Polygonum Cognatum ve Tragopogon Porrifolius Ekstraktları Kullanılarak Demir, Bakır ve Gümüş Nanopartiküllerin Biyosentezi ve Antimikrobiyal Potansiyellerinin Değerlendirilmesi
Year 2023,
Volume: 11 Issue: 4, 2155 - 2167, 24.10.2023
Özlem Kaplan
,
Nazan Gökşen Tosun
Abstract
Bu çalışmada, Polygonum cognatum (P. cognatum) ve Tragopogon porrifolius'un (T. porrifolius) sulu ekstreleri kullanılarak demir (Fe), bakır (Cu) ve gümüş (Ag) nanopartiküllerin biyosentezi amaçlanmıştır. Sentezlenen NP'ler UV/Vis spektroskopisi, fourier transform kızılötesi spektroskopisi (FTIR) ve dinamik ışık saçılım (DLS) tekniği kullanılarak karakterize edilmiştir. Nanopartiküllerin antibakteriyel aktivitesi, iyi bilinen patojenler Klebsiella pneumonia, Pseudomonas aeruginosa, Enterococcus faecalis ve Staphylococcus aureus'e karşı analiz edilmiştir. Ek olarak bu nanopartiküllerin Candida albicans ve Candida utilis suşlarına karşı antifungal aktivitesi de değerlendirilmiştir. Elde edilen sonuçlar, sentezlenen nanopartiküllerin orta düzeyde bir antimikrobiyal etkiye sahip olduğunu göstermiştir.
Supporting Institution
Tokat Gaziosmanpaşa University
References
- [1]H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi, M. A. Mahjoub, M. Koohiyan, and A. Ahmadi, “A Systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing?,” Medicina (Kaunas), vol. 55, no. 8, 2019.
- [2]M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, M. Saravanan, M. F. Ubaid, M. Ali, and Z. K. Shinwari, “Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics,” Nanomedicine (Lond), vol. 11, no. 23, pp. 3157-3177, 2016.
- [3]H. Barabadi, A. Alizadeh, M. Ovais, A. Ahmadi, Z. K. Shinwari, and M. Saravanan, “Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta-analysis,” IET Nanobiotechnol, vol. 12, no. 4, pp. 377-391, 2018.
- [4]Ö. Kaplan, N. Gökşen Tosun, A. Özgür, S. Erden Tayhan, S. Bilgin, İ. Türkekul, and İ. Gökçe, “Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: Characterization, anticancer, antimicrobial and wound healing activities,” Journal of Drug Delivery Science and Technology, vol. 64, pp. 102641, 2021.
- [5]J. Xiong, X. D. Wu, and Q. J. Xue, “Biomolecule-assisted synthesis of highly stable dispersions of water-soluble copper nanoparticles,” J Colloid Interface Sci, vol. 390, no. 1, pp. 41-6, 2013.
- [6]D. Zhang, X. L. Ma, Y. Gu, H. Huang, and G. W. Zhang, “Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer,” Front Chem, vol. 8, pp. 799, 2020.
- [7]A. Ahsan, M. A. Farooq, A. Ahsan Bajwa, and A. Parveen, “Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation,” Molecules, vol. 25, no. 15, 2020.
- [8]E. Alphandery, “Natural metallic nanoparticles for application in nano-oncology,” Int J Mol Sci, vol. 21, no. 12, 2020.
- [9]L. Carson, S. Bandara, M. Joseph, T. Green, T. Grady, G. Osuji, A. Weerasooriya, P. Ampim, and S. Woldesenbet, “Green synthesis of silver nanoparticles with antimicrobial properties using phyla dulcis plant extract,” Foodborne Pathog Dis, vol. 17, no. 8, pp. 504-511, 2020.
- [10]P. K. Thakur, and V. Verma, “A Review on Green Synthesis, Characterization and Anticancer Application of Metallic Nanoparticles,” Appl Biochem Biotechnol, vol. 193, no. 7, pp. 2357-2378, 2021.
