Research Article
BibTex RIS Cite

Effect of Polypropylene Fiber Type, Content and Length on Mechanical Performance of Rigid Polyurethane Composites

Year 2023, Volume: 11 Issue: 3, 1327 - 1340, 31.07.2023
https://doi.org/10.29130/dubited.1114633

Abstract

The purpose of this work is to improve mechanical properties of rigid polyurethane (RPU) composites used in traditional ceramic casting industry. Therefore, monofilament (mono) and fibermesh (fibril) polypropylene (PP) fibers with various lengths (3, 6, 12 and 18 mm) were incorporated to polymer matrix at different rates (0.5, 1.0, 1.5 and 2% by weight). Effects of fiber type and content on flexural strength, bending strength and compressive strength of composites were investigated. Surface morphology and thermal characteristics of composites were evaluated by SEM and TGA analysis, respectively. Bulk densities of specimens with and without PP fibers vary between 72,15-146 kg/m3. Compared to pure rigid polyurethane foam, bulk density of monofilament PP reinforced composites significantly increased and the highest density value (146,86 kg/m3) was reached in M6/2.0 sample. On the other hand, incorporation of fibrilmesh caused a decrease in bulk density. While the increase in percentage of mono PP increased flexural strength, the presence of fibril PP had a negative effect on strength. Compressive strength of all mono PP reinforced composites is higher than that of pure RPU, except for M6/0.5 sample. Besides, SEM analysis revealed that the presence of PP fibers generally reduced number of closed cells in composite structure. Experimental findings indicate that fiber type, content and length affect mechanical performance of RPU composites. In addition, it is possible to use mono PP fiber reinforced RPU composites as support apparatus in ceramic casting industry.

Supporting Institution

Erciyes University Scientific Research Projects Coordinator

Project Number

FYL-2018-8082

Thanks

The authors would like to thank Erciyes University Scientific Research Projects Coordinator for supporting this study with Project No. FYL-2018-8082. This study was also supported by Erciyes University ERNAM (Nano Technology Research Center).

