Research Article
BibTex RIS Cite

Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi

Year 2023, Volume: 11 Issue: 3, 1472 - 1487, 31.07.2023
https://doi.org/10.29130/dubited.1123834

Abstract

Hidrolik sistemler, günümüzde birçok alanda kullanılmaktadır. Özellikle yüksek güç ihtiyacı olan işlerde tercih edilmektedir. Hidrolik sistemler temelde birkaç basit devre elemanı ve bu elemanları birbirlerine bağlayan devre iletim parçalarından, iletim ve bağlantı parçaları ise borular, hortumlar, rakor, dirsek gibi bağlantı elemanlarından oluşmaktadır. Hidrolik devrelerde enerji tasarrufu ve düşük maliyetli bir sistem oluşturabilmek için minimum basınç kaybı oluşturacak şekilde devrenin tasarlanması gerekmektedir. İletim boruları basınç kaybı yaratan önemli devre elemanlarının başında gelmektedir. Bu çalışmada 90° bükülmüş bir hidrolik devre borusunda meydana gelen basınç kayıpları sayısal olarak hesaplanmıştır. İlk olarak büküm yarıçapının basınç kaybına etkisi, daha sonra büküm sırasında oluşacak ovallik (büküm sırasında oluşan daralmalar) incelenmiştir. Sonuç olarak; büküm yarı çapının artmasının basınç kayıplarını azalttığı, ovalitenin yaklaşık %15’e kadar çok fazla bir basınç kaybı oluşturmadığı ancak bu değerden sonra basınç kayıplarının arttığı tespit edilmiştir