- [11]A. Singh, P. K. Gautam, A. Verma, V. Singh, P. M. Shivapriya, S. Shivalkar, A. K. Sahoo, and S. K. Samanta, “Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review,” Biotechnol Rep (Amst), vol. 25, pp. e00427, 2020.
- [12]N. Gökşen Tosun, and Ö. Kaplan, “Optimization of the Green Synthesis of Silver Nanoparticle with Box-Behnken Design: Using Aloe Vera Plant Extract as a Reduction Agent,” SAUJS, vol. 25, no. 3, pp. 774-787, 2021.
- [13]B. Uzair, A. Liaqat, H. Iqbal, B. Menaa, A. Razzaq, G. Thiripuranathar, N. Fatima Rana, and F. Menaa, “Green and cost-effective synthesis of metallic nanoparticles by algae: safe methods for translational medicine,” Bioengineering (Basel), vol. 7, no. 4, 2020.
- [14]Ö. Kaplan, and N. Gökşen Tosun, “Biosynthesis of silver nanoparticles from Teucrioside and investigation of its antibacterial activity,” Cumhuriyet Sci. J., vol. 42, no. 1, pp. 60-67, 2021.
- [15]B. M. Abdallah, and E. M. Ali, “Green synthesis of silver nanoparticles using the lotus lalambensis aqueous leaf extract and their anti-candidal activity against oral candidiasis,” ACS Omega, vol. 6, no. 12, pp. 8151-8162, 2021.
- [16]A. Wibowo, G. U. N. Tajalla, M. A. Marsudi, G. Cooper, L. Asri, F. Liu, H. Ardy, and P. Bartolo, “Green synthesis of silver nanoparticles using extract of cilembu sweet potatoes (ipomoea batatas l var. rancing) as potential filler for 3d printed electroactive and anti-infection scaffolds,” Molecules, vol. 26, no. 7, 2021.
- [17]A. Salayova, Z. Bedlovicova, N. Daneu, M. Balaz, Z. Lukacova Bujnakova, L. Balazova, and L. Tkacikova, “Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: morphology and antibacterial efficacy,” Nanomaterials (Basel), vol. 11, no. 4, 2021.
- [18]E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A. L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A. M. Silva, A. Durazzo, A. Santini, M. L. Garcia, and E. B. Souto, “Metal-Based Nanoparticles as Antimicrobial Agents: An Overview,” Nanomaterials (Basel), vol. 10, no. 2, 2020.
- [19]F. T. Guragac Dereli, M. Ilhan, E. Kozan, and E. Kupeli Akkol, “Effective eradication of pinworms (Syphacia obvelata and Aspiculuris tetraptera) with Polygonum cognatum Meissn,” Exp Parasitol, vol. 196, pp. 63-67, 2019.
- [20]A. Yıldırım, A. Mavi, and A. Kara, “Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts,” J. Sci. Food Agric., vol. 83, no. 1, pp. 64-69, 2003.
- [21]M. Pehlivan, H. Karahan Çöven, B. Çerçi, A. Eldem, T. Öz, and N. Savlak, “The cytotoxic effect of Polygonium cognatum and chemotherapeutic effect of doxorubicin on glioblastoma cells,” Eur J Ther, vol. 27, no. 1, pp. 50-54, 2021.
- [22] N. Eruygur, E. Ucar, M. Atas, M. Ergul, M. Ergul, and F. Sozmen, “Determination of biological activity of Tragopogon porrifolius and Polygonum cognatum consumed intensively by people in Sivas,” Toxicol Rep, vol. 7, pp. 59-66, 2020.
- [23]C. Formisano, D. Rigano, F. Senatore, M. Bruno, and S. Rosselli, “Volatile constituents of the aerial parts of white salsify (Tragopogon porrifolius L., Asteraceae),” Nat Prod Res, vol. 24, no. 7, pp. 663-8, 2010.
- [24]C. Zidorn, U. Lohwasser, S. Pschorr, D. Salvenmoser, K. H. Ongania, E. P. Ellmerer, A. Borner, and H. Stuppner, “Bibenzyls and dihydroisocoumarins from white salsify (Tragopogon porrifolius subsp. porrifolius),” Phytochemistry, vol. 66, no. 14, pp. 1691-7, 2005.