References

  • [1] J. R. Fried, Polymer science and technology, 3rd ed., USA: Massachusetts, Pearson Education, 2014, pp. 381-384.
  • [2] M. F. Sonnenschein, Polyurethanes: science, technology, markets, and trends, 2nd ed., Michigan, USA: John Wiley & Sons, 2015, pp. 255-294.
  • [3] B. K. Kim, “Editorial corner-a personal view Cleaner, greener routes for polyurethanes,” Express Polymer Letters, vol. 10, no. 11, p. 873, 2016.
  • [4] M. Szycher, Szycher’s handbook of polyurethanes, 2nd ed., CRC press, Taylor&Francis, 1999, pp. 13-36.
  • [5] M. You, X. Zhang, J. Wang, and X. Wang, “Polyurethane foam containing microencapsulated phase-change materials with styrene–divinybenzene co-polymer shells,” Journal Material Science, vol. 44, no. 12, pp. 3141–3147, 2009.
  • [6] L. B. Tavares, C. V Boas, G. R. Schleder, A. M. Nacas, D. S. Rosa, and D. J. Santos, “Bio-based polyurethane prepared from Kraft lignin and modified castor oil.,” Express Polymer Letters, vol. 10, no. 11, 2016.
  • [7] K. Ashida, Polyurethane and related foams: chemistry and technology, 1st ed., CRC press, Taylor&Francis, 2006, pp. 14-34.
  • [8] M. A. Dweib, C. F. Vahlund, and C. M. Ó. Brádaigh, “Fibre structure and anisotropy of glass reinforced thermoplastics,” Composites Part A: Applied Science and Manufacturing, vol. 31, no. 3, pp. 235–244, 2000.
  • [9] X. Cao, L. J. Lee, T. Widya, and C. Macosko, “Polyurethane/clay nanocomposites foams: processing, structure and properties,” Polymer, vol. 46, no. 3, pp. 775–783, 2005.
  • [10] P. Mondal and D. V Khakhar, “Regulation of cell structure in water blown rigid polyurethane foam,” Macromolecular Symposia, 2004, pp. 241–254.
  • [11] W. J. Seo et al., “Mechanical, morphological, and thermal properties of rigid polyurethane foams blown by distilled water,” Journal of Applied Polymer Science, vol. 90, no. 1, pp. 12–21, 2003.
  • [12] M. Thirumal, D. Khastgir, N. K. Singha, B. S. Manjunath, and Y. P. Naik, “Effect of foam density on the properties of water blown rigid polyurethane foam,” Journal of Applied Polymer Science, vol. 108, no. 3, pp. 1810–1817, 2008.
  • [13] L. Emanoil and M. Liviu, “The effect of loadıng rate and dırectıon of formatıon on fracture toughness of rıgıd polyurethane foams,” Journal of Engineering Studies and Research, vol. 18, no. 1, p. 120-127, 2012.
  • [14] M. E. Kabir, M. C. Saha, and S. Jeelani, “Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite,” Materials Science and Engineering: A, vol. 459, no. 1–2, pp. 111–116, 2007.
  • [15] Z. Xu, X. Tang, A. Gu, and Z. Fang, “Novel preparation and mechanical properties of rigid polyurethane foam/organoclay nanocomposites,” Journal of Applied Polymer Science, vol. 106, no. 1, pp. 439–447, 2007.
  • [16] S. Guo et al., “Preparation and characterization of polyurethane/multiwalled carbon nanotube composites,” Polymers and polymer Composites, vol. 16, no. 8, pp. 501–507, 2008.
  • [17] S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progress in Polymer Science, vol. 28, no. 11, pp. 1539–1641, 2003.
  • [18] H. Mahfuz, V. K. Rangari, M. S. Islam, and S. Jeelani, “Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams,” Composites Part A: Applied Science and Manufacturing, vol. 35, no. 4, pp. 453–460, 2004.
  • [19] F. Saint-Michel, L. Chazeau, and J.-Y. Cavaillé, “Mechanical properties of high density polyurethane foams: II Effect of the filler size,” Composites Science and Technology, vol. 66, no. 15, pp. 2709–2718, 2006.
  • [20] S. Hashemi and Y. Lepessova, “Temperature and weldline effects on tensile properties of injection moulded short glass fibre PC/ABS polymer composite,” Journal Material Science, vol. 42, no. 8, pp. 2652–2661, 2007.
  • [21] B. Mouhmid, A. Imad, N. Benseddiq, S. Benmedakhène, and A. Maazouz, “A study of the mechanical behaviour of a glass fibre reinforced polyamide 6, 6: Experimental investigation,” Polymer Testing, vol. 25, no. 4, pp. 544–552, 2006.
  • [22] J. L. Thomason, “Micromechanical parameters from macromechanical measurements on glass reinforced polypropylene,” Composites Science and Technology, vol. 62, no. 10–11, pp. 1455–1468, 2002.
  • [23] S.-Y. Fu, B. Lauke, E. Mäder, C.-Y. Yue, and X. Hu, “Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites,” Composites Part A: Applied Science and Manufacturing, vol. 31, no. 10, pp. 1117–1125, 2000.
  • [24] S. Wilberforce and S. Hashemi, “Effect of fibre concentration, strain rate and weldline on mechanical properties of injection-moulded short glass fibre reinforced thermoplastic polyurethane,” Journal Material Science, vol. 44, no. 5, pp. 1333–1343, 2009.
  • [25] A. M. Radzi, S. M. Sapuan, M. Jawaid, and M. R. Mansor, “Influence of fibre contents on mechanical and thermal properties of roselle fibre reinforced polyurethane composites,” Fibers Polymers, vol. 18, no. 7, pp. 1353–1358, 2017.
  • [26] Standard Test Method for Apparent Density of Rigid Cellular Plastics, ASTM standart, D1622-08, 2008.
  • [27] B. Kalebayır, “Çok Eksenli ve Katmanlı Lif/Poliüretan Katı Yapısal Panellerin Geliştirilmesi ve Özelliklerinin Karakterize Edilmesi,” Yüksek Lisans Tezi, Tekstil Mühendisliği Bölümü, Erciyes Üniversitesi, Kayseri, 2014.
  • [28] M. M. Aslzadeh, G. M. M. Sadeghi, and M. Abdouss, “Synthesis and characterization of BHETA based new polyurethanes,” Materials Science & Engineering Technology, vol. 41, no. 8, pp. 682–688, 2010.
  • [29] N. Nazeran and J. Moghaddas, “Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application,” Journal of Non-Crystalline Solids, vol. 461, pp. 1–11, 2017.
  • [30] S. Bandyopadhyay-Ghosh, S. B. Ghosh, and M. Sain, “Synthesis of soy-polyol by two step continuous route and development of soy-based polyurethane foam,” Journal of Polymers and the Environment, vol. 18, no. 3, pp. 437–442, 2010.
  • [31] G. Harikrishnan, T. U. Patro, and D. V Khakhar, “Reticulated vitreous carbon from polyurethane foam–clay composites,” Carbon, vol. 45, no. 3, pp. 531–535, 2007.
  • [32] S. H. Kim, H. C. Park, H. M. Jeong, and B. K. Kim, “Glass fiber reinforced rigid polyurethane foams,” Journal Material Science, vol. 45, no. 10, pp. 2675–2680, 2010.

