Research Article
BibTex RIS Cite

On the Properties of the Set of Trajectories of the Control System Described by Urysohn Type Integral Equation

Year 2023, Volume: 11 Issue: 4, 1772 - 1781, 24.10.2023
https://doi.org/10.29130/dubited.1186317

Abstract

In this study, the properties of the set of trajectories of the control system described by Urysohn type integral equation are studied. It is assumed that the control functions satisfy integral constraint. It is proved that the set of trajectories is Lipschitz continuous with respect to the parameter which characterizes the bound of control resource. An upper estimation for the diameter of the set of trajectories is given. Robustness of the system’s trajectory with respect to the remaining control resource is discussed.

References

  • [1] W. Heisenberg, Physics and Philosophy. The Revolution in Modern Science, London, Great Britain: George Allen & Unwin, 1958.
  • [2] D. Hilbert, Grundzüge Einer Allgemeinen Theorie der Linearen Integralgleichungen, Leipzig und Berlin, Germany: Druck und Verlag von B.G.Teubner,1912.
  • [3] N.N. Krasovskii, and A.I. Subbotin, Game-Theoretical Control Problems, New York, USA: Springer, 1988.
  • [4] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, New York, USA: John Wiley & Sons, 1962.
  • [5] J. Warga, Optimal Control of Differential and Functional Equations, New York, USA: Academic Press, 1972.
  • [6] R. Conti, Problemi di Controllo e di Controllo Ottimale. Torino, Italy: UTET, 1974.
  • [7] Kh.G. Guseinov, A.A. Neznakhin, and V.N. Ushakov, “Approximate construction of reachable sets of control systems with integral constraints on the controls,” J. Appl. Math. Mech., vol. 63, no. 4, pp. 557-567, 1999.
  • [8] M.I. Gusev, and I.V. Zykov, “On extremal properties of the boundary points of reachable sets for control systems with integral constraints,” Tr. Inst. Math. Mekh. UrO RAN, vol. 23, no. 1, pp. 103-115, 2017.
  • [9] G. Ibragimov, I.A. Alias, U. Waziri, and A.B. Jaafaru, “Differential game of optimal pursuit for an infinite system of differential equations,” Bull. Malays. Math. Sci. Soc., vol. 42, pp. 391-403, 2019.
  • [10] E.K. Kostousova, “State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques,” IFAC Papers Online, vol. 51, no. 32, pp. 245-250, 2018.
  • [11] N.N. Krasovskii, Theory of Control of Motion: Linear Systems, Moscow, USSR: Nauka, 1968.
  • [12] N.N. Subbotina, and A.I. Subbotin, “Alternative for the encounter-evasion differential game with constraints on the momenta of the players' controls,” J. Appl. Math. Mech., vol. 39, no. 3, pp. 376-385, 1975.
  • [13] J.P. Aubin, and A. Cellina, Differential Inclusions, Berlin, Germany: Springer, 1984.
  • [14] K. Deimling, Multivalued Differential Equations, Berlin, Germany: Walter De Gruyter, 1992.
  • [15] A.I. Panasyuk, and V.I Panasyuk, “An equation generated by a differential inclusion,” Mat. Zametki, vol. 27, no. 3, pp. 429-437, 1980.
  • [16] E.J. Balder, “On existence problems for the optimal control of certain nonlinear integral equations of Urysohn type,” J. Optim. Theory Appl., vol. 42, no. 3, pp. 447-465, 1984.
  • [17] M.L. Bennati, “An existence theorem for optimal controls of systems defined by Uryson integral equations,” Ann. Mat. Pura. Appl., vol. 121, no. 4, pp. 187-197, 1979.
  • [18] N. Huseyin, A. Huseyin, and Kh.G. Guseinov, “Approximation of the set of trajectories of the nonlinear control system with limited control resources,” Math. Model. Anal., vol. 23, no. 1, pp. 152-166, 2018.
  • [19] N. Huseyin, A. Huseyin, and Kh.G. Guseinov, “Approximation of the set of trajectories of the control system described by a Urysohn type integral equation,” Tr. Inst. Math. Mekh. UrO RAN, vol. 21, no. 2, pp. 59-72, 2015.
  • [20] A. Huseyin, N. Huseyin, and K.G. Guseinov, “Approximation of the integral funnel of a nonlinear control system with limited control resources,” Minimax Theory and its Applications, vol. 5, no.2, pp. 327-346, 2020.
  • [21] N. Huseyin, “Compactness of the set of trajectories of the control system described by a Urysohn type integral equation,” Int. J. Optim. Control. Theor. Appl. IJOCTA, vol. 7, no.1, pp. 59-65, 2017.
  • [22] I.A. Alias, N. Huseyin, and A. Huseyin, “Compactness of the set of trajectories of the control system described by a Urysohn type integral equation with quadratic integral constraints on the control functions,” J. Inequal. Appl., Paper No. 36, 14 pp., 2016.

