Research Article
BibTex RIS Cite

Havacılık Kompozit Malzemelerinde Mikroskobik Teknikler Kullanılarak Yapısal Sağlık İzleme Uygulamaları

Year 2023, Volume: 11 Issue: 5, 2382 - 2390, 29.12.2023
https://doi.org/10.29130/dubited.1374409

Abstract

Yapısal Sağlık İzleme (YSİ), mühendislik yapıları arasında köprüler, binalar ve havacılık kompozit yapılar gibi yapıların malzeme ve geometrik özelliklerindeki değişiklikleri izlemek için düzenli aralıklarla alınan tepki ölçümlerini kullanarak zaman içinde bir sistemin gözlem ve analizini içeren bir süreçtir. YSİ'nin amacı, yapısal davranışta veya koşullarda meydana gelen değişiklikleri tespit etmek ve felaketle sonuçlanmadan önce hasar veya bozulma belirtebilecek olanları saptamaktır. YSİ, yüksek öneme sahip yapılar için hasar tespiti stratejilerinin uygulanmasını içerir. Genellikle sivil mühendislik, havacılık mühendisliği ve makine mühendisliği uygulamalarında yapıların güvenliği ve güvenirliğini sağlamak için kullanılır. Havacılık kompozit yapıların güvenliğini artırarak erken aşamada hasarı tespit eder, hasarın meydana gelmesini önler, güvenilirliği artırır ve yapının ömrünü uzatır. YSİ uygulamaları, uçakların daha az süreyle yerde kalmasını ve daha fazla yolcu ve yük taşımasını sağlayarak işletme maliyetlerini azaltır. Bu uygulamalar, havacılık endüstrisinde uçak kuyruk ve kanat bölgelerinin sağlık durumunu izlemek, otomotiv sektöründe işletme koşullarında araç parçalarının ve bileşenlerinin hasarını ve bozulmasını önlemek, ulaşım sektöründe köprülerin ve tünellerin sağlık durumunu izlemek ve enerji sektöründe rüzgar türbinleri ve diğer yapıların sağlık durumunu izlemek gibi çeşitli alanlarda kullanılabilir. Havacılık kompozit yapılar, darbe hasarı, delaminasyon, matris çatlama, lif kırılması ve boşluklar dahil olmak üzere çeşitli karmaşık olmayan hasar modlarına maruz kalabilir. Bu çalışma, havacılık kompozitlerinin yapısal sağlık uygulamalarının mikroskopik tekniklerle nasıl desteklenebileceği hakkında genel ve faydalı bilgiler sunmaktadır. Konuyu daha iyi anlamak için yukarıda bahsedilen darbe hasarı içeren bir örnek uçak kompozit yapısal bileşeni, mikroskopik teknikler kullanılarak incelenmiştir. Bu araştırma, Stereo ve Taramalı Elektron Mikroskopları (SEM) kullanılarak potansiyel hasar kaynaklarının tanımlanması ve hasarın şiddetinin ayrıntılı açıklamasını içermektedir.

References

  • [1] “Structural health monitoring - Wikipedia.” Accessed: Sep. 14, 2023. [Online]. Available: https://en.wikipedia.org/wiki/Structural_health_monitoring
  • [2] F. G. Yuan, “Preface,” Structural Health Monitoring (SHM) in Aerospace Structures, pp. xvii–xviii, Jan. 2016, doi: 10.1016/B978-0-08-100148-6.05001-0.
  • [3] P. F. Giordano, S. Quqa, and M. P. Limongelli, “The value of monitoring a structural health monitoring system,” Structural Safety, vol. 100, p. 102280, Jan. 2023, doi: 10.1016/J.STRUSAFE.2022.102280.
  • [4] K. Diamanti and C. Soutis, “Structural health monitoring techniques for aircraft composite structures,” Progress in Aerospace Sciences, vol. 46, no. 8, pp. 342–352, Nov. 2010, doi: 10.1016/J.PAEROSCI.2010.05.001.
  • [5] “What is Structural Health Monitoring in Civil Engineering? - The Constructor.” Accessed: Sep. 14, 2023. [Online]. Available: https://theconstructor.org/digital-construction/structural-health-monitoring-civil-engineering/554160/?amp=1
  • [6] M. Ciminello et al., “Preliminary Results of a Structural Health Monitoring System Application for Real-Time Debonding Detection on a Full-Scale Composite Spar,” Sensors 2023, Vol. 23, Page 455, vol. 23, no. 1, p. 455, Jan. 2023, doi: 10.3390/S23010455.
  • [7] E. Ozer and M. Q. Feng, “Structural health monitoring,” Start-Up Creation: The Smart Eco-efficient Built Environment, Second Edition, pp. 345–367, Jan. 2020, doi: 10.1016/B978-0-12-819946-6.00013-8.
  • [8] B. P. Moster et al., “The Application of Structural Health Monitoring in Different Engineering Fields,” IOP Conf Ser Earth Environ Sci, vol. 643, no. 1, p. 012164, Jan. 2021, doi: 10.1088/1755-1315/643/1/012164.
  • [9] Z. Jiawei, “The Application of Structural Health Monitoring in Different Engineering Fields,” IOP Conf Ser Earth Environ Sci, vol. 643, no. 1, Jan. 2021, doi: 10.1088/1755-1315/643/1/012164.
  • [10] S. Hassani, M. Mousavi, and A. H. Gandomi, “Structural Health Monitoring in Composite Structures: A Comprehensive Review,” Sensors (Basel), vol. 22, no. 1, Jan. 2022, doi: 10.3390/S22010153.
  • [11] V. Giurgiutiu, Structural Health Monitoring of Aerospace Composites. Elsevier, 2015. doi: 10.1016/B978-0-12-409605-9.00012-X.
  • [12] J. Cai et al., “Structural Health Monitoring for Composite Materials,” Composites and Their Applications, Aug. 2012, doi: 10.5772/48215.
  • [13] J. Sebastian et al., “Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors,” Carbon N Y, vol. 66, pp. 191–200, Jan. 2014, doi: 10.1016/J.CARBON.2013.08.058.
  • [14] M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, “Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials,” Sensors 2016, Vol. 16, Page 99, vol. 16, no. 1, p. 99, Jan. 2016, doi: 10.3390/S16010099.