- [25]C. Tenkerian, M. El-Sibai, C. F. Daher, and M. Mroueh, “Hepatoprotective, Antioxidant, and Anticancer Effects of the Tragopogon porrifolius Methanolic Extract,” Evid Based Complement Alternat Med, vol. 2015, pp. 161720, 2015.
- [26]B. Plackal Adimuriyil George, N. Kumar, H. Abrahamse, and S. S. Ray, “Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells,” Sci Rep, vol. 8, no. 1, pp. 14368, 2018.
- [27] A. Zapata, and S. Ramirez-Arcos, “A comparative study of McFarland turbidity standards and the Densimat photometer to determine bacterial cell density,” Curr Microbiol, vol. 70, no. 6, pp. 907-9, 2015.
- [28]J. Grand, B. Auguie, and E. C. Le Ru, “Correction to combined extinction and absorption uv-visible spectroscopy as a method for revealing shape imperfections of metallic nanoparticles,” Anal Chem, vol. 92, no. 5, pp. 4164, 2020.
- [29]M. E. Pekdemir, S. Pekdemir, Ş. İnci, S. Kırnağ, and M. Çiftci, “Thermal, magnetic properties and antimicrobial effects of magnetic iron oxide nanoparticles treated with Polygonum cognatum,” Iran J Sci Technol Trans Sci vol. 45, pp. 1579–1586, 2021.
- [30]F. L. Mayer, D. Wilson, and B. Hube, “Candida albicans pathogenicity mechanisms,” Virulence, vol. 4, no. 2, pp. 119-28, 2013.
- [31]G. Scoppettuolo, C. Donato, E. De Carolis, A. Vella, L. Vaccaro, A. La Greca, and M. Fantoni, “Candida utilis catheter-related bloodstream infection,” Med Mycol Case Rep, vol. 6, pp. 70-2, 2014.
- [32]S. S. Salem, and A. Fouda, “Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview,” Biol Trace Elem Res, vol. 199, no. 1, pp. 344-370, 2021.
- [33]F. Moradi, S. Sedaghat, O. Moradi, and S. A. Salmanabadi, “Review on green nano-biosynthesis of silver nanoparticles and their biological activities: with an emphasis on medicinal plants,” Inorganic and nano-metal chemistry vol. 51, no. 1, pp. 133-142.
Biosynthesis of Iron, Copper and Silver Nanoparticles Using Polygonum Cognatum and Tragopogon Porrifolius Extracts and Evaluation of Their Antimicrobial Potentials
Year 2023,
Volume: 11 Issue: 4, 2155 - 2167, 24.10.2023
Özlem Kaplan
,
Nazan Gökşen Tosun
Abstract
In this study, the biosynthesis of iron (Fe), copper (Cu) and silver (Ag) nanoparticles was aimed using aqueous extracts of Polygonum cognatum (P. cognatum) and Tragopogon porrifolius (T. porrifolius). The synthesized nanoparticles were characterized using UV/Vis spectroscopy, fourier transform infrared spectroscopy (FTIR) and dynamic light scattering technique (DLS). The antibacterial activity of the nanoparticles was analyzed against well-known pathogens Klebsiella pneumonia, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus. In addition, the anti-fungal activity of the nanoparticles against Candida albicans and Candida utilis strains was evaluated. The obtained results showed that the synthesized nanoparticles have a moderate antimicrobial effect.
References
- [1]H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi, M. A. Mahjoub, M. Koohiyan, and A. Ahmadi, “A Systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing?,” Medicina (Kaunas), vol. 55, no. 8, 2019.
- [2]M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, M. Saravanan, M. F. Ubaid, M. Ali, and Z. K. Shinwari, “Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics,” Nanomedicine (Lond), vol. 11, no. 23, pp. 3157-3177, 2016.
- [3]H. Barabadi, A. Alizadeh, M. Ovais, A. Ahmadi, Z. K. Shinwari, and M. Saravanan, “Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta-analysis,” IET Nanobiotechnol, vol. 12, no. 4, pp. 377-391, 2018.