Polipropilen Lif Türü, İçeriği ve Uzunluğunun Sert Poliüretan Kompozitlerin Mekanik Performansına Etkisi

Year 2023, Volume: 11 Issue: 3, 1327 - 1340, 31.07.2023
https://doi.org/10.29130/dubited.1114633

Abstract

Bu çalışmanın amacı, geleneksel seramik döküm endüstrisinde kullanılan sert poliüretan kompozitlerin mekanik özelliklerini iyileştirmektir. Bu nedenle, çeşitli uzunluklarda (3, 6, 12 ve 18 mm) monofilament (mono) ve fiberağ (fibril) polipropilen (PP) elyaflar polimer matrisine farklı oranlarda (ağırlıkça %0.5, 1.0, 1.5 ve %2) dahil edildi. Elyaf tipi ve içeriğinin kompozitlerin eğilme mukavemeti ve basınç mukavemeti üzerindeki etkileri araştırılmıştır. Kompozitlerin yüzey morfolojisi ve termal özellikleri sırasıyla SEM ve TGA analizi ile değerlendirildi. Saf poliüretan ve PP lif içeren numunelerin kütle yoğunlukları 72,15-146 kg/m3 arasında değişmektedir. Saf poliüretan kompozite kıyasla monofilament PP takviyeli kompozitlerin kütle yoğunluğu önemli ölçüde artmış ve M6/2.0 numunesinde en yüksek yoğunluk değerine (146,86 kg/m3) ulaşılmıştır. Öte yandan, fiberağ (fibril) ilavesi, yığın yoğunluğunda bir azalmaya neden oldu. Mono PP yüzdesindeki artış eğilme mukavemetini arttırırken, fibril PP'nin varlığı mukavemeti olumsuz etkilemiştir. Mono PP takviyeli kompozitlerin basınç dayanımı (M6/0.5 numunesi hariç) saf polüretandan daha yüksektir. Ayrıca SEM analizi, PP liflerinin varlığının genellikle kompozit yapısındaki kapalı hücre sayısını azalttığını ortaya koymuştur. Deneysel bulgular, elyaf tipi, içeriği ve uzunluğunun sert poliüretan kompozitlerin mekanik performansını etkilediğini göstermektedir. Ayrıca, mono PP elyaf takviyeli rijit poliüretan kompozitlerin seramik döküm endüstrisinde destek aparatı olarak kullanılması mümkündür.