Structural Health Monitoring Application of Aviation Composite Materials Using Microscopic Techniques

Year 2023, Volume: 11 Issue: 5, 2382 - 2390, 29.12.2023
https://doi.org/10.29130/dubited.1374409

Abstract

Structural Health Monitoring (SHM) is a process that involves the observation and analysis of a system over time using periodically sampled response measurements to monitor changes to the material and geometric properties of engineering structures such as bridges, buildings, and aerospace composite structures. The goal of SHM is to detect changes in the structural behavior or condition that may indicate damage or degradation before a catastrophic failure occurs. SHM involves the implementation of damage detection strategies for structures of high importance. It is commonly used in civil engineering, aerospace engineering, and mechanical engineering applications to ensure the safety and reliability of structures. It improves the safety of aerospace composite structures by detecting damage at an early stage, preventing damage from occurring, improving reliability, and extending the life of the structure. SHM applications enable aircraft to spend less time on the ground and carry more passengers and cargo, thereby reducing operational costs. It can be utilized in various fields such as monitoring the health condition of aircraft tail and wing areas in the aviation industry, preventing damage and deterioration of car parts and components under operating conditions in the automotive sector, monitoring the health condition of bridges and tunnels in the transportation sector, and monitoring the health condition of wind turbines and other structures in the energy sector. Aerospace composite structures can suffer from several complex nonlinear damage modes, including impact damage, delamination, matrix cracking, fiber breakage, and voids. This study provides general and useful information on how structural health applications of aviation composites can be supported by microscopic techniques. In order to better understand the subject, an example aircraft composite structural component containing impact damage, which was mentioned above, was examined using microscopic techniques. In this investigation conducted using Stereo and Scanning Electron Microscopes (SEM), the identification of
potential damage sources and the assessment of damage severity are explained in detail.

