Research Article
BibTex RIS Cite

The Effect of Perforation Properties on the Use of Fiber Reinforced Cementitious Panels as Grooved Acoustic Panels

Year 2023, Volume: 11 Issue: 2, 1075 - 1093, 30.04.2023
https://doi.org/10.29130/dubited.1076395

Abstract

Perforated cement boards are used as a sound absorbing material, especially in indoor noise control. In this study, grooves with an average width of 4 mm and a depth of 6 mm were applied from one surface of the panels. Within the scope of the study, three different perforation rates were designed for acoustic performance analysis, and perforated test specimens were prepared by drilling holes with an average depth of 10 mm on the other surface of the plate samples to obtain rates of 5.5%, 8.0% and 12.6%, respectively. The sound absorption properties of the plates converted into this form have been examined. For perforated test specimens, 3 different groups were prepared depending on the applicability section. These; one-component perforated cement-bonded acoustic sheet in plain form (Yalın-I plate), two-component jointed perforated cement-bonded composite acoustic plate with geotextile (Geo-II plate) and polyethylene-based rubber layered two-component jointed perforated cement-bonded composite acoustic plate (PE-II plate). The sound absorption properties of all three groups were compared with the fiber-reinforced cementitious plain plate specimen (reference plate), which was tested as a reference specimen in the form of a flat-filled surface without any grooves and perforations. According to the results of the study, when the perforated plate performances are compared with the non-perforated flat plate performances, the absorption property of the flat plate shows an increase in the high frequency band change, while the absorption property of the grooved-perforated sheets shows more effective absorption in the low frequency regions. In addition, the use of polyethylene-based rubber material as an insulation layer provides a highly absorbent and/or excellent absorbent quality depending on the perforation rate to the sound reduction characteristics of cement-bonded acoustic plates in grooved and perforated composite form.