Project Number

FYL-2018-8082

References

  • [1] J. R. Fried, Polymer science and technology, 3rd ed., USA: Massachusetts, Pearson Education, 2014, pp. 381-384.
  • [2] M. F. Sonnenschein, Polyurethanes: science, technology, markets, and trends, 2nd ed., Michigan, USA: John Wiley & Sons, 2015, pp. 255-294.
  • [3] B. K. Kim, “Editorial corner-a personal view Cleaner, greener routes for polyurethanes,” Express Polymer Letters, vol. 10, no. 11, p. 873, 2016.
  • [4] M. Szycher, Szycher’s handbook of polyurethanes, 2nd ed., CRC press, Taylor&Francis, 1999, pp. 13-36.
  • [5] M. You, X. Zhang, J. Wang, and X. Wang, “Polyurethane foam containing microencapsulated phase-change materials with styrene–divinybenzene co-polymer shells,” Journal Material Science, vol. 44, no. 12, pp. 3141–3147, 2009.
  • [6] L. B. Tavares, C. V Boas, G. R. Schleder, A. M. Nacas, D. S. Rosa, and D. J. Santos, “Bio-based polyurethane prepared from Kraft lignin and modified castor oil.,” Express Polymer Letters, vol. 10, no. 11, 2016.
  • [7] K. Ashida, Polyurethane and related foams: chemistry and technology, 1st ed., CRC press, Taylor&Francis, 2006, pp. 14-34.
  • [8] M. A. Dweib, C. F. Vahlund, and C. M. Ó. Brádaigh, “Fibre structure and anisotropy of glass reinforced thermoplastics,” Composites Part A: Applied Science and Manufacturing, vol. 31, no. 3, pp. 235–244, 2000.
  • [9] X. Cao, L. J. Lee, T. Widya, and C. Macosko, “Polyurethane/clay nanocomposites foams: processing, structure and properties,” Polymer, vol. 46, no. 3, pp. 775–783, 2005.
  • [10] P. Mondal and D. V Khakhar, “Regulation of cell structure in water blown rigid polyurethane foam,” Macromolecular Symposia, 2004, pp. 241–254.
  • [11] W. J. Seo et al., “Mechanical, morphological, and thermal properties of rigid polyurethane foams blown by distilled water,” Journal of Applied Polymer Science, vol. 90, no. 1, pp. 12–21, 2003.
  • [12] M. Thirumal, D. Khastgir, N. K. Singha, B. S. Manjunath, and Y. P. Naik, “Effect of foam density on the properties of water blown rigid polyurethane foam,” Journal of Applied Polymer Science, vol. 108, no. 3, pp. 1810–1817, 2008.
  • [13] L. Emanoil and M. Liviu, “The effect of loadıng rate and dırectıon of formatıon on fracture toughness of rıgıd polyurethane foams,” Journal of Engineering Studies and Research, vol. 18, no. 1, p. 120-127, 2012.
  • [14] M. E. Kabir, M. C. Saha, and S. Jeelani, “Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite,” Materials Science and Engineering: A, vol. 459, no. 1–2, pp. 111–116, 2007.
  • [15] Z. Xu, X. Tang, A. Gu, and Z. Fang, “Novel preparation and mechanical properties of rigid polyurethane foam/organoclay nanocomposites,” Journal of Applied Polymer Science, vol. 106, no. 1, pp. 439–447, 2007.
  • [16] S. Guo et al., “Preparation and characterization of polyurethane/multiwalled carbon nanotube composites,” Polymers and polymer Composites, vol. 16, no. 8, pp. 501–507, 2008.
  • [17] S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progress in Polymer Science, vol. 28, no. 11, pp. 1539–1641, 2003.
  • [18] H. Mahfuz, V. K. Rangari, M. S. Islam, and S. Jeelani, “Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams,” Composites Part A: Applied Science and Manufacturing, vol. 35, no. 4, pp. 453–460, 2004.
  • [19] F. Saint-Michel, L. Chazeau, and J.-Y. Cavaillé, “Mechanical properties of high density polyurethane foams: II Effect of the filler size,” Composites Science and Technology, vol. 66, no. 15, pp. 2709–2718, 2006.
  • [20] S. Hashemi and Y. Lepessova, “Temperature and weldline effects on tensile properties of injection moulded short glass fibre PC/ABS polymer composite,” Journal Material Science, vol. 42, no. 8, pp. 2652–2661, 2007.
  • [21] B. Mouhmid, A. Imad, N. Benseddiq, S. Benmedakhène, and A. Maazouz, “A study of the mechanical behaviour of a glass fibre reinforced polyamide 6, 6: Experimental investigation,” Polymer Testing, vol. 25, no. 4, pp. 544–552, 2006.
  • [22] J. L. Thomason, “Micromechanical parameters from macromechanical measurements on glass reinforced polypropylene,” Composites Science and Technology, vol. 62, no. 10–11, pp. 1455–1468, 2002.
  • [23] S.-Y. Fu, B. Lauke, E. Mäder, C.-Y. Yue, and X. Hu, “Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites,” Composites Part A: Applied Science and Manufacturing, vol. 31, no. 10, pp. 1117–1125, 2000.
  • [24] S. Wilberforce and S. Hashemi, “Effect of fibre concentration, strain rate and weldline on mechanical properties of injection-moulded short glass fibre reinforced thermoplastic polyurethane,” Journal Material Science, vol. 44, no. 5, pp. 1333–1343, 2009.
  • [25] A. M. Radzi, S. M. Sapuan, M. Jawaid, and M. R. Mansor, “Influence of fibre contents on mechanical and thermal properties of roselle fibre reinforced polyurethane composites,” Fibers Polymers, vol. 18, no. 7, pp. 1353–1358, 2017.
  • [26] Standard Test Method for Apparent Density of Rigid Cellular Plastics, ASTM standart, D1622-08, 2008.
  • [27] B. Kalebayır, “Çok Eksenli ve Katmanlı Lif/Poliüretan Katı Yapısal Panellerin Geliştirilmesi ve Özelliklerinin Karakterize Edilmesi,” Yüksek Lisans Tezi, Tekstil Mühendisliği Bölümü, Erciyes Üniversitesi, Kayseri, 2014.
  • [28] M. M. Aslzadeh, G. M. M. Sadeghi, and M. Abdouss, “Synthesis and characterization of BHETA based new polyurethanes,” Materials Science & Engineering Technology, vol. 41, no. 8, pp. 682–688, 2010.
  • [29] N. Nazeran and J. Moghaddas, “Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application,” Journal of Non-Crystalline Solids, vol. 461, pp. 1–11, 2017.
  • [30] S. Bandyopadhyay-Ghosh, S. B. Ghosh, and M. Sain, “Synthesis of soy-polyol by two step continuous route and development of soy-based polyurethane foam,” Journal of Polymers and the Environment, vol. 18, no. 3, pp. 437–442, 2010.
  • [31] G. Harikrishnan, T. U. Patro, and D. V Khakhar, “Reticulated vitreous carbon from polyurethane foam–clay composites,” Carbon, vol. 45, no. 3, pp. 531–535, 2007.
  • [32] S. H. Kim, H. C. Park, H. M. Jeong, and B. K. Kim, “Glass fiber reinforced rigid polyurethane foams,” Journal Material Science, vol. 45, no. 10, pp. 2675–2680, 2010.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bilal Demirel 0000-0002-5390-0630