References

  • [1] S. Shabani, A. A. Abedini and M. Ali, ‘‘The effect of the pipe bending angle on the pressure losses vane elbow pipes,’’ The Asian Review of Civil Engineering, vol. 8, no. 1, pp. 1-8, 2019.
  • [2] B. Takgil, R. Kara, “A novel comparative model proposal for hospital pneumatic systems” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Article in press, 2022.
  • [3] B. Takgil, R. Kara “Hastane pnömatik sistemlerinin bulanık mantıkla modellenmesi’’ Mühendislik Bilimleri ve Tasarım Dergisi, vol.12 pp. 18-20, 2011.
  • [4] Y.S. Korkmaz, A. Kibar, and Yigit K.S, ‘’Experimental and numerical investigation of fluid flow in hydraulic filters,’’ Journal of Applied Fluid Mechanics, vol.15, no.2 pp, 363-371, 2022
  • [5] Y.S. Korkmaz, A. Kibar, and Yigit K.S, ‘’Experimental and numerical investigation of flow in hydraulic elbows,’’ Journal of Applied Fluid Mechanics, vol.14, no.4 pp, 1137-1146, 2021
  • [6] K. Jongtae, Y. Mohan and K. Seungjin, ‘‘Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe flow,’’ Engineering Applications of Computational Fluid Mechanics, vol. 8, no.2, pp. 229-239, 2014.
  • [7] A. Gogolin, M. Wasilewski, G. Ligus, S. Wojciechowski, B. Gapinski, J.B. Krolczyk, D. Zajac and G.M. Krolczyket, ‘‘Influence of geometry and surface morphology of the U-tube on the fluid flow in the range of various velocities,’’ Measurement, vol. 164, 2020.
  • [8] D. Prasun, S. K. Saha, N. Nandi and N. Pal, ‘‘Numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ε modelling,’’ Engineering Science and Technology, an International Journal, vol. 19, no. 2, pp. 904-910, 2016.
  • [9] Q. H. Mazumder, S. A. Siddique, ‘‘CFD analysis of two-phase flow characteristics in a 90 degree elbow,’’ The Journal of Computational Multiphase Flows, vol. 3, no. 3, pp. 165-175, 2011.
  • [10] H. Safayet, H. Ishtiaque, ‘‘Computational investigation of turbulent flow development in 180 channel with circular cross section,’’ European Journal of Engineering and Technology Research, vol. 3, no. 12, pp. 98-105, 2018.
  • [11] Z.Wei, J. Wang, S. Du, W. Zhao and H. Li, ‘‘Energy management strategies for hybrid construction machinery: Evolution, classification, comparison and future trends,’’ Energies, vol. 12, no. 10, 2019.
  • [12] B. D. Gajbhiye, H. A. Kulkarni, Shashank S. Tiwari and C.S. Mathpati, ‘‘Teaching turbulent flow through pipe fittings using computational fluid dynamics approach,’’ Engineering Reports, vol. 2, no.1, 2020.
  • [13] P. Kumar, G. Rajamohan, ‘‘CFD modeling for the estimation of pressure loss coefficients of pipe fittings: An undergraduate Project,’’ Computer Applications in Engineering Education, vol. 24, no. 2, pp. 180-185, 2016.
  • [14] S. Vladimir, D. Knežević, ‘‘Determination of pressure losses in hydraulic pipeline systems by considering temperature and pressure,’’ Strojniški Vestnik-Journal of Mechanical Engineering, vol. 55, no. 4, pp. 237-243, 2009.
  • [15] P. Piotr, S. Piotr, A. Artur and W. Wieslaw, ‘‘Selection of the relevant turbulence model in a CFD simulation of a flow disturbed by hydraulic elbow—comparative analysis of the simulation with measurements results obtained by the ultrasonic flowmeter,’’ Journal of Thermal Science, vol. 27, no. 5, pp. 413-420, 2018.
  • [16] M. Quamrul, V. T. Nallamothu and F. Mazumder, ‘‘Comparison of characteristic particle velocities in solid-liquid multiphase flow in elbow,’’ International Journal of Thermofluids, vol. 4, 2020.
  • [17] A. Proskurin, ‘‘Linear stability of flow in a 90° bend. Physics of Fluids,’’ vol. 34, no. 3, 2022.
  • [18] Q. H. Mazumder, ‘‘CFD analysis of the effect of elbow radius on pressure drop in multiphase flow,’’ Modelling and Simulation in Engineering, vol. 2012, 2012.
  • [19] B. Feng, Y. Sun, X. Yang, S. Li, J. Tu and S. Jiang, ‘‘Characteristics of helium gas with high temperature and high pressure flowing through a 90-degree elbow,’’ International Scholarly Research Notices, vol. 2014, 2014.
  • [20] M. J. Farsani, A.A. Nodooshan, ‘‘Numerical simulation of turbulent nano-fluid flow in a circular elbow,’’ International Journal of Advanced Design & Manufacturing Technology, vol. 9, no. 1, pp. 103-110, 2016.
  • [21] M. Atılgan, H. K. Öztürk, ‘‘Borularda, boru bağlantı elemanlarında ve geçiş borularında enerji kayıpları,’’ IV. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, pp. 547-560, 1999.
  • [22] S. Aracı, Ö. K. Kınacı, ‘‘Boru içi akışlarda basınç kaybının sayısal hesabı,’’ Gemi ve Deniz Teknolojisi, no. 211, pp. 39-60, 2018.
  • [23] O. Ayala, G. R. Hernandez and C. Knight, ‘‘Computational fluid dynamics study of the effects of secondary flows in 90-degree pipe elbow erosion,’’ Comsol Conference, 2020.
  • [24] Z. Liang, C. Guo, and C. Wang, ‘‘The Connection between flow pattern evolution and vibration in 90‐degree pipeline: Bidirectional fluid‐structure interaction,’’ Energy Science & Engineering, vol. 12, no. 2, pp. 308-323, 2022.
  • [25] A. Kalpakli, ‘‘Experimental study of turbulent flows through pipe bends’’ Ph.D. dissertation, KTH Royal Institute of Technology, Stockholm, 2012.
  • [26] L. Hakim, E. T. Asmorowati, ‘‘Numerical simulation on the effect of damper opening angle in square duct 90-degree elbow,’’ Journal of Physics Conference Series, 2019.
  • [27] S. Majumder, D. Roy, R. Debnath, A. Mandal and S. Bhattacharjee, ‘‘Numerical study for forced convective turbulent flow in a rectangular elbow,’’ International Conference on Mechanical Engineering, pp. 18-20, 2011.
  • [28] Cansa Makina (2022, Mayıs 30), Ovalleşme Hesaplaması [Online]. Available: https://www.cansamakina.com/Calculation2.aspx
  • [29] Y. A. Çengel, J. M. Cimbala, Fluid Mechanics, 3rd ed., New York, USA: McGraw-Hill, 2014 [30] F.M White, Fluid Mechanics, 7th ed., New York, USA: McGraw-Hill, 2011

Numerical Investigation of Pressure Drops Occurring in 90° Elbow Pipes in Hydraulic Systems

Year 2023, Volume: 11 Issue: 3, 1472 - 1487, 31.07.2023
https://doi.org/10.29130/dubited.1123834

Abstract

Hydraulic systems are used in many fields today. It is especially preferred in areas requiring high power. Hydraulic systems basically consist of a few simple circuit elements and circuit transmission parts that connect these elements. Transmission and connection parts consist of pipes, hoses, and fittings such as unions and elbows. In order to create an energy-saving and low-cost system in hydraulic circuits, The circuit must be designed to create a minimum pressure loss. Circut pipes are one of the most important system elements that create pressure loss. In this study, pressure drops occurring in a hydraulic circuit pipe bent at 90° were investigated numerically. First of all, the effect of the bending radius on the pressure drop was examined, then the ovality that will occur during bending (narrowing during bending) was examined. As a result; it has been determined that increasing in the bending radius reduces the pressure drops, the ovality up to %15 does not cause a pressure drop but after this value, the pressure drops increase.