References

  • [1] F. K. Yuen, “A vision of the environmental and occupational noise pollution in Malaysia,” Noise and Health, vol. 16, no. 73, pp. 427-436, 2014.
  • [2] M. Hustim, M. I. Ramli, R. Zakaria and A. R. Zulfiani, “The effect of speed factors and horn sound to the RLS 90 model reliability on the visum program in prediction noise of heterogeneous traffic,” International Journal of Integrated Engineering, Special Issue 2018: Civil & Environmental Engineering, vol. 10, no. 2, pp. 77-81, 2018.
  • [3] M. Kavraz and R. Abdülrahimov, “Üzeri delikli ve yarıklı ekranların akustik etkisinin incelenmesi,” II. Ulusal Yapı Malzemesi Kongresi ve Sergisi, İstanbul, Türkiye, 2004, pp. 425-437.
  • [4] Y. Abdullah, A. Putra, H. Efendy, W. Farid, and M. R. Ayob, “Investigation on sound absorption coefficient of natural paddy fiber,” International Journal of Renewable Energy Resources, vol. 3, no. 1, pp. 8-11, 2013.
  • [5] M. J. M. Nor, N. Jamaludin, and F. M. Tamiri, “A preliminary study of sound sbsorption using multi-layer coconut coir fiber,” Electronic Journal Technical Acoustic, vol. 3, pp. 1-8, 2004.
  • [6] R. T. Randeberg, “Perforated panel absorbers with viscous energy dissipation enhanced by orifice design,” Ph. D. thesis, Department of Telecommunications, Norwegian University of Science and Technology, Trondheim, Norway, 2000. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/249798/125365_FULLTEXT01.pdf?sequence=1
  • [7] H. Ruiz, P. Cobo, T. Dupont, B. Martin ve P. Leclaire, “Acoustic properties of plates with unevenly distributed macroperforations backed by woven meshes,” Journal of the Acoustical Society of America, vol. 132, no. 5, pp. 3138-3147, 2012.
  • [8] T. E. Vigran, “The acoustic properties of panel with rectangular apertures,” Journal of the Acoustical Society of America, vol. 135, no. 5, pp. 2777-2784, 2014.
  • [9] K. U. Ingard, Notes on sound absorption technology. Poughkeepsie, NY, USA: Noise Control Foundation, 1994.
  • [10] Z. Maekawa, and P. Lord, Environmental and Architectural Acoustics, London, UK: CRC Press, 1993.
  • [11] K. U. Ingard and R. H. Bolt, “Absorption chracteristics of acoustic material with perforated facing,” The Journal of the Acoustical Society of America, vol. 23, no. 5, pp. 533-540, 1953.
  • [12] M. Kucuk and Y. Korkmaz, “The effect of physical parameters on sound absorption properties of natural fiber mixed nonwoven composites,” Textile Research Journal , vol. 82, no. 20, pp. 2043-2053, 2012.
  • [13] B. Song, L. Peng, F. Fu, M. Liu and H. Zhang, “Experimental and theoretical analysis of sound absorption properties of finely perforated wooden panels,” Materials, vol. 9, no. 11, 942, 2016.
  • [14] D. Y. Maa, “Potential of microperforated panel absorber,” Journal of the Acoustical Society of America, vol. 104, no. 5, pp. 2861-2866, 1998.
  • [15] K. Sakagami, M. Yairi and M. Morimoto, “Multiple-leaf sound absorber with microperforated panels: an overview,” Acoustic Australia, vol. 38, no. 2, pp. 76-81, 2010.
  • [16] A. İstek ve A. Gençer, “Çimentolu yonga levha özelliklerine pomza kullanımının etkisi,” I.. Ulusal Akdeniz Orman ve Çevre Sempozyumu, Isparta, Türkiye, 2014, ss. 560-567.
  • [17] R. Bi, Z. S. Liu, K. M. Li, J. Chen and Y. Wang, “Helmholtz resonator with extended neck and absorbing material,” Applied Mechanics and Materials, vol. 141, no. 1, pp. 308–312, 2012.
  • [18] S. K. Tang, C. H. Ng and E. Y. L. Lam, “Experimental investigation of the sound absorption performance of compartmented Helmholtz resonators,” Applied Acoustics, vol. 73, no. 9, pp. 969–976, 2012.
  • [19] F. A. Everest, The Master Handbook of Acoustics, 4th edition. New York, NY, USA: McGraw-Hill, 2001.
  • [20] A. Selamet, M. B. Xu, I. J. Lee and N. T. Huff, “Helmholtz resonator lined with absorbing material,” Journal of the Acoustical Society of America, vol. 117, no. 2, pp. 725–733, 2005.
  • [21] J. Carbajo, J. Ramis, L. Godinho and P. Amado-Mendes, “Modeling of perforated panels with slit-like dead-end pores,” EuroRegio2016, 2016.
  • [22] H. M. Öz ve E. Köse, “Gürültü önleyici akustik malzemelerin performans düzeylerinin Iincelenmesi,” European Journal of Science and Technology, vol. 18, ss. 1-10, 2020.
  • [23] O. Keskin ve S. Yılmaz, “Su kabağı lifi (Luffa Cylindrica)-epoksi kompozitinde sesin yutulma performansını etkileyen parametreler,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, cilt 24, sayı 1, ss. 201-208, 2020.
  • [24] Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method, ASTM C423, 2022.
  • [25] Acoustics - Sound absorbers - Rating of sound absorption coefficients (ISO/DIS 11654:2017), DIN EN ISO 11654, 1997.
  • [26] A. K. Ghilahare and M. Pandey, “Experimental analysis of sound absorption coefficient of the combined mechanism of enhanced egg carton, gypsum board and sound diffuser”, International Journal of Innovative Research in Science, Engineering and Technology, vol. 6, no. 8, p16400-16412, 2007. DOI:10.15680/IJIRSET.2017.0608171
  • [27] Decibel Drop and Noise Reduction Coefficients for Material Combinations, 2022, [online] Available at :https://www.thermaxxjackets.com/noisereduction-coefficients-and-decibel-drop
  • [28] Sound insulation and sound absorption of suspended ceilings, VDI 3755:2015, Technical rule in Germany, 2015.
  • [29] F. Negro, C. Cremonini, M. Properzi, and R. Zanuttini, “Sound absorption coefficient of perforated plywood: an experimental case study,” World Congress On Timber Engineering, Italy (2010).

