Research Article
BibTex RIS Cite

Faz Değişim Malzemesi Olarak Parafinin Bir Batarya Termal Yönetim Sisteminin Soğutma Performansı Üzerindeki Etkisinin Deneysel Olarak İncelenmesi

Year 2023, Volume: 11 Issue: 5, 2409 - 2418, 29.12.2023
https://doi.org/10.29130/dubited.1379834

Abstract

İçten yanmalı motorlar (İYM'ler) büyük ölçüde fosil yakıtlara bağımlıdır ve hem fosil yakıtların tükenme riski hem de içten yanmalı motorların yaydığı zararlı egzoz emisyonları araştırmacıları elektrikli araçlara (EA) ilgi duymaya yöneltmiştir. Elektrikli araç sektörünün her geçen gün gelişmesiyle birlikte, elektrikli araçların en önemli bileşeni olan pillerin yüksek sıcaklık sorununun çözümünde batarya termal yönetim sistemleri (BTYS) vazgeçilmez hale gelmiştir. Elektrikli araçların maliyeti ve güvenilirliği, kullanılan pil paketinin ömrü, kapasitesi, şarj süresi, dayanıklılığı ve garanti maliyeti gibi parametrelerden etkilenmektedir. Batarya paketinde üretilen ısı, aktif soğutmada gaz veya sıvı soğutmayla, pasif soğutmada ise faz değiştiren malzemeler (FDM) ile uzaklaştırılır. FDM'lerin enerji depolama yoğunluğunun yüksek olması ve FDM'ler kullanılarak yapılan soğutmada fan veya pompa gücüne ihtiyaç duyulmaması, FDM'lerin batarya termal yönetim sistemlerinde tercih edilmesinin nedenlerinden bazılarıdır. Bu çalışmada, 6'sı seri, 3'ü paralel olmak üzere 18 adet lityum iyon pilden oluşan bir pil paketi, önce herhangi bir soğutma sistemi olmadan, ardından 1C akım gücünde FDM ilavesi ile şarj ve deşarj edilmiş ve batarya termal yönetim sisteminin etkisi incelenmiştir. BTYS'nin batarya paketindeki maksimum sıcaklık değeri açısından şarj deneylerinde yaklaşık %8, deşarj deneylerinde ise %23 oranında pozitif etkiye sahip olduğu görülmüştür.