References

  • [1] S. Shabani, A. A. Abedini and M. Ali, ‘‘The effect of the pipe bending angle on the pressure losses vane elbow pipes,’’ The Asian Review of Civil Engineering, vol. 8, no. 1, pp. 1-8, 2019.
  • [2] B. Takgil, R. Kara, “A novel comparative model proposal for hospital pneumatic systems” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Article in press, 2022.
  • [3] B. Takgil, R. Kara “Hastane pnömatik sistemlerinin bulanık mantıkla modellenmesi’’ Mühendislik Bilimleri ve Tasarım Dergisi, vol.12 pp. 18-20, 2011.
  • [4] Y.S. Korkmaz, A. Kibar, and Yigit K.S, ‘’Experimental and numerical investigation of fluid flow in hydraulic filters,’’ Journal of Applied Fluid Mechanics, vol.15, no.2 pp, 363-371, 2022
  • [5] Y.S. Korkmaz, A. Kibar, and Yigit K.S, ‘’Experimental and numerical investigation of flow in hydraulic elbows,’’ Journal of Applied Fluid Mechanics, vol.14, no.4 pp, 1137-1146, 2021
  • [6] K. Jongtae, Y. Mohan and K. Seungjin, ‘‘Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe flow,’’ Engineering Applications of Computational Fluid Mechanics, vol. 8, no.2, pp. 229-239, 2014.
  • [7] A. Gogolin, M. Wasilewski, G. Ligus, S. Wojciechowski, B. Gapinski, J.B. Krolczyk, D. Zajac and G.M. Krolczyket, ‘‘Influence of geometry and surface morphology of the U-tube on the fluid flow in the range of various velocities,’’ Measurement, vol. 164, 2020.
  • [8] D. Prasun, S. K. Saha, N. Nandi and N. Pal, ‘‘Numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ε modelling,’’ Engineering Science and Technology, an International Journal, vol. 19, no. 2, pp. 904-910, 2016.
  • [9] Q. H. Mazumder, S. A. Siddique, ‘‘CFD analysis of two-phase flow characteristics in a 90 degree elbow,’’ The Journal of Computational Multiphase Flows, vol. 3, no. 3, pp. 165-175, 2011.
  • [10] H. Safayet, H. Ishtiaque, ‘‘Computational investigation of turbulent flow development in 180 channel with circular cross section,’’ European Journal of Engineering and Technology Research, vol. 3, no. 12, pp. 98-105, 2018.
  • [11] Z.Wei, J. Wang, S. Du, W. Zhao and H. Li, ‘‘Energy management strategies for hybrid construction machinery: Evolution, classification, comparison and future trends,’’ Energies, vol. 12, no. 10, 2019.
  • [12] B. D. Gajbhiye, H. A. Kulkarni, Shashank S. Tiwari and C.S. Mathpati, ‘‘Teaching turbulent flow through pipe fittings using computational fluid dynamics approach,’’ Engineering Reports, vol. 2, no.1, 2020.
  • [13] P. Kumar, G. Rajamohan, ‘‘CFD modeling for the estimation of pressure loss coefficients of pipe fittings: An undergraduate Project,’’ Computer Applications in Engineering Education, vol. 24, no. 2, pp. 180-185, 2016.
  • [14] S. Vladimir, D. Knežević, ‘‘Determination of pressure losses in hydraulic pipeline systems by considering temperature and pressure,’’ Strojniški Vestnik-Journal of Mechanical Engineering, vol. 55, no. 4, pp. 237-243, 2009.
  • [15] P. Piotr, S. Piotr, A. Artur and W. Wieslaw, ‘‘Selection of the relevant turbulence model in a CFD simulation of a flow disturbed by hydraulic elbow—comparative analysis of the simulation with measurements results obtained by the ultrasonic flowmeter,’’ Journal of Thermal Science, vol. 27, no. 5, pp. 413-420, 2018.
  • [16] M. Quamrul, V. T. Nallamothu and F. Mazumder, ‘‘Comparison of characteristic particle velocities in solid-liquid multiphase flow in elbow,’’ International Journal of Thermofluids, vol. 4, 2020.
  • [17] A. Proskurin, ‘‘Linear stability of flow in a 90° bend. Physics of Fluids,’’ vol. 34, no. 3, 2022.
  • [18] Q. H. Mazumder, ‘‘CFD analysis of the effect of elbow radius on pressure drop in multiphase flow,’’ Modelling and Simulation in Engineering, vol. 2012, 2012.
  • [19] B. Feng, Y. Sun, X. Yang, S. Li, J. Tu and S. Jiang, ‘‘Characteristics of helium gas with high temperature and high pressure flowing through a 90-degree elbow,’’ International Scholarly Research Notices, vol. 2014, 2014.
  • [20] M. J. Farsani, A.A. Nodooshan, ‘‘Numerical simulation of turbulent nano-fluid flow in a circular elbow,’’ International Journal of Advanced Design & Manufacturing Technology, vol. 9, no. 1, pp. 103-110, 2016.
  • [21] M. Atılgan, H. K. Öztürk, ‘‘Borularda, boru bağlantı elemanlarında ve geçiş borularında enerji kayıpları,’’ IV. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, pp. 547-560, 1999.
  • [22] S. Aracı, Ö. K. Kınacı, ‘‘Boru içi akışlarda basınç kaybının sayısal hesabı,’’ Gemi ve Deniz Teknolojisi, no. 211, pp. 39-60, 2018.
  • [23] O. Ayala, G. R. Hernandez and C. Knight, ‘‘Computational fluid dynamics study of the effects of secondary flows in 90-degree pipe elbow erosion,’’ Comsol Conference, 2020.
  • [24] Z. Liang, C. Guo, and C. Wang, ‘‘The Connection between flow pattern evolution and vibration in 90‐degree pipeline: Bidirectional fluid‐structure interaction,’’ Energy Science & Engineering, vol. 12, no. 2, pp. 308-323, 2022.
  • [25] A. Kalpakli, ‘‘Experimental study of turbulent flows through pipe bends’’ Ph.D. dissertation, KTH Royal Institute of Technology, Stockholm, 2012.
  • [26] L. Hakim, E. T. Asmorowati, ‘‘Numerical simulation on the effect of damper opening angle in square duct 90-degree elbow,’’ Journal of Physics Conference Series, 2019.
  • [27] S. Majumder, D. Roy, R. Debnath, A. Mandal and S. Bhattacharjee, ‘‘Numerical study for forced convective turbulent flow in a rectangular elbow,’’ International Conference on Mechanical Engineering, pp. 18-20, 2011.
  • [28] Cansa Makina (2022, Mayıs 30), Ovalleşme Hesaplaması [Online]. Available: https://www.cansamakina.com/Calculation2.aspx
  • [29] Y. A. Çengel, J. M. Cimbala, Fluid Mechanics, 3rd ed., New York, USA: McGraw-Hill, 2014 [30] F.M White, Fluid Mechanics, 7th ed., New York, USA: McGraw-Hill, 2011
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yavuz Selim Korkmaz 0000-0002-5818-846X