References

  • [1] “Structural health monitoring - Wikipedia.” Accessed: Sep. 14, 2023. [Online]. Available: https://en.wikipedia.org/wiki/Structural_health_monitoring
  • [2] F. G. Yuan, “Preface,” Structural Health Monitoring (SHM) in Aerospace Structures, pp. xvii–xviii, Jan. 2016, doi: 10.1016/B978-0-08-100148-6.05001-0.
  • [3] P. F. Giordano, S. Quqa, and M. P. Limongelli, “The value of monitoring a structural health monitoring system,” Structural Safety, vol. 100, p. 102280, Jan. 2023, doi: 10.1016/J.STRUSAFE.2022.102280.
  • [4] K. Diamanti and C. Soutis, “Structural health monitoring techniques for aircraft composite structures,” Progress in Aerospace Sciences, vol. 46, no. 8, pp. 342–352, Nov. 2010, doi: 10.1016/J.PAEROSCI.2010.05.001.
  • [5] “What is Structural Health Monitoring in Civil Engineering? - The Constructor.” Accessed: Sep. 14, 2023. [Online]. Available: https://theconstructor.org/digital-construction/structural-health-monitoring-civil-engineering/554160/?amp=1
  • [6] M. Ciminello et al., “Preliminary Results of a Structural Health Monitoring System Application for Real-Time Debonding Detection on a Full-Scale Composite Spar,” Sensors 2023, Vol. 23, Page 455, vol. 23, no. 1, p. 455, Jan. 2023, doi: 10.3390/S23010455.
  • [7] E. Ozer and M. Q. Feng, “Structural health monitoring,” Start-Up Creation: The Smart Eco-efficient Built Environment, Second Edition, pp. 345–367, Jan. 2020, doi: 10.1016/B978-0-12-819946-6.00013-8.
  • [8] B. P. Moster et al., “The Application of Structural Health Monitoring in Different Engineering Fields,” IOP Conf Ser Earth Environ Sci, vol. 643, no. 1, p. 012164, Jan. 2021, doi: 10.1088/1755-1315/643/1/012164.
  • [9] Z. Jiawei, “The Application of Structural Health Monitoring in Different Engineering Fields,” IOP Conf Ser Earth Environ Sci, vol. 643, no. 1, Jan. 2021, doi: 10.1088/1755-1315/643/1/012164.
  • [10] S. Hassani, M. Mousavi, and A. H. Gandomi, “Structural Health Monitoring in Composite Structures: A Comprehensive Review,” Sensors (Basel), vol. 22, no. 1, Jan. 2022, doi: 10.3390/S22010153.
  • [11] V. Giurgiutiu, Structural Health Monitoring of Aerospace Composites. Elsevier, 2015. doi: 10.1016/B978-0-12-409605-9.00012-X.
  • [12] J. Cai et al., “Structural Health Monitoring for Composite Materials,” Composites and Their Applications, Aug. 2012, doi: 10.5772/48215.
  • [13] J. Sebastian et al., “Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors,” Carbon N Y, vol. 66, pp. 191–200, Jan. 2014, doi: 10.1016/J.CARBON.2013.08.058.
  • [14] M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, “Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials,” Sensors 2016, Vol. 16, Page 99, vol. 16, no. 1, p. 99, Jan. 2016, doi: 10.3390/S16010099.
There are 14 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Articles
Authors

Seyid Fehmi Diltemiz 0000-0002-3952-4456

Saliha Mustafaoğlu 0009-0000-8701-7996

Furkan Kaya 0009-0003-4365-299X

Publication Date December 29, 2023
Submission Date October 11, 2023
Acceptance Date November 25, 2023
Published in Issue Year 2023 Volume: 11 Issue: 5

Cite

APA Diltemiz, S. F., Mustafaoğlu, S., & Kaya, F. (2023). Structural Health Monitoring Application of Aviation Composite Materials Using Microscopic Techniques. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(5), 2382-2390. https://doi.org/10.29130/dubited.1374409
AMA Diltemiz SF, Mustafaoğlu S, Kaya F. Structural Health Monitoring Application of Aviation Composite Materials Using Microscopic Techniques. DUBİTED. December 2023;11(5):2382-2390. doi:10.29130/dubited.1374409
Chicago Diltemiz, Seyid Fehmi, Saliha Mustafaoğlu, and Furkan Kaya. “Structural Health Monitoring Application of Aviation Composite Materials Using Microscopic Techniques”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 11, no. 5 (December 2023): 2382-90. https://doi.org/10.29130/dubited.1374409.
EndNote Diltemiz SF, Mustafaoğlu S, Kaya F (December 1, 2023) Structural Health Monitoring Application of Aviation Composite Materials Using Microscopic Techniques. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11 5 2382–2390.
IEEE S. F. Diltemiz, S. Mustafaoğlu, and F. Kaya, “Structural Health Monitoring Application of Aviation Composite Materials Using Microscopic Techniques”, DUBİTED, vol. 11, no. 5, pp. 2382–2390, 2023, doi: 10.29130/dubited.1374409.
ISNAD Diltemiz, Seyid Fehmi et al. “Structural Health Monitoring Application of Aviation Composite Materials Using Microscopic Techniques”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11/5 (December 2023), 2382-2390. https://doi.org/10.29130/dubited.1374409.
JAMA Diltemiz SF, Mustafaoğlu S, Kaya F. Structural Health Monitoring Application of Aviation Composite Materials Using Microscopic Techniques. DUBİTED. 2023;11:2382–2390.
MLA Diltemiz, Seyid Fehmi et al. “Structural Health Monitoring Application of Aviation Composite Materials Using Microscopic Techniques”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 11, no. 5, 2023, pp. 2382-90, doi:10.29130/dubited.1374409.
Vancouver Diltemiz SF, Mustafaoğlu S, Kaya F. Structural Health Monitoring Application of Aviation Composite Materials Using Microscopic Techniques. DUBİTED. 2023;11(5):2382-90.