- [4]Ö. Kaplan, N. Gökşen Tosun, A. Özgür, S. Erden Tayhan, S. Bilgin, İ. Türkekul, and İ. Gökçe, “Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: Characterization, anticancer, antimicrobial and wound healing activities,” Journal of Drug Delivery Science and Technology, vol. 64, pp. 102641, 2021.
- [5]J. Xiong, X. D. Wu, and Q. J. Xue, “Biomolecule-assisted synthesis of highly stable dispersions of water-soluble copper nanoparticles,” J Colloid Interface Sci, vol. 390, no. 1, pp. 41-6, 2013.
- [6]D. Zhang, X. L. Ma, Y. Gu, H. Huang, and G. W. Zhang, “Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer,” Front Chem, vol. 8, pp. 799, 2020.
- [7]A. Ahsan, M. A. Farooq, A. Ahsan Bajwa, and A. Parveen, “Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation,” Molecules, vol. 25, no. 15, 2020.
- [8]E. Alphandery, “Natural metallic nanoparticles for application in nano-oncology,” Int J Mol Sci, vol. 21, no. 12, 2020.
- [9]L. Carson, S. Bandara, M. Joseph, T. Green, T. Grady, G. Osuji, A. Weerasooriya, P. Ampim, and S. Woldesenbet, “Green synthesis of silver nanoparticles with antimicrobial properties using phyla dulcis plant extract,” Foodborne Pathog Dis, vol. 17, no. 8, pp. 504-511, 2020.
- [10]P. K. Thakur, and V. Verma, “A Review on Green Synthesis, Characterization and Anticancer Application of Metallic Nanoparticles,” Appl Biochem Biotechnol, vol. 193, no. 7, pp. 2357-2378, 2021.
- [11]A. Singh, P. K. Gautam, A. Verma, V. Singh, P. M. Shivapriya, S. Shivalkar, A. K. Sahoo, and S. K. Samanta, “Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review,” Biotechnol Rep (Amst), vol. 25, pp. e00427, 2020.
- [12]N. Gökşen Tosun, and Ö. Kaplan, “Optimization of the Green Synthesis of Silver Nanoparticle with Box-Behnken Design: Using Aloe Vera Plant Extract as a Reduction Agent,” SAUJS, vol. 25, no. 3, pp. 774-787, 2021.
- [13]B. Uzair, A. Liaqat, H. Iqbal, B. Menaa, A. Razzaq, G. Thiripuranathar, N. Fatima Rana, and F. Menaa, “Green and cost-effective synthesis of metallic nanoparticles by algae: safe methods for translational medicine,” Bioengineering (Basel), vol. 7, no. 4, 2020.
- [14]Ö. Kaplan, and N. Gökşen Tosun, “Biosynthesis of silver nanoparticles from Teucrioside and investigation of its antibacterial activity,” Cumhuriyet Sci. J., vol. 42, no. 1, pp. 60-67, 2021.
- [15]B. M. Abdallah, and E. M. Ali, “Green synthesis of silver nanoparticles using the lotus lalambensis aqueous leaf extract and their anti-candidal activity against oral candidiasis,” ACS Omega, vol. 6, no. 12, pp. 8151-8162, 2021.
- [16]A. Wibowo, G. U. N. Tajalla, M. A. Marsudi, G. Cooper, L. Asri, F. Liu, H. Ardy, and P. Bartolo, “Green synthesis of silver nanoparticles using extract of cilembu sweet potatoes (ipomoea batatas l var. rancing) as potential filler for 3d printed electroactive and anti-infection scaffolds,” Molecules, vol. 26, no. 7, 2021.
- [17]A. Salayova, Z. Bedlovicova, N. Daneu, M. Balaz, Z. Lukacova Bujnakova, L. Balazova, and L. Tkacikova, “Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: morphology and antibacterial efficacy,” Nanomaterials (Basel), vol. 11, no. 4, 2021.
- [18]E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A. L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A. M. Silva, A. Durazzo, A. Santini, M. L. Garcia, and E. B. Souto, “Metal-Based Nanoparticles as Antimicrobial Agents: An Overview,” Nanomaterials (Basel), vol. 10, no. 2, 2020.