Urysohn Tür İntegral Denklem ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine

Year 2023, Volume: 11 Issue: 4, 1772 - 1781, 24.10.2023
https://doi.org/10.29130/dubited.1186317

Abstract

Bu çalışmada Urysohn tür integral denklem ile verilen control systemin yörüngeler kümesinin özellikleri incelenmektedir. Kontrol fonksiyonların integral kısıtı sağladığı varsayılmaktadır. Yörüngeler kümesinin control kaynağın sınırını belirleyen parametreye göre Lipschitz sürekli olduğu kanıtlanmıştır. Yörüngeler kümesinin çapı için bir üst değerlendirme verilmiştir. Sistemin yörüngesinin, kalan control kaynağına göre robastlığı tartışılmaktadır.

References

  • [1] W. Heisenberg, Physics and Philosophy. The Revolution in Modern Science, London, Great Britain: George Allen & Unwin, 1958.
  • [2] D. Hilbert, Grundzüge Einer Allgemeinen Theorie der Linearen Integralgleichungen, Leipzig und Berlin, Germany: Druck und Verlag von B.G.Teubner,1912.
  • [3] N.N. Krasovskii, and A.I. Subbotin, Game-Theoretical Control Problems, New York, USA: Springer, 1988.
  • [4] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, New York, USA: John Wiley & Sons, 1962.
  • [5] J. Warga, Optimal Control of Differential and Functional Equations, New York, USA: Academic Press, 1972.
  • [6] R. Conti, Problemi di Controllo e di Controllo Ottimale. Torino, Italy: UTET, 1974.
  • [7] Kh.G. Guseinov, A.A. Neznakhin, and V.N. Ushakov, “Approximate construction of reachable sets of control systems with integral constraints on the controls,” J. Appl. Math. Mech., vol. 63, no. 4, pp. 557-567, 1999.
  • [8] M.I. Gusev, and I.V. Zykov, “On extremal properties of the boundary points of reachable sets for control systems with integral constraints,” Tr. Inst. Math. Mekh. UrO RAN, vol. 23, no. 1, pp. 103-115, 2017.
  • [9] G. Ibragimov, I.A. Alias, U. Waziri, and A.B. Jaafaru, “Differential game of optimal pursuit for an infinite system of differential equations,” Bull. Malays. Math. Sci. Soc., vol. 42, pp. 391-403, 2019.
  • [10] E.K. Kostousova, “State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques,” IFAC Papers Online, vol. 51, no. 32, pp. 245-250, 2018.
  • [11] N.N. Krasovskii, Theory of Control of Motion: Linear Systems, Moscow, USSR: Nauka, 1968.
  • [12] N.N. Subbotina, and A.I. Subbotin, “Alternative for the encounter-evasion differential game with constraints on the momenta of the players' controls,” J. Appl. Math. Mech., vol. 39, no. 3, pp. 376-385, 1975.
  • [13] J.P. Aubin, and A. Cellina, Differential Inclusions, Berlin, Germany: Springer, 1984.
  • [14] K. Deimling, Multivalued Differential Equations, Berlin, Germany: Walter De Gruyter, 1992.
  • [15] A.I. Panasyuk, and V.I Panasyuk, “An equation generated by a differential inclusion,” Mat. Zametki, vol. 27, no. 3, pp. 429-437, 1980.
  • [16] E.J. Balder, “On existence problems for the optimal control of certain nonlinear integral equations of Urysohn type,” J. Optim. Theory Appl., vol. 42, no. 3, pp. 447-465, 1984.
  • [17] M.L. Bennati, “An existence theorem for optimal controls of systems defined by Uryson integral equations,” Ann. Mat. Pura. Appl., vol. 121, no. 4, pp. 187-197, 1979.
  • [18] N. Huseyin, A. Huseyin, and Kh.G. Guseinov, “Approximation of the set of trajectories of the nonlinear control system with limited control resources,” Math. Model. Anal., vol. 23, no. 1, pp. 152-166, 2018.
  • [19] N. Huseyin, A. Huseyin, and Kh.G. Guseinov, “Approximation of the set of trajectories of the control system described by a Urysohn type integral equation,” Tr. Inst. Math. Mekh. UrO RAN, vol. 21, no. 2, pp. 59-72, 2015.
  • [20] A. Huseyin, N. Huseyin, and K.G. Guseinov, “Approximation of the integral funnel of a nonlinear control system with limited control resources,” Minimax Theory and its Applications, vol. 5, no.2, pp. 327-346, 2020.
  • [21] N. Huseyin, “Compactness of the set of trajectories of the control system described by a Urysohn type integral equation,” Int. J. Optim. Control. Theor. Appl. IJOCTA, vol. 7, no.1, pp. 59-65, 2017.
  • [22] I.A. Alias, N. Huseyin, and A. Huseyin, “Compactness of the set of trajectories of the control system described by a Urysohn type integral equation with quadratic integral constraints on the control functions,” J. Inequal. Appl., Paper No. 36, 14 pp., 2016.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Nesir Hüseyin 0000-0001-7652-1505

