Research Article
BibTex RIS Cite

Kinetic and Thermodynamic Studies on the Use of Waste Orange Peel in the Removal of Pb2+ Ions from Aqueous Solutions

Year 2023, Volume: 11 Issue: 2, 1105 - 1120, 30.04.2023
https://doi.org/10.29130/dubited.1089013

Abstract

This study demonstrated the efficacy of leftover orange peel in removing Pb2+ ions from aqueous solutions. The effects of contact time, starting metal ion concentration, and pH on adsorption effectiveness were investigated. A starting concentration of 800 mg/L, a contact time of 90 minutes, and a solution pH of 4.32 were found to be the best working conditions for the removal of the Pb2+ ion. In order to examine the surface characteristics of the orange peel, SEM, energy dispersion spectroscopy, and Fourier transform infrared spectroscopy were all used (FT-IR). The outcomes showed that the isotherm data was sufficient for the Langmuir isotherm model, which deals with chemical adsorption and the likely irreversibility of the process. The Pb2+ ion's adsorption capacity was found to be 35.842, 35.714, and 35.087 mg/g at 318, 308, and 298 K, respectively. Pseudo-second order, which had the highest coefficient of regression and best described the kinetic data for Pb2+ adsorption. Thermodynamic investigations revealed that the removal of the Pb2+ ion from orange peel was a natural and exothermic process. Due to its great taking away capability, leftover orange peel has been discovered to be an effective and promising material for the absorption of Pb2+ ions from the aqueous environment. It is also simple to get and inexpensive.