- [19]F. T. Guragac Dereli, M. Ilhan, E. Kozan, and E. Kupeli Akkol, “Effective eradication of pinworms (Syphacia obvelata and Aspiculuris tetraptera) with Polygonum cognatum Meissn,” Exp Parasitol, vol. 196, pp. 63-67, 2019.
- [20]A. Yıldırım, A. Mavi, and A. Kara, “Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts,” J. Sci. Food Agric., vol. 83, no. 1, pp. 64-69, 2003.
- [21]M. Pehlivan, H. Karahan Çöven, B. Çerçi, A. Eldem, T. Öz, and N. Savlak, “The cytotoxic effect of Polygonium cognatum and chemotherapeutic effect of doxorubicin on glioblastoma cells,” Eur J Ther, vol. 27, no. 1, pp. 50-54, 2021.
- [22] N. Eruygur, E. Ucar, M. Atas, M. Ergul, M. Ergul, and F. Sozmen, “Determination of biological activity of Tragopogon porrifolius and Polygonum cognatum consumed intensively by people in Sivas,” Toxicol Rep, vol. 7, pp. 59-66, 2020.
- [23]C. Formisano, D. Rigano, F. Senatore, M. Bruno, and S. Rosselli, “Volatile constituents of the aerial parts of white salsify (Tragopogon porrifolius L., Asteraceae),” Nat Prod Res, vol. 24, no. 7, pp. 663-8, 2010.
- [24]C. Zidorn, U. Lohwasser, S. Pschorr, D. Salvenmoser, K. H. Ongania, E. P. Ellmerer, A. Borner, and H. Stuppner, “Bibenzyls and dihydroisocoumarins from white salsify (Tragopogon porrifolius subsp. porrifolius),” Phytochemistry, vol. 66, no. 14, pp. 1691-7, 2005.
- [25]C. Tenkerian, M. El-Sibai, C. F. Daher, and M. Mroueh, “Hepatoprotective, Antioxidant, and Anticancer Effects of the Tragopogon porrifolius Methanolic Extract,” Evid Based Complement Alternat Med, vol. 2015, pp. 161720, 2015.
- [26]B. Plackal Adimuriyil George, N. Kumar, H. Abrahamse, and S. S. Ray, “Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells,” Sci Rep, vol. 8, no. 1, pp. 14368, 2018.
- [27] A. Zapata, and S. Ramirez-Arcos, “A comparative study of McFarland turbidity standards and the Densimat photometer to determine bacterial cell density,” Curr Microbiol, vol. 70, no. 6, pp. 907-9, 2015.
- [28]J. Grand, B. Auguie, and E. C. Le Ru, “Correction to combined extinction and absorption uv-visible spectroscopy as a method for revealing shape imperfections of metallic nanoparticles,” Anal Chem, vol. 92, no. 5, pp. 4164, 2020.
- [29]M. E. Pekdemir, S. Pekdemir, Ş. İnci, S. Kırnağ, and M. Çiftci, “Thermal, magnetic properties and antimicrobial effects of magnetic iron oxide nanoparticles treated with Polygonum cognatum,” Iran J Sci Technol Trans Sci vol. 45, pp. 1579–1586, 2021.
- [30]F. L. Mayer, D. Wilson, and B. Hube, “Candida albicans pathogenicity mechanisms,” Virulence, vol. 4, no. 2, pp. 119-28, 2013.
- [31]G. Scoppettuolo, C. Donato, E. De Carolis, A. Vella, L. Vaccaro, A. La Greca, and M. Fantoni, “Candida utilis catheter-related bloodstream infection,” Med Mycol Case Rep, vol. 6, pp. 70-2, 2014.
- [32]S. S. Salem, and A. Fouda, “Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview,” Biol Trace Elem Res, vol. 199, no. 1, pp. 344-370, 2021.
- [33]F. Moradi, S. Sedaghat, O. Moradi, and S. A. Salmanabadi, “Review on green nano-biosynthesis of silver nanoparticles and their biological activities: with an emphasis on medicinal plants,” Inorganic and nano-metal chemistry vol. 51, no. 1, pp. 133-142.