Publication Date October 24, 2023
Published in Issue Year 2023 Volume: 11 Issue: 4

Cite

APA Hüseyin, N. (2023). Urysohn Tür İntegral Denklem ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine. Duzce University Journal of Science and Technology, 11(4), 1772-1781. https://doi.org/10.29130/dubited.1186317
AMA Hüseyin N. Urysohn Tür İntegral Denklem ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine. DUBİTED. October 2023;11(4):1772-1781. doi:10.29130/dubited.1186317
Chicago Hüseyin, Nesir. “Urysohn Tür İntegral Denklem Ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine”. Duzce University Journal of Science and Technology 11, no. 4 (October 2023): 1772-81. https://doi.org/10.29130/dubited.1186317.
EndNote Hüseyin N (October 1, 2023) Urysohn Tür İntegral Denklem ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine. Duzce University Journal of Science and Technology 11 4 1772–1781.
IEEE N. Hüseyin, “Urysohn Tür İntegral Denklem ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine”, DUBİTED, vol. 11, no. 4, pp. 1772–1781, 2023, doi: 10.29130/dubited.1186317.
ISNAD Hüseyin, Nesir. “Urysohn Tür İntegral Denklem Ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine”. Duzce University Journal of Science and Technology 11/4 (October 2023), 1772-1781. https://doi.org/10.29130/dubited.1186317.
JAMA Hüseyin N. Urysohn Tür İntegral Denklem ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine. DUBİTED. 2023;11:1772–1781.
MLA Hüseyin, Nesir. “Urysohn Tür İntegral Denklem Ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine”. Duzce University Journal of Science and Technology, vol. 11, no. 4, 2023, pp. 1772-81, doi:10.29130/dubited.1186317.
Vancouver Hüseyin N. Urysohn Tür İntegral Denklem ile Verilen Kontrol Sistemin Yörüngeler Kümesinin Özellikleri Üzerine. DUBİTED. 2023;11(4):1772-81.