References

  • [1] D. Dai, Z. Li, J. Yang, C. Wang, J.R. Wu, Y. Wang, Y.W. Yang, “Supramolecular assembly-induced emission enhancement for efficient mercury (II) detection and removal,” Journal of the American Chemical Society, vol.141, no.11, pp. 4756-4763, 2019.
  • [2] R.V. Hemavathy, A. Saravanan, P.S. Kumar, D.V.N. Vo, S. Karishma, S. Jeevanantham, “Adsorptive removal of Pb (II) ions onto surface modified adsorbents derived from Cassia fistula seeds: Optimization and modelling study,” Chemosphere, pp. 131276, 2021.
  • [3] A. Saravanan, P.S. Kumar, P.R. Yaashikaa, S. Karishma, S. Jeevanantham, S. Swetha, “Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb (II) ions from water system,” Chemosphere, vol. 277, pp.130236, 2021.
  • [4] S.N.H. Azmi, M. Al-Balushi, F. Al-Siyabi, N. Al-Hinai, S. Khurshid, “Adsorptive removal of Pb (II) ions from groundwater samples in Oman using carbonized Phoenix dactylifera seed (Date stone),” Journal of King Saud University-Science, vol. 32, no. 7, pp. 2931-2938, 2020.
  • [5] A.B. Rakhym, G.A. Seilkhanova, T.S. Kurmanbayeva, “Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay,” Materials Today. Proceedings, vol. 31, pp. 482-485, 2020. [6] A. Mehdinia, S. Heydari, A. Jabbari, “Synthesis and characterization of reduced graphene oxide-Fe3O4@ polydopamine and application for adsorption of lead ions: Isotherm and kinetic studies,” Materials Chemistry and Physics, vol. 239, pp. 121964, 2020. [7] S. Kaushal, N. Kaur, M. Kaur, P.P. Singh, “Dual-responsive pectin/graphene oxide (Pc/GO) nano-composite as an efficient adsorbent for Cr (III) ions and photocatalyst for degradation of organic dyes in waste water,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 403, pp.112841, 2020.
  • [8] J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, “Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica,” Journal of Hazardous Materials, vol. 163, no. 1, pp. 213-221, 2009.
  • [9] A. Oehmen, D. Vergel, J. Fradinho, M.A. Reis, J.G. Crespo, S. Velizarov, “Mercury removal from water streams through the ion exchange membrane bioreactor concept,” Journal of Hazardous Materials, vol. 264, pp. 65-70, 2014.
  • [10] J. Hong, J. Li, L. Kang, L. Gao, X. Shi, “Preparation of novel terephthalic acid modified Fe/Ni metal organic nanosheet with high adsorption performance for trace Pb2+,” Applied Surface Science, vol. 579, pp. 152268, 2022.
  • [11] A. Benhamou, M. Baudu, Z. Derriche, J.P. Basly, “Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48,” Journal of Hazardous Materials, vol. 171, no. 1-3, pp. 1001-1008, 2009.
  • [12] Y. Altunkaynak, M. Canpolat, Ö. Yavuz, Ö. “Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: equilibrium, kinetic and thermodynamic studies,” Journal of the Iranian Chemical Society, pp.1-12, 2021.
  • [13] C. Ren, X. Ding, W. Li, H. Wu, H. Yang, “Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups,” Journal of Chemical & Engineering Data, vol. 62, no. 6, pp. 1865-1875, 2017. [14] Y. Altunkaynak, “Effectively removing Cu (II) and Ni (II) ions from aqueous solutions using chemically non-processed Midyat stone: equivalent, kinetic and thermodynamic studies,” Journal of the Iranian Chemical Society, pp. 1-14, 2022.
  • [15] S. Kaushal, S.K. Mittal, P. Singh, “Developments in Synthesis, Characterization and Applications of Composite Ion-exchange Materials: A Review,” Oriental Journal of Chemistry, vol. 33, no. 4, pp. 1726-1735, 2017.
  • [16] A. Zhang, Y. Yang, J. Liu, Y. Yu, J. Ding, J. Zhang, Atomic-level mechanism of the effects of NOx species on Pb adsorption over the Al2O3 sorbent surface. Applied Surface Science, vol. 570, pp. 151217, 2021.
  • [17] J. Zha, Z. Zhu, Y. Huang, P.T. Clough, Z. Xia, “Gaseous CdCl2 and PbCl2 adsorption by limestone at high temperature: Mechanistic study through experiments and theoretical calculation,” Applied Surface Science, vol. 555, pp. 149669, 2021.
  • [18] M. Gavrilescu, “Removal of heavy metals from the environment by biosorption,” Engineering in Life Sciences, vol. 4, no. 3, pp. 219-232, 2004.
  • [19] M. Ajmal, R.A.K. Rao, R. Ahmad, R. Ahmad, “Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater,” Journal of Hazardous Materials, vol. 79, no. 1-2, pp. 117-131, 2000. [20] A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, “Agricultural waste peels as versatile biomass for water purification–A review,” Chemical Engineering Journal, vol. 270, pp. 244-271, 2015.
  • [21] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, “Adsorption of methylene blue on low-cost adsorbents: a review,” Journal of Hazardous Materials, vol. 177, no. 1-3, pp. 70-80, 2010. [22] N. Feng, X. Guo, S. Liang, “Adsorption study of copper (II) by chemically modified orange peel,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 1286-1292, 2009.
  • [23] X. Li, D. Zhang, F. Sheng, H. Qing, “Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues,” Ecotoxicology and Environmental Safety, vol.147, pp. 357-366, 2018.
  • [24] S. Ilhan, A. Cabuk, C. Filik, F. Caliskan, “Effect of pretreatment on biosorption of heavy metals by fungal biomass,” Trakya Univsity Journal of Science, vol. 5, no. 1, pp. 11-17, 2004.
  • [25] Z. Aksu, İ.A. İşoğlu, “Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp,” Process Biochemistry, vol. 40, no. 9, pp. 3031-3044, 2005.
  • [26] W. Tang, J. Gong, L. Wu, Y. Li, M. Zhang, X. Zeng, “DGGE diversity of manganese mine samples and isolation of a Lysinibacillus sp. efficient in removal of high Mn (II) concentrations,” Chemosphere, vol. 165, pp. 277-283, 2016. [27] W. Qiao, P. Zhang, L. Sun, S. Ma, W. Xu, S. Xu, Y. Niu, “Adsorption performance and mechanism of Schiff base functionalized polyamidoamine dendrimer/silica for aqueous Mn (II) and Co (II),” Chinese Chemical Letters, vol. 31, no. 10, pp. 2742-2746, 2020.
  • [28] I. Kara, D. Tunc, F. Sayin, S.T. Akar, “Study on the performance of metakaolin based geopolymer for Mn (II) and Co (II) removal,” Applied Clay Science, vol. 161, pp. 184-193, 2018. [29] X. Guo, J. Wang, “A general kinetic model for adsorption: theoretical analysis and modeling”. Journal of Molecular Liquids, vol. 288, pp.111100, 2019.
  • [30] Y.S. Ho, G. McKay, “A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents,” Process Safety and Environmental Protection, vol. 76, no. 4, pp. 332-340, 1998.
  • [31] M.R. Abukhadra, F.M. Dardir, M. Shaban, E.A. Ahmed, M.F. Soliman, “Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism,” Ecotoxicology and Environmental Safety, vol. 157, pp. 358-368, 2018.
  • [32] F.C. Wu, R.L. Tseng, R.S. Juang, “Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics,” Chemical Engineering Journal, vol.153, no. 1-3, pp. 1-8, 2009. [33] A.A. Taha, M.A. Shreadah, A.M. Ahmed, H.F. Heiba, “Multi-component adsorption of Pb (II), Cd (II), and Ni (II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination,” Journal of Environmental Chemical Engineering,” vol. 4, no. 1, pp. 1166-1180, 2016.
  • [34] K.Y. Foo, B.H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chemical Engineering Journal, vol. 156, no. 1, pp. 2-10, 2010. [35] C. Nguyen, D.D. Do, “The Dubinin–Radushkevich equation and the underlying microscopic adsorption description,” Carbon, vol. 39, no. 9, pp. 1327-1336, 2001.
  • [36] Y. Wu, Y. Fan, M. Zhang, Z. Ming, S. Yang, A. Arkin, P. Fang, “Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems,” Biochemical Engineering Journal, vol. 105, pp. 27-35, 2016.
  • [37] S. Zhu, S.H. Ho, X. Huang, D. Wang, F. Yang, L. Wang, F. Ma, “Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance,” ACS Sustainable Chemistry & Engineering, vol. 5, no. 11, pp. 9673-9682, 2017.
  • [38] X. Luo, X. Lei, N. Cai, X. Xie, Y. Xue, F. Yu, “Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon,” ACS Sustainable Chemistry & Engineering, vol. 4, no. 7, pp. 3960-3969, 2016.
  • [39] D. Shao, C. Chen, X. Wang, “Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb (II),” Chemical Engineering Journal, vol. 185, pp. 144-150, 2012. [40] R. Karthik, S. Meenakshi, “Removal of Pb (II) and Cd (II) ions from aqueous solution using polyaniline grafted chitosan,” Chemical Engineering Journal. Vol. 263, pp. 168-177, 2015. [41] R. Jayasree, P.S. Kumar, A. Saravanan, R.V. Hemavathy, P.R. Yaashikaa, P. Arthi, K.C. Choi, “Sequestration of toxic Pb (II) ions using ultrasonic modified agro waste: Adsorption mechanism and modelling study,” Chemosphere, vol. 285, pp. 131502, 2021. [42] R. Ahmad, R. Kumar, M.A. Laskar, “Adsorptive removal of Pb2+ form aqueous solution by macrocyclic calix [4] naphthalene: kinetic, thermodynamic, and isotherm analysis,” Environmental Science and Pollution Research, vol. 20, no. 1, pp. 219-226, 2013. [43] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, “A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption,” Journal of Molecular Liquids, vol. 273, pp. 425-434, 2019.
  • [44] V.K. Gupta, “Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent,” Industrial & Engineering Chemistry Research, vol. 37, no. 1, pp. 192-202, 1998.
  • [45] G. De Angelis, L. Medeghini, A.M. Conte, S. Mignardi, “Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater,” Journal of Cleaner Production, vol. 164, pp. 1497-1506, 2017.

Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar

Year 2023, Volume: 11 Issue: 2, 1105 - 1120, 30.04.2023
https://doi.org/10.29130/dubited.1089013

Abstract

Bu çalışmada, Pb2+ iyonlarının sulu çözeltilerden uzaklaştırılmasında atık portakal kabuğunun (APK) etkin bir şekilde değerlendirilmesi ve geri dönüşüme kazandırılması anlatılmaktadır. Adsorpsiyon verimliliği için; metal iyonu başlangıç derişimi, temas süresi, pH etkisi gibi farklı parametrelerin sonuçları incelendi. Pb2+ iyonunun uzaklaştırılmasında en uygun çalışma koşulları; metal iyonu başlangıç derişimi 800 mg/L, temas süresi 90 dakika ve çözelti pH'ı 4,32 olarak belirlendi. APK’nın yüzey özellikleri, Fourier dönüşümlü kızılötesi spektroskopisi (FTIR), taramalı elektron mikroskobu (SEM) ve enerji dağılım spektroskopisi ile araştırıldı. Elde edilen veriler (izoterm verileri) incelendiğinde, işlemin olası tersinmezliğine ve kimyasal adsorpsiyona karşılık gelen Langmuir izoterm modeline uygun olduğunu gösterdi. 298, 308 ve 318 K'de Pb2+ iyonu için adsorpsiyon kapasitesi sırasıyla 35,842, 35,714 ve 35,087 mg/g olarak hesaplandı. En iyi kinetik veriler, Pb2+ adsorpsiyonu için en yüksek regresyon katsayısına sahip yalancı ikinci dereceden denklem ile tanımlandı. Termodinamik çalışmalar, APK kullanılarak Pb2+ iyonlarının uzaklaştırılması işleminin doğal ve endotermik bir süreç olduğunu gösterdi. APK 'nın yüksek uzaklaştırma kapasitesi, kolay bulunması ve ucuz olması nedeniyle sulu ortamdan Pb2+ iyonlarının uzaklaştırılmasında etkili ve umut verici bir malzeme olduğu tespit edildi.