References

  • [1] Ağbulut, Ü., Yıldız, G., Bakır, H., Polat, F., Biçen, Y., Ergün, A., & Gürel, A. E. (2023). Current practices, potentials, challenges, future opportunities, environmental and economic assumptions for Türkiye’s clean and sustainable energy policy: A comprehensive assessment. Sustainable Energy Technologies and Assessments, 56, 103019.
  • [2] Çeçen, M., Yavuz, C., Tırmıkçı, C. A., Sarıkaya, S., & Yanıkoğlu, E. (2022). Analysis and evaluation of distributed photovoltaic generation in electrical energy production and related regulations of Turkey. Clean Technologies and Environmental Policy, 1-16.
  • [3] Karagöz, M., Polat, F., Sarıdemir, S., Yeşilyurt, M. K., & Ağbulut, Ü. (2022). An experimental assessment on dual fuel engine behavior powered by waste tire-derived pyrolysis oil–biogas blends. Fuel Processing Technology, 229, 107177.
  • [4] Polat, F. (2022). Experimental evaluation of the impacts of diesel-nanoparticles-waste tire pyrolysis oil ternary blends on the combustion, performance, and emission characteristics of a diesel engine. Process Safety and Environmental Protection, 160, 847-858.
  • [5] Çeçen, M., & Yavuz, C. (2022). OBPSO Kullanılarak Dağıtık Güneş Enerji Sistemlerinin Optimum Bağlantı Gücü ve Yerinin Belirlenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(2), 940-952.
  • [6] Egerstrom, N., Rojas-Rueda, D., Martuzzi, M., Jalaludin, B., Nieuwenhuijsen, M., So, R., ... & Cole-Hunter, T. (2023). Health and economic benefits of meeting WHO air quality guidelines, Western Pacific Region. Bulletin of the World Health Organization, 101(2), 130.
  • [7] Połednik, B. (2022). Emissions of Air Pollution in Industrial and Rural Region in Poland and Health Impacts. Journal of Ecological Engineering, 23(9).
  • [8] Olabi, A. G., Maghrabie, H. M., Adhari, O. H. K., Sayed, E. T., Yousef, B. A., Salameh, T., ... & Abdelkareem, M. A. (2022). Battery thermal management systems: Recent progress and challenges. International Journal of Thermofluids, 15, 100171.
  • [9] Shchurov, N. I., Dedov, S. I., Malozyomov, B. V., Shtang, A. A., Martyushev, N. V., Klyuev, R. V., & Andriashin, S. N. (2021). Degradation of lithium-ion batteries in an electric transport complex. Energies, 14(23), 8072.
  • [10] Çetin, İ., Sezici, E., Karabulut, M., Avci, E., & Polat, F. (2023). A comprehensive review of battery thermal management systems for electric vehicles. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(3), 989-1004.
  • [11] Chen, X., Chu, A., Li, D., Yuan, Y., Fan, X., & Deng, Y. (2021). Development of the cycling life model of Ni-MH power batteries for hybrid electric vehicles based on real-world operating conditions. Journal of Energy Storage, 34, 101999.
  • [12] Sezici, E., Cetin, I., & Polat, F. (2022). Design and Experimental Investigation of Air-Cooled Battery Thermal Management System for Electric Vehicles. Journal of Engineering Research and Applied Science, 11(2), 2062-2077.
  • [13] M Lin, J., Liu, X., Li, S., Zhang, C., & Yang, S. (2021). A review on recent progress, challenges and perspective of battery thermal management system. International Journal of Heat and Mass Transfer, 167, 120834. 2417
  • [14] Luo, J., Zou, D., Wang, Y., Wang, S., & Huang, L. (2022). Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chemical Engineering Journal, 430, 132741.
  • [15] Hou, J., Meng, X., & Dewancker, B. J. (2021). A numerical study on the effect of phase-change material (PCM) parameters on the thermal performance of lightweight building walls. Case Studies in Construction Materials, 15, e00758.
  • [16] Faraj, K., Khaled, M., Faraj, J., Hachem, F., & Castelain, C. (2020). Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renewable and Sustainable Energy Reviews, 119, 109579.
  • [17] J. Luo, D. Zou, Y. Wang, S. Wang, and L. Huang, “Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review,” Chemical Engineering Journal, vol. 430, p. 132741, Feb. 2022, doi: 10.1016/j.cej.2021.132741.
  • [18] C. Roe et al., “Immersion cooling for lithium-ion batteries – A review,” J Power Sources, vol. 525, p. 231094, Mar. 2022, doi: 10.1016/j.jpowsour.2022.231094.
  • [19] J. Lin, X. Liu, S. Li, C. Zhang, and S. Yang, “A review on recent progress, challenges and perspective of battery thermal management system,” Int J Heat Mass Transf, vol. 167, p. 120834, Mar. 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120834.
  • [20] W. Zichen and D. Changqing, “A comprehensive review on thermal management systems for power lithium-ion batteries,” Renewable and Sustainable Energy Reviews, vol. 139, p. 110685, Apr. 2021, doi: 10.1016/j.rser.2020.110685.
  • [21] N. Javani, I. Dincer, G. F. Naterer, and B. S. Yilbas, “Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles,” Int J Heat Mass Transf, vol. 72, pp. 690–703, May 2014, doi: 10.1016/j.ijheatmasstransfer.2013.12.076.
  • [22] F. Bai, M. Chen, W. Song, Y. Li, Z. Feng, and Y. Li, “Thermal performance of pouch Lithium- ion battery module cooled by phase change materials,” Energy Procedia, vol. 158, pp. 3682–3689, Feb. 2019, doi: 10.1016/j.egypro.2019.01.891.
  • [23] A. Verma, S. Shashidhara, and D. Rakshit, “A comparative study on battery thermal management using phase change material (PCM),” Thermal Science and Engineering Progress, vol. 11, pp. 74–83, Jun. 2019, doi: 10.1016/j.tsep.2019.03.003.

Experimental Investigation of the Effects of Paraffin as a Phase Change Material on the Cooling Performance of a Battery Thermal Management System

Year 2023, Volume: 11 Issue: 5, 2409 - 2418, 29.12.2023
https://doi.org/10.29130/dubited.1379834

Abstract

Internal combustion engines (ICEs) are largely dependent on fossil fuels, and both the risk of depletion of fossil fuels and the harmful exhaust emissions emitted by ICEs have led researchers to become interested in electric vehicles (EVs). As the EV industry develops day by day, battery thermal management systems (BTMS) have become indispensable in solving the high-temperature problem of batteries, which are the most important component of EVs. The cost and reliability of electric vehicles are affected by parameters such as the life cycle, capacity, charging time, durability, and warranty cost of the battery pack used. The heat produced in the battery pack is removed by gas or liquid cooling in active cooling, and by phase change materials (PCM) in passive cooling. The high energy storage density of PCMs and the fact that there is no need for fan or pump power in cooling using PCMs are some of the reasons why PCMs are preferred for BTMSs. In this study, a battery pack consisting of 18 lithium-ion batteries, 6 in series and 3 in parallel, was first charged and discharged without any cooling system and then with the addition of PCM at a current strength of 1C, and the effect of the BTMS was examined. It has been observed that the BTMS has a positive effect of approximately 8% for charging experiments and 23% for discharge experiments in terms of the maximum temperature value in the battery pack.