Elyaf Takviyeli Çimentolu Levhaların Derzli-Delikli Akustik Panel Olarak Kullanımında Perforasyon Özelliklerinin Etkisi

Year 2023, Volume: 11 Issue: 2, 1075 - 1093, 30.04.2023
https://doi.org/10.29130/dubited.1076395

Abstract

Perforeli çimentolu levhalar özellikle iç mekân gürültü kontrolünde bir ses emici malzeme olarak kullanılmaktadır. Bu çalışmada, plakaların bir yüzeyinden ortalama 4 mm genişliğinde ve 6 mm derinliğinde oluklar (yarıklar) açılarak bir yüzü oluklu ve derzli form kazandırılmıştır. Çalışma kapsamında akustik performans irdelemesi için üç ayrı perforasyon oranı tasarlanmış olup sırasıyla %5.5, %8.0 ve %12.6 oranları elde edilecek şekilde levha örneklerinin diğer yüzeyinde ortalama 10 mm derinliğinde delikler açılarak perforeli test örnekleri hazırlanmıştır. Bu forma dönüştürülen levhaların ses yutma özellikleri irdelenmiştir. Delikli perforeli test örnekleri için uygulanabilirlik kesitine bağlı olarak 3 ayrı grup numune hazırlanmıştır. Bunlar; tek bileşenli yalın formda derzli perforeli çimento bağlayıcılı akustik levha (Yalın-I levhası), geotekstil katmanlı iki bileşenli derzli perforeli çimento bağlayıcılı kompozit akustik levha (Geo-II levhası) ve polietilen esaslı kauçuk katmanlı iki bileşenli derzli perforeli çimento bağlayıcılı kompozit akustik levha (PE-II levhası). Her üç grubun ses yutma özelliği referans örneği olarak test edilen düz-dolu yüzey formunda herhangi bir derz ve perfore işlemi yapılmamış elyaf takviyeli çimentolu yalın levha örneği (kontrol levhası) ile karşılaştırılmıştır. Çalışma sonuçlarına göre, derzli perforeli form kazandırılmış levha örneklerinin perforesiz düz levha formu performansları ile karşılaştırıldığında görüldüğü üzere düz levhanın absorpsiyon özelliği yüksek frekans band değişiminde artış gösterirken, derzli perforeli levhaların absorpsiyon özelliğinin ise düşük frekans bölgelerinde daha etkin absorpsiyon özelliği göstermektedir. Ayrıca, polietilen esaslı kauçuk malzemenin yalıtım katmanı olarak kullanımı, derzli ve perforeli kompozit formda çimento bağlayıcılı akustik levhaların ses azaltma karakteristiğine perforasyon oranına bağlı olarak yüksek emici ve/veya mükemmel emici birer nitelik kazandırmaktadır.