References

  • [1] D. Dai, Z. Li, J. Yang, C. Wang, J.R. Wu, Y. Wang, Y.W. Yang, “Supramolecular assembly-induced emission enhancement for efficient mercury (II) detection and removal,” Journal of the American Chemical Society, vol.141, no.11, pp. 4756-4763, 2019.
  • [2] R.V. Hemavathy, A. Saravanan, P.S. Kumar, D.V.N. Vo, S. Karishma, S. Jeevanantham, “Adsorptive removal of Pb (II) ions onto surface modified adsorbents derived from Cassia fistula seeds: Optimization and modelling study,” Chemosphere, pp. 131276, 2021.
  • [3] A. Saravanan, P.S. Kumar, P.R. Yaashikaa, S. Karishma, S. Jeevanantham, S. Swetha, “Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb (II) ions from water system,” Chemosphere, vol. 277, pp.130236, 2021.
  • [4] S.N.H. Azmi, M. Al-Balushi, F. Al-Siyabi, N. Al-Hinai, S. Khurshid, “Adsorptive removal of Pb (II) ions from groundwater samples in Oman using carbonized Phoenix dactylifera seed (Date stone),” Journal of King Saud University-Science, vol. 32, no. 7, pp. 2931-2938, 2020.
  • [5] A.B. Rakhym, G.A. Seilkhanova, T.S. Kurmanbayeva, “Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay,” Materials Today. Proceedings, vol. 31, pp. 482-485, 2020. [6] A. Mehdinia, S. Heydari, A. Jabbari, “Synthesis and characterization of reduced graphene oxide-Fe3O4@ polydopamine and application for adsorption of lead ions: Isotherm and kinetic studies,” Materials Chemistry and Physics, vol. 239, pp. 121964, 2020. [7] S. Kaushal, N. Kaur, M. Kaur, P.P. Singh, “Dual-responsive pectin/graphene oxide (Pc/GO) nano-composite as an efficient adsorbent for Cr (III) ions and photocatalyst for degradation of organic dyes in waste water,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 403, pp.112841, 2020.
  • [8] J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, “Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica,” Journal of Hazardous Materials, vol. 163, no. 1, pp. 213-221, 2009.
  • [9] A. Oehmen, D. Vergel, J. Fradinho, M.A. Reis, J.G. Crespo, S. Velizarov, “Mercury removal from water streams through the ion exchange membrane bioreactor concept,” Journal of Hazardous Materials, vol. 264, pp. 65-70, 2014.
  • [10] J. Hong, J. Li, L. Kang, L. Gao, X. Shi, “Preparation of novel terephthalic acid modified Fe/Ni metal organic nanosheet with high adsorption performance for trace Pb2+,” Applied Surface Science, vol. 579, pp. 152268, 2022.
  • [11] A. Benhamou, M. Baudu, Z. Derriche, J.P. Basly, “Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48,” Journal of Hazardous Materials, vol. 171, no. 1-3, pp. 1001-1008, 2009.
  • [12] Y. Altunkaynak, M. Canpolat, Ö. Yavuz, Ö. “Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: equilibrium, kinetic and thermodynamic studies,” Journal of the Iranian Chemical Society, pp.1-12, 2021.
  • [13] C. Ren, X. Ding, W. Li, H. Wu, H. Yang, “Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups,” Journal of Chemical & Engineering Data, vol. 62, no. 6, pp. 1865-1875, 2017. [14] Y. Altunkaynak, “Effectively removing Cu (II) and Ni (II) ions from aqueous solutions using chemically non-processed Midyat stone: equivalent, kinetic and thermodynamic studies,” Journal of the Iranian Chemical Society, pp. 1-14, 2022.
  • [15] S. Kaushal, S.K. Mittal, P. Singh, “Developments in Synthesis, Characterization and Applications of Composite Ion-exchange Materials: A Review,” Oriental Journal of Chemistry, vol. 33, no. 4, pp. 1726-1735, 2017.
  • [16] A. Zhang, Y. Yang, J. Liu, Y. Yu, J. Ding, J. Zhang, Atomic-level mechanism of the effects of NOx species on Pb adsorption over the Al2O3 sorbent surface. Applied Surface Science, vol. 570, pp. 151217, 2021.
  • [17] J. Zha, Z. Zhu, Y. Huang, P.T. Clough, Z. Xia, “Gaseous CdCl2 and PbCl2 adsorption by limestone at high temperature: Mechanistic study through experiments and theoretical calculation,” Applied Surface Science, vol. 555, pp. 149669, 2021.
  • [18] M. Gavrilescu, “Removal of heavy metals from the environment by biosorption,” Engineering in Life Sciences, vol. 4, no. 3, pp. 219-232, 2004.
  • [19] M. Ajmal, R.A.K. Rao, R. Ahmad, R. Ahmad, “Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater,” Journal of Hazardous Materials, vol. 79, no. 1-2, pp. 117-131, 2000. [20] A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, “Agricultural waste peels as versatile biomass for water purification–A review,” Chemical Engineering Journal, vol. 270, pp. 244-271, 2015.
  • [21] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, “Adsorption of methylene blue on low-cost adsorbents: a review,” Journal of Hazardous Materials, vol. 177, no. 1-3, pp. 70-80, 2010. [22] N. Feng, X. Guo, S. Liang, “Adsorption study of copper (II) by chemically modified orange peel,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 1286-1292, 2009.