References

  • [1] Ağbulut, Ü., Yıldız, G., Bakır, H., Polat, F., Biçen, Y., Ergün, A., & Gürel, A. E. (2023). Current practices, potentials, challenges, future opportunities, environmental and economic assumptions for Türkiye’s clean and sustainable energy policy: A comprehensive assessment. Sustainable Energy Technologies and Assessments, 56, 103019.
  • [2] Çeçen, M., Yavuz, C., Tırmıkçı, C. A., Sarıkaya, S., & Yanıkoğlu, E. (2022). Analysis and evaluation of distributed photovoltaic generation in electrical energy production and related regulations of Turkey. Clean Technologies and Environmental Policy, 1-16.
  • [3] Karagöz, M., Polat, F., Sarıdemir, S., Yeşilyurt, M. K., & Ağbulut, Ü. (2022). An experimental assessment on dual fuel engine behavior powered by waste tire-derived pyrolysis oil–biogas blends. Fuel Processing Technology, 229, 107177.
  • [4] Polat, F. (2022). Experimental evaluation of the impacts of diesel-nanoparticles-waste tire pyrolysis oil ternary blends on the combustion, performance, and emission characteristics of a diesel engine. Process Safety and Environmental Protection, 160, 847-858.
  • [5] Çeçen, M., & Yavuz, C. (2022). OBPSO Kullanılarak Dağıtık Güneş Enerji Sistemlerinin Optimum Bağlantı Gücü ve Yerinin Belirlenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(2), 940-952.
  • [6] Egerstrom, N., Rojas-Rueda, D., Martuzzi, M., Jalaludin, B., Nieuwenhuijsen, M., So, R., ... & Cole-Hunter, T. (2023). Health and economic benefits of meeting WHO air quality guidelines, Western Pacific Region. Bulletin of the World Health Organization, 101(2), 130.
  • [7] Połednik, B. (2022). Emissions of Air Pollution in Industrial and Rural Region in Poland and Health Impacts. Journal of Ecological Engineering, 23(9).
  • [8] Olabi, A. G., Maghrabie, H. M., Adhari, O. H. K., Sayed, E. T., Yousef, B. A., Salameh, T., ... & Abdelkareem, M. A. (2022). Battery thermal management systems: Recent progress and challenges. International Journal of Thermofluids, 15, 100171.
  • [9] Shchurov, N. I., Dedov, S. I., Malozyomov, B. V., Shtang, A. A., Martyushev, N. V., Klyuev, R. V., & Andriashin, S. N. (2021). Degradation of lithium-ion batteries in an electric transport complex. Energies, 14(23), 8072.
  • [10] Çetin, İ., Sezici, E., Karabulut, M., Avci, E., & Polat, F. (2023). A comprehensive review of battery thermal management systems for electric vehicles. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(3), 989-1004.
  • [11] Chen, X., Chu, A., Li, D., Yuan, Y., Fan, X., & Deng, Y. (2021). Development of the cycling life model of Ni-MH power batteries for hybrid electric vehicles based on real-world operating conditions. Journal of Energy Storage, 34, 101999.
  • [12] Sezici, E., Cetin, I., & Polat, F. (2022). Design and Experimental Investigation of Air-Cooled Battery Thermal Management System for Electric Vehicles. Journal of Engineering Research and Applied Science, 11(2), 2062-2077.
  • [13] M Lin, J., Liu, X., Li, S., Zhang, C., & Yang, S. (2021). A review on recent progress, challenges and perspective of battery thermal management system. International Journal of Heat and Mass Transfer, 167, 120834. 2417
  • [14] Luo, J., Zou, D., Wang, Y., Wang, S., & Huang, L. (2022). Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chemical Engineering Journal, 430, 132741.
  • [15] Hou, J., Meng, X., & Dewancker, B. J. (2021). A numerical study on the effect of phase-change material (PCM) parameters on the thermal performance of lightweight building walls. Case Studies in Construction Materials, 15, e00758.
  • [16] Faraj, K., Khaled, M., Faraj, J., Hachem, F., & Castelain, C. (2020). Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renewable and Sustainable Energy Reviews, 119, 109579.
  • [17] J. Luo, D. Zou, Y. Wang, S. Wang, and L. Huang, “Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review,” Chemical Engineering Journal, vol. 430, p. 132741, Feb. 2022, doi: 10.1016/j.cej.2021.132741.
  • [18] C. Roe et al., “Immersion cooling for lithium-ion batteries – A review,” J Power Sources, vol. 525, p. 231094, Mar. 2022, doi: 10.1016/j.jpowsour.2022.231094.
  • [19] J. Lin, X. Liu, S. Li, C. Zhang, and S. Yang, “A review on recent progress, challenges and perspective of battery thermal management system,” Int J Heat Mass Transf, vol. 167, p. 120834, Mar. 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120834.
  • [20] W. Zichen and D. Changqing, “A comprehensive review on thermal management systems for power lithium-ion batteries,” Renewable and Sustainable Energy Reviews, vol. 139, p. 110685, Apr. 2021, doi: 10.1016/j.rser.2020.110685.
  • [21] N. Javani, I. Dincer, G. F. Naterer, and B. S. Yilbas, “Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles,” Int J Heat Mass Transf, vol. 72, pp. 690–703, May 2014, doi: 10.1016/j.ijheatmasstransfer.2013.12.076.
  • [22] F. Bai, M. Chen, W. Song, Y. Li, Z. Feng, and Y. Li, “Thermal performance of pouch Lithium- ion battery module cooled by phase change materials,” Energy Procedia, vol. 158, pp. 3682–3689, Feb. 2019, doi: 10.1016/j.egypro.2019.01.891.
  • [23] A. Verma, S. Shashidhara, and D. Rakshit, “A comparative study on battery thermal management using phase change material (PCM),” Thermal Science and Engineering Progress, vol. 11, pp. 74–83, Jun. 2019, doi: 10.1016/j.tsep.2019.03.003.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Fikret Polat 0000-0003-3767-3156