References

  • [1] F. K. Yuen, “A vision of the environmental and occupational noise pollution in Malaysia,” Noise and Health, vol. 16, no. 73, pp. 427-436, 2014.
  • [2] M. Hustim, M. I. Ramli, R. Zakaria and A. R. Zulfiani, “The effect of speed factors and horn sound to the RLS 90 model reliability on the visum program in prediction noise of heterogeneous traffic,” International Journal of Integrated Engineering, Special Issue 2018: Civil & Environmental Engineering, vol. 10, no. 2, pp. 77-81, 2018.
  • [3] M. Kavraz and R. Abdülrahimov, “Üzeri delikli ve yarıklı ekranların akustik etkisinin incelenmesi,” II. Ulusal Yapı Malzemesi Kongresi ve Sergisi, İstanbul, Türkiye, 2004, pp. 425-437.
  • [4] Y. Abdullah, A. Putra, H. Efendy, W. Farid, and M. R. Ayob, “Investigation on sound absorption coefficient of natural paddy fiber,” International Journal of Renewable Energy Resources, vol. 3, no. 1, pp. 8-11, 2013.
  • [5] M. J. M. Nor, N. Jamaludin, and F. M. Tamiri, “A preliminary study of sound sbsorption using multi-layer coconut coir fiber,” Electronic Journal Technical Acoustic, vol. 3, pp. 1-8, 2004.
  • [6] R. T. Randeberg, “Perforated panel absorbers with viscous energy dissipation enhanced by orifice design,” Ph. D. thesis, Department of Telecommunications, Norwegian University of Science and Technology, Trondheim, Norway, 2000. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/249798/125365_FULLTEXT01.pdf?sequence=1
  • [7] H. Ruiz, P. Cobo, T. Dupont, B. Martin ve P. Leclaire, “Acoustic properties of plates with unevenly distributed macroperforations backed by woven meshes,” Journal of the Acoustical Society of America, vol. 132, no. 5, pp. 3138-3147, 2012.
  • [8] T. E. Vigran, “The acoustic properties of panel with rectangular apertures,” Journal of the Acoustical Society of America, vol. 135, no. 5, pp. 2777-2784, 2014.
  • [9] K. U. Ingard, Notes on sound absorption technology. Poughkeepsie, NY, USA: Noise Control Foundation, 1994.
  • [10] Z. Maekawa, and P. Lord, Environmental and Architectural Acoustics, London, UK: CRC Press, 1993.
  • [11] K. U. Ingard and R. H. Bolt, “Absorption chracteristics of acoustic material with perforated facing,” The Journal of the Acoustical Society of America, vol. 23, no. 5, pp. 533-540, 1953.
  • [12] M. Kucuk and Y. Korkmaz, “The effect of physical parameters on sound absorption properties of natural fiber mixed nonwoven composites,” Textile Research Journal , vol. 82, no. 20, pp. 2043-2053, 2012.
  • [13] B. Song, L. Peng, F. Fu, M. Liu and H. Zhang, “Experimental and theoretical analysis of sound absorption properties of finely perforated wooden panels,” Materials, vol. 9, no. 11, 942, 2016.
  • [14] D. Y. Maa, “Potential of microperforated panel absorber,” Journal of the Acoustical Society of America, vol. 104, no. 5, pp. 2861-2866, 1998.
  • [15] K. Sakagami, M. Yairi and M. Morimoto, “Multiple-leaf sound absorber with microperforated panels: an overview,” Acoustic Australia, vol. 38, no. 2, pp. 76-81, 2010.
  • [16] A. İstek ve A. Gençer, “Çimentolu yonga levha özelliklerine pomza kullanımının etkisi,” I.. Ulusal Akdeniz Orman ve Çevre Sempozyumu, Isparta, Türkiye, 2014, ss. 560-567.
  • [17] R. Bi, Z. S. Liu, K. M. Li, J. Chen and Y. Wang, “Helmholtz resonator with extended neck and absorbing material,” Applied Mechanics and Materials, vol. 141, no. 1, pp. 308–312, 2012.
  • [18] S. K. Tang, C. H. Ng and E. Y. L. Lam, “Experimental investigation of the sound absorption performance of compartmented Helmholtz resonators,” Applied Acoustics, vol. 73, no. 9, pp. 969–976, 2012.
  • [19] F. A. Everest, The Master Handbook of Acoustics, 4th edition. New York, NY, USA: McGraw-Hill, 2001.
  • [20] A. Selamet, M. B. Xu, I. J. Lee and N. T. Huff, “Helmholtz resonator lined with absorbing material,” Journal of the Acoustical Society of America, vol. 117, no. 2, pp. 725–733, 2005.
  • [21] J. Carbajo, J. Ramis, L. Godinho and P. Amado-Mendes, “Modeling of perforated panels with slit-like dead-end pores,” EuroRegio2016, 2016.
  • [22] H. M. Öz ve E. Köse, “Gürültü önleyici akustik malzemelerin performans düzeylerinin Iincelenmesi,” European Journal of Science and Technology, vol. 18, ss. 1-10, 2020.
  • [23] O. Keskin ve S. Yılmaz, “Su kabağı lifi (Luffa Cylindrica)-epoksi kompozitinde sesin yutulma performansını etkileyen parametreler,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, cilt 24, sayı 1, ss. 201-208, 2020.
  • [24] Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method, ASTM C423, 2022.
  • [25] Acoustics - Sound absorbers - Rating of sound absorption coefficients (ISO/DIS 11654:2017), DIN EN ISO 11654, 1997.
  • [26] A. K. Ghilahare and M. Pandey, “Experimental analysis of sound absorption coefficient of the combined mechanism of enhanced egg carton, gypsum board and sound diffuser”, International Journal of Innovative Research in Science, Engineering and Technology, vol. 6, no. 8, p16400-16412, 2007. DOI:10.15680/IJIRSET.2017.0608171
  • [27] Decibel Drop and Noise Reduction Coefficients for Material Combinations, 2022, [online] Available at :https://www.thermaxxjackets.com/noisereduction-coefficients-and-decibel-drop
  • [28] Sound insulation and sound absorption of suspended ceilings, VDI 3755:2015, Technical rule in Germany, 2015.
  • [29] F. Negro, C. Cremonini, M. Properzi, and R. Zanuttini, “Sound absorption coefficient of perforated plywood: an experimental case study,” World Congress On Timber Engineering, Italy (2010).
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Lütfullah Gündüz 0000-0003-2487-467X