  • [23] X. Li, D. Zhang, F. Sheng, H. Qing, “Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues,” Ecotoxicology and Environmental Safety, vol.147, pp. 357-366, 2018.
  • [24] S. Ilhan, A. Cabuk, C. Filik, F. Caliskan, “Effect of pretreatment on biosorption of heavy metals by fungal biomass,” Trakya Univsity Journal of Science, vol. 5, no. 1, pp. 11-17, 2004.
  • [25] Z. Aksu, İ.A. İşoğlu, “Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp,” Process Biochemistry, vol. 40, no. 9, pp. 3031-3044, 2005.
  • [26] W. Tang, J. Gong, L. Wu, Y. Li, M. Zhang, X. Zeng, “DGGE diversity of manganese mine samples and isolation of a Lysinibacillus sp. efficient in removal of high Mn (II) concentrations,” Chemosphere, vol. 165, pp. 277-283, 2016. [27] W. Qiao, P. Zhang, L. Sun, S. Ma, W. Xu, S. Xu, Y. Niu, “Adsorption performance and mechanism of Schiff base functionalized polyamidoamine dendrimer/silica for aqueous Mn (II) and Co (II),” Chinese Chemical Letters, vol. 31, no. 10, pp. 2742-2746, 2020.
  • [28] I. Kara, D. Tunc, F. Sayin, S.T. Akar, “Study on the performance of metakaolin based geopolymer for Mn (II) and Co (II) removal,” Applied Clay Science, vol. 161, pp. 184-193, 2018. [29] X. Guo, J. Wang, “A general kinetic model for adsorption: theoretical analysis and modeling”. Journal of Molecular Liquids, vol. 288, pp.111100, 2019.
  • [30] Y.S. Ho, G. McKay, “A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents,” Process Safety and Environmental Protection, vol. 76, no. 4, pp. 332-340, 1998.
  • [31] M.R. Abukhadra, F.M. Dardir, M. Shaban, E.A. Ahmed, M.F. Soliman, “Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism,” Ecotoxicology and Environmental Safety, vol. 157, pp. 358-368, 2018.
  • [32] F.C. Wu, R.L. Tseng, R.S. Juang, “Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics,” Chemical Engineering Journal, vol.153, no. 1-3, pp. 1-8, 2009. [33] A.A. Taha, M.A. Shreadah, A.M. Ahmed, H.F. Heiba, “Multi-component adsorption of Pb (II), Cd (II), and Ni (II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination,” Journal of Environmental Chemical Engineering,” vol. 4, no. 1, pp. 1166-1180, 2016.
  • [34] K.Y. Foo, B.H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chemical Engineering Journal, vol. 156, no. 1, pp. 2-10, 2010. [35] C. Nguyen, D.D. Do, “The Dubinin–Radushkevich equation and the underlying microscopic adsorption description,” Carbon, vol. 39, no. 9, pp. 1327-1336, 2001.
  • [36] Y. Wu, Y. Fan, M. Zhang, Z. Ming, S. Yang, A. Arkin, P. Fang, “Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems,” Biochemical Engineering Journal, vol. 105, pp. 27-35, 2016.
  • [37] S. Zhu, S.H. Ho, X. Huang, D. Wang, F. Yang, L. Wang, F. Ma, “Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance,” ACS Sustainable Chemistry & Engineering, vol. 5, no. 11, pp. 9673-9682, 2017.
  • [38] X. Luo, X. Lei, N. Cai, X. Xie, Y. Xue, F. Yu, “Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon,” ACS Sustainable Chemistry & Engineering, vol. 4, no. 7, pp. 3960-3969, 2016.
  • [39] D. Shao, C. Chen, X. Wang, “Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb (II),” Chemical Engineering Journal, vol. 185, pp. 144-150, 2012. [40] R. Karthik, S. Meenakshi, “Removal of Pb (II) and Cd (II) ions from aqueous solution using polyaniline grafted chitosan,” Chemical Engineering Journal. Vol. 263, pp. 168-177, 2015. [41] R. Jayasree, P.S. Kumar, A. Saravanan, R.V. Hemavathy, P.R. Yaashikaa, P. Arthi, K.C. Choi, “Sequestration of toxic Pb (II) ions using ultrasonic modified agro waste: Adsorption mechanism and modelling study,” Chemosphere, vol. 285, pp. 131502, 2021. [42] R. Ahmad, R. Kumar, M.A. Laskar, “Adsorptive removal of Pb2+ form aqueous solution by macrocyclic calix [4] naphthalene: kinetic, thermodynamic, and isotherm analysis,” Environmental Science and Pollution Research, vol. 20, no. 1, pp. 219-226, 2013. [43] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, “A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption,” Journal of Molecular Liquids, vol. 273, pp. 425-434, 2019.
  • [44] V.K. Gupta, “Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent,” Industrial & Engineering Chemistry Research, vol. 37, no. 1, pp. 192-202, 1998.
  • [45] G. De Angelis, L. Medeghini, A.M. Conte, S. Mignardi, “Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater,” Journal of Cleaner Production, vol. 164, pp. 1497-1506, 2017.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yalçın Altunkaynak 0000-0003-2562-9297