Suat Sarıdemir 0000-0002-6028-1073

Publication Date December 29, 2023
Submission Date October 24, 2023
Acceptance Date November 20, 2023
Published in Issue Year 2023 Volume: 11 Issue: 5

Cite

APA Polat, F., & Sarıdemir, S. (2023). Experimental Investigation of the Effects of Paraffin as a Phase Change Material on the Cooling Performance of a Battery Thermal Management System. Duzce University Journal of Science and Technology, 11(5), 2409-2418. https://doi.org/10.29130/dubited.1379834
AMA Polat F, Sarıdemir S. Experimental Investigation of the Effects of Paraffin as a Phase Change Material on the Cooling Performance of a Battery Thermal Management System. DUBİTED. December 2023;11(5):2409-2418. doi:10.29130/dubited.1379834
Chicago Polat, Fikret, and Suat Sarıdemir. “Experimental Investigation of the Effects of Paraffin As a Phase Change Material on the Cooling Performance of a Battery Thermal Management System”. Duzce University Journal of Science and Technology 11, no. 5 (December 2023): 2409-18. https://doi.org/10.29130/dubited.1379834.
EndNote Polat F, Sarıdemir S (December 1, 2023) Experimental Investigation of the Effects of Paraffin as a Phase Change Material on the Cooling Performance of a Battery Thermal Management System. Duzce University Journal of Science and Technology 11 5 2409–2418.
IEEE F. Polat and S. Sarıdemir, “Experimental Investigation of the Effects of Paraffin as a Phase Change Material on the Cooling Performance of a Battery Thermal Management System”, DUBİTED, vol. 11, no. 5, pp. 2409–2418, 2023, doi: 10.29130/dubited.1379834.
ISNAD Polat, Fikret - Sarıdemir, Suat. “Experimental Investigation of the Effects of Paraffin As a Phase Change Material on the Cooling Performance of a Battery Thermal Management System”. Duzce University Journal of Science and Technology 11/5 (December 2023), 2409-2418. https://doi.org/10.29130/dubited.1379834.
JAMA Polat F, Sarıdemir S. Experimental Investigation of the Effects of Paraffin as a Phase Change Material on the Cooling Performance of a Battery Thermal Management System. DUBİTED. 2023;11:2409–2418.
MLA Polat, Fikret and Suat Sarıdemir. “Experimental Investigation of the Effects of Paraffin As a Phase Change Material on the Cooling Performance of a Battery Thermal Management System”. Duzce University Journal of Science and Technology, vol. 11, no. 5, 2023, pp. 2409-18, doi:10.29130/dubited.1379834.
Vancouver Polat F, Sarıdemir S. Experimental Investigation of the Effects of Paraffin as a Phase Change Material on the Cooling Performance of a Battery Thermal Management System. DUBİTED. 2023;11(5):2409-18.