Şevket Onur Kalkan 0000-0003-0250-8134

Publication Date April 30, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Gündüz, L., & Kalkan, Ş. O. (2023). Elyaf Takviyeli Çimentolu Levhaların Derzli-Delikli Akustik Panel Olarak Kullanımında Perforasyon Özelliklerinin Etkisi. Duzce University Journal of Science and Technology, 11(2), 1075-1093. https://doi.org/10.29130/dubited.1076395
AMA Gündüz L, Kalkan ŞO. Elyaf Takviyeli Çimentolu Levhaların Derzli-Delikli Akustik Panel Olarak Kullanımında Perforasyon Özelliklerinin Etkisi. DUBİTED. April 2023;11(2):1075-1093. doi:10.29130/dubited.1076395
Chicago Gündüz, Lütfullah, and Şevket Onur Kalkan. “Elyaf Takviyeli Çimentolu Levhaların Derzli-Delikli Akustik Panel Olarak Kullanımında Perforasyon Özelliklerinin Etkisi”. Duzce University Journal of Science and Technology 11, no. 2 (April 2023): 1075-93. https://doi.org/10.29130/dubited.1076395.
EndNote Gündüz L, Kalkan ŞO (April 1, 2023) Elyaf Takviyeli Çimentolu Levhaların Derzli-Delikli Akustik Panel Olarak Kullanımında Perforasyon Özelliklerinin Etkisi. Duzce University Journal of Science and Technology 11 2 1075–1093.
IEEE L. Gündüz and Ş. O. Kalkan, “Elyaf Takviyeli Çimentolu Levhaların Derzli-Delikli Akustik Panel Olarak Kullanımında Perforasyon Özelliklerinin Etkisi”, DUBİTED, vol. 11, no. 2, pp. 1075–1093, 2023, doi: 10.29130/dubited.1076395.
ISNAD Gündüz, Lütfullah - Kalkan, Şevket Onur. “Elyaf Takviyeli Çimentolu Levhaların Derzli-Delikli Akustik Panel Olarak Kullanımında Perforasyon Özelliklerinin Etkisi”. Duzce University Journal of Science and Technology 11/2 (April 2023), 1075-1093. https://doi.org/10.29130/dubited.1076395.
JAMA Gündüz L, Kalkan ŞO. Elyaf Takviyeli Çimentolu Levhaların Derzli-Delikli Akustik Panel Olarak Kullanımında Perforasyon Özelliklerinin Etkisi. DUBİTED. 2023;11:1075–1093.
MLA Gündüz, Lütfullah and Şevket Onur Kalkan. “Elyaf Takviyeli Çimentolu Levhaların Derzli-Delikli Akustik Panel Olarak Kullanımında Perforasyon Özelliklerinin Etkisi”. Duzce University Journal of Science and Technology, vol. 11, no. 2, 2023, pp. 1075-93, doi:10.29130/dubited.1076395.
Vancouver Gündüz L, Kalkan ŞO. Elyaf Takviyeli Çimentolu Levhaların Derzli-Delikli Akustik Panel Olarak Kullanımında Perforasyon Özelliklerinin Etkisi. DUBİTED. 2023;11(2):1075-93.