Mutlu Canpolat 0000-0002-3771-6737

Ömer Yavuz 0000-0002-7706-1878

Publication Date April 30, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Altunkaynak, Y., Canpolat, M., & Yavuz, Ö. (2023). Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar. Duzce University Journal of Science and Technology, 11(2), 1105-1120. https://doi.org/10.29130/dubited.1089013
AMA Altunkaynak Y, Canpolat M, Yavuz Ö. Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar. DUBİTED. April 2023;11(2):1105-1120. doi:10.29130/dubited.1089013
Chicago Altunkaynak, Yalçın, Mutlu Canpolat, and Ömer Yavuz. “Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik Ve Termodinamik Çalışmalar”. Duzce University Journal of Science and Technology 11, no. 2 (April 2023): 1105-20. https://doi.org/10.29130/dubited.1089013.
EndNote Altunkaynak Y, Canpolat M, Yavuz Ö (April 1, 2023) Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar. Duzce University Journal of Science and Technology 11 2 1105–1120.
IEEE Y. Altunkaynak, M. Canpolat, and Ö. Yavuz, “Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar”, DUBİTED, vol. 11, no. 2, pp. 1105–1120, 2023, doi: 10.29130/dubited.1089013.
ISNAD Altunkaynak, Yalçın et al. “Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik Ve Termodinamik Çalışmalar”. Duzce University Journal of Science and Technology 11/2 (April 2023), 1105-1120. https://doi.org/10.29130/dubited.1089013.
JAMA Altunkaynak Y, Canpolat M, Yavuz Ö. Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar. DUBİTED. 2023;11:1105–1120.
MLA Altunkaynak, Yalçın et al. “Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik Ve Termodinamik Çalışmalar”. Duzce University Journal of Science and Technology, vol. 11, no. 2, 2023, pp. 1105-20, doi:10.29130/dubited.1089013.
Vancouver Altunkaynak Y, Canpolat M, Yavuz Ö. Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar. DUBİTED. 2023;11(2):1105-20.