoparticle films,” Polymer Bulletin, ss. 1-18, 2021.
  • Referans14 T.A. Khan, M. Nazir, I. Ali and A. Kumar, “Removal of chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent,” Arabian Journal of Chemistry, c. 10, ss. 2388-2398, 2017.
  • Referans15 M. Eid, M. A. Abdel-Ghaffar and A. M. Dessouki, “Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation,” Nuclear Instruments and Methods in Physics Research Section B, c. 267, s. 1, ss. 91-98, 2009.
  • Referans16 A. B. D. Nandiyanto, R. Oktiani and R. Ragadhita, “How to read and interpret FTIR spectroscope of organic material,” Indonesian Journal of Science and Technology, c. 4, s. 1, ss. 97-118, 2019.
  • Referans17 A. Jafari, S. Hassanajili, F. Ghaffari and N. Azarpira, “Modulating the physico-mechanical properties of polyacrylamide/gelatin hydrogels for tissue engineering application,” Polymer Bulletin, ss. 1-22, 2021.
  • Referans18 S. Belkadi, H. Bendaikha, F. Lebsir and S. Ould-Kada, “Synthesis, characterization and swelling study of poly (methacrylic acid-co-maleic acid) hydrogels,” Oriental Journal of Chemistry, c. 34, s. 2, ss. 948-954, 2018.
  • Referans19 M. M. Ghobashy, B. K. El-Damhougy, N.Nady, H. Abd El-Wahab, A. M. Naser and F. Abdelhai, “Radiation crosslinking of modifying super absorbent (polyacrylamide/gelatin) hydrogel as fertilizers carrier and soil conditioner,” Journal of Polymers and the Environment, c. 26, s. 9, ss. 3981-3994, 2018.
  • Referans20 S. Bennour and Louzri, F, “Study of swelling properties and thermal behavior of poly (N, N-dimethylacrylamide-co-maleic acid) based hydrogels,” Advances in Chemistry, ss. 1-10, 2014.
  • Referans21 C. Xiao, Y. Lu, Z. Jing, L. Zhang, “Study on physical properties of blend films from gelatin and polyacrylamide solutions,” Journal of Applied Polymer Science, c. 83, s. 5, ss. 949–955, 2002.
  • Referans22 J. Filipović, L. Katsikas, I. Popović, S. Veličković, T. Djakov and D. Petrović-Djakov, “The thermal degradation of some alkali metal salts of poly (itaconic acid),” Journal of Thermal Analysis and Calorimetry, c. 49, s. 1, ss. 335-341, 1997.
  • Referans23 M.C. Chandy, V.N. Pillai, “Water sorption and water binding properties of crosslinked polyacrylamides: effect of macromolecular structure and crosslinking,” Polymer International, c. 37, s. 1, ss. 39–45, 1995.
  • Referans24 A.N. Fraga, R.J., Williams, “Thermal properties of gelatin films,” Polymer, c. 26, s. 1, ss. 113–118, 1985.
  • Referans25 M.C. Chandy, V.N. Pillai, “Water sorption and water binding properties of crosslinked polyacrylamides: effect of macromolecular structure and crosslinking,” Polymer International, c. 37, s. 1, ss. 39–45, 1995.
  • Referans26 Ö. B. Üzüm, S. Kundakci, and E. Karadağ, “Uranyl ion uptake from aqueous solutions by chemically cross-linked polyelectrolyte CAMA hydrogels,” Polymer-Plastics Technology and Engineering, c. 46, s. 8, ss. 775-780, 2007.
  • Referans27 I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, c. 40, s. 9, ss. 1361-1403, 1918.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gülen Oytun Akalın 0000-0003-4686-1474

Publication Date January 31, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Akalın, G. O. (2023). An Assessment of Chromium (VI) Removal from Aqueous Solution Using Gelatin/PAAm-based IPN Hydrogels. Duzce University Journal of Science and Technology, 11(1), 57-77. https://doi.org/10.29130/dubited.949714
AMA Akalın GO. An Assessment of Chromium (VI) Removal from Aqueous Solution Using Gelatin/PAAm-based IPN Hydrogels. DUBİTED. January 2023;11(1):57-77. doi:10.29130/dubited.949714
Chicago Akalın, Gülen Oytun. “An Assessment of Chromium (VI) Removal from Aqueous Solution Using Gelatin/PAAm-Based IPN Hydrogels”. Duzce University Journal of Science and Technology 11, no. 1 (January 2023): 57-77. https://doi.org/10.29130/dubited.949714.
EndNote Akalın GO (January 1, 2023) An Assessment of Chromium (VI) Removal from Aqueous Solution Using Gelatin/PAAm-based IPN Hydrogels. Duzce University Journal of Science and Technology 11 1 57–77.
IEEE G. O. Akalın, “An Assessment of Chromium (VI) Removal from Aqueous Solution Using Gelatin/PAAm-based IPN Hydrogels”, DUBİTED, vol. 11, no. 1, pp. 57–77, 2023, doi: 10.29130/dubited.949714.
ISNAD Akalın, Gülen Oytun. “An Assessment of Chromium (VI) Removal from Aqueous Solution Using Gelatin/PAAm-Based IPN Hydrogels”. Duzce University Journal of Science and Technology 11/1 (January 2023), 57-77. https://doi.org/10.29130/dubited.949714.
JAMA Akalın GO. An Assessment of Chromium (VI) Removal from Aqueous Solution Using Gelatin/PAAm-based IPN Hydrogels. DUBİTED. 2023;11:57–77.
MLA Akalın, Gülen Oytun. “An Assessment of Chromium (VI) Removal from Aqueous Solution Using Gelatin/PAAm-Based IPN Hydrogels”. Duzce University Journal of Science and Technology, vol. 11, no. 1, 2023, pp. 57-77, doi:10.29130/dubited.949714.
Vancouver Akalın GO. An Assessment of Chromium (VI) Removal from Aqueous Solution Using Gelatin/PAAm-based IPN Hydrogels. DUBİTED. 2023;11(1):57-7.