Hale Aslantaş 0009-0005-6899-5504

Fatih Akkurt 0000-0002-3509-2246

Ali Yaraş 0000-0003-1725-7788

Fugen Daver 0000-0003-0826-4919

Project Number FYL-2018-8082
Publication Date July 31, 2023
Published in Issue Year 2023 Volume: 11 Issue: 3

Cite

APA Demirel, B., Aslantaş, H., Akkurt, F., Yaraş, A., et al. (2023). Effect of Polypropylene Fiber Type, Content and Length on Mechanical Performance of Rigid Polyurethane Composites. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(3), 1327-1340. https://doi.org/10.29130/dubited.1114633
AMA Demirel B, Aslantaş H, Akkurt F, Yaraş A, Daver F. Effect of Polypropylene Fiber Type, Content and Length on Mechanical Performance of Rigid Polyurethane Composites. DUBİTED. July 2023;11(3):1327-1340. doi:10.29130/dubited.1114633
Chicago Demirel, Bilal, Hale Aslantaş, Fatih Akkurt, Ali Yaraş, and Fugen Daver. “Effect of Polypropylene Fiber Type, Content and Length on Mechanical Performance of Rigid Polyurethane Composites”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 11, no. 3 (July 2023): 1327-40. https://doi.org/10.29130/dubited.1114633.
EndNote Demirel B, Aslantaş H, Akkurt F, Yaraş A, Daver F (July 1, 2023) Effect of Polypropylene Fiber Type, Content and Length on Mechanical Performance of Rigid Polyurethane Composites. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11 3 1327–1340.
IEEE B. Demirel, H. Aslantaş, F. Akkurt, A. Yaraş, and F. Daver, “Effect of Polypropylene Fiber Type, Content and Length on Mechanical Performance of Rigid Polyurethane Composites”, DUBİTED, vol. 11, no. 3, pp. 1327–1340, 2023, doi: 10.29130/dubited.1114633.
ISNAD Demirel, Bilal et al. “Effect of Polypropylene Fiber Type, Content and Length on Mechanical Performance of Rigid Polyurethane Composites”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11/3 (July 2023), 1327-1340. https://doi.org/10.29130/dubited.1114633.
JAMA Demirel B, Aslantaş H, Akkurt F, Yaraş A, Daver F. Effect of Polypropylene Fiber Type, Content and Length on Mechanical Performance of Rigid Polyurethane Composites. DUBİTED. 2023;11:1327–1340.
MLA Demirel, Bilal et al. “Effect of Polypropylene Fiber Type, Content and Length on Mechanical Performance of Rigid Polyurethane Composites”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 11, no. 3, 2023, pp. 1327-40, doi:10.29130/dubited.1114633.
Vancouver Demirel B, Aslantaş H, Akkurt F, Yaraş A, Daver F. Effect of Polypropylene Fiber Type, Content and Length on Mechanical Performance of Rigid Polyurethane Composites. DUBİTED. 2023;11(3):1327-40.