İsmet Tıkız 0000-0003-4477-799X

Publication Date July 31, 2023
Published in Issue Year 2023 Volume: 11 Issue: 3

Cite

APA Korkmaz, Y. S., & Tıkız, İ. (2023). Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi. Duzce University Journal of Science and Technology, 11(3), 1472-1487. https://doi.org/10.29130/dubited.1123834
AMA Korkmaz YS, Tıkız İ. Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi. DUBİTED. July 2023;11(3):1472-1487. doi:10.29130/dubited.1123834
Chicago Korkmaz, Yavuz Selim, and İsmet Tıkız. “Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi”. Duzce University Journal of Science and Technology 11, no. 3 (July 2023): 1472-87. https://doi.org/10.29130/dubited.1123834.
EndNote Korkmaz YS, Tıkız İ (July 1, 2023) Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi. Duzce University Journal of Science and Technology 11 3 1472–1487.
IEEE Y. S. Korkmaz and İ. Tıkız, “Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi”, DUBİTED, vol. 11, no. 3, pp. 1472–1487, 2023, doi: 10.29130/dubited.1123834.
ISNAD Korkmaz, Yavuz Selim - Tıkız, İsmet. “Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi”. Duzce University Journal of Science and Technology 11/3 (July 2023), 1472-1487. https://doi.org/10.29130/dubited.1123834.
JAMA Korkmaz YS, Tıkız İ. Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi. DUBİTED. 2023;11:1472–1487.
MLA Korkmaz, Yavuz Selim and İsmet Tıkız. “Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi”. Duzce University Journal of Science and Technology, vol. 11, no. 3, 2023, pp. 1472-87, doi:10.29130/dubited.1123834.
Vancouver Korkmaz YS, Tıkız İ. Hidrolik Sistemlerdeki 90° Bükümlü Borularda Oluşan Basınç Kayıplarının Sayısal Olarak İncelenmesi. DUBİTED. 2023;11(3):1472-87.