Research Article
BibTex RIS Cite

Investigation of UV Aging and Compatibilizer Effects on Glass Sphere Reinforced Polymer Composites

Year 2024, Volume: 12 Issue: 1, 39 - 48, 26.01.2024
https://doi.org/10.29130/dubited.1184670

Abstract

A study was conducted on the maleic anhydride grafted polypropylene (MAPP) ratio and the effects of UV (ultraviolet) annealing on the mechanical and morphological properties of polypropylene (PP)/glass spheres (GS) polymer composites. The UV annealing process was carried out at 70 C in three different holding times of 0, 15 and 30 days. A homogeneous mixture was obtained by mixing glass sphere particles in the polypropylene matrix at the rate of 1, 5, 10 and 15% in the extruder. The mixture obtained in the extruder was passed through the crusher to form granules, then the test samples were molded in the injection machine in accordance with the standards. The effects of MAPP and UV retention time on the elastic modulus, yield strength, tensile strength at break, % elongation, Izod impact strength, hardness, density and morphological properties of PP/glass sphere composites were investigated. MAPP and UV retention time have marginal effects on the mechanical properties of composites such as modulus of elasticity and density. The results showed that increasing MAPP content and UV retention time caused an increase in modulus of elasticity and density, whereas İzod impact strength and % elongation decreased as UV retention time increased. The MAPP content affected the thermal behavior of the composite, causing a significant increase in vicat softening temperature and heat deflection temperature-HDT values. In addition, scanning electron microscope (SEM) examination was performed to evaluate the microstructure and material distribution of the glass sphere particles in these experiments.

References

  • [1] N. Kumar, S. Mireja, V. Khandelwal, B. Arun, and G. Manik, “Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study,” Composites Part B: Engineering, vol. 109, pp. 277-285, 2017.
  • [2] Y. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, “Electrical and thermal conductivity of polymers filled with metal powders,” European polymer Journal, vol. 38, no. 9, pp. 1887-1897, 2002.
  • [3] Y. Guo, K. Ruan, X. Shi, X. Yang and J. Gu, “Factors affecting thermal conductivities of the polymers and polymer composites: A review,” Composites Science and Technology, vol. 193, doi:108134, 2020.
  • [4] K. Ruan, X. Shi, Y. Guo, and J. Gu, “Interfacial thermal resistance in thermally conductive polymer composites: A review,” Composites Communications, vol. 22, doi:100518, 2020.
  • [5] I. H. Tavman, “Thermal and mechanical properties of copper powder filled poly (ethylene) composites,” Powder Technology, vol. 91, pp. 63-67, 1997.
  • [6] I. H. Tavman, “Thermal and mechanical properties of aluminum powder-filled high-density polyethylene composites,” Journal Applied Polymer Science, vol. 62, no. 12, pp. 2161-2167, 1996.
  • [7] K. Jung-it, P. H. Kang and Y. C. Nho, “Positive temperature coefficient behavior of polymer composites having a high melting temperature,” Journal Applied Polymer Science, vol. 92, no. 1, pp. 394-401, 2004.
  • [8] S. Nikkeshi, and M. T. Kudo, “Dynamic viscoelastic properties and thermal properties of Ni powder–epoxy resin composites,” Journal Applied Polymer Science, vol. 69, no. 13, pp. 2593-2598, 1998.
  • [9] A. J. Nunez, P. C. Sturm, J. M. Kenny, M. I. Aranguren, N. E. Marcovich and M. M. Reboredo, “Mechanical characterization of polypropylene–wood flour composites,” Journal Applied Polymer Science, vol. 88, pp. 1420-1428, 2003.
  • [10] W. Liu, L. Cheng and S. Li, “Review of electrical properties for polypropylene based nanocomposite,” Composites Communications, vol. 10, pp. 221-225, 2018.
  • [11] M. Taşdemir, “Mechanical properties of polypropylene biocomposites with sea weeds,” Nanomaterials Science & Engineering, vol. 1, no. 1, pp. 22-29, 2019.
  • [12] S. H. Yetgin, “Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4725-4735, 2019.
  • [13] O. Yagcı, B. Gumus, M. Taşdemir, “Thermal, structural and dynamical mechanical properties of hollow glass sphere-reinforced polypropylene composites,” Polymer Bulletin, vol. 78, pp. 3089-3101, 2021.
  • [14] F. Özkaya, F. Özen, E. İlhan ve S. Aslanlar, “Cam küre takviyeli polipropilen kompozit malzemelerin delaminasyon faktörünün deneysel olarak incelenmesi,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, c. 19, ss. 843-849, 2019.
  • [15] S. H. Yegin, “Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4725-4735, 2019.
  • [16] B. Gumus, “Effect of montmorillonite clay on physical properties of HDPE/HGS composites,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 21, pp. 735-744, 2021.
  • [17] Y. P. Mamunya, H. Zois, L. Apekis and E. V. Lebedev, “Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites,” Powder &Technology, vol. 140, pp. 49-55, 2004.
  • [18] Z. Razak, A. B. Sulong, N. Muhamad, C. H. Haron, M. K. Fadzly, M. D. Radzi, D. Tholibon, I. Tharazi and N. F. Ismail, “The Effects of maleic anhydride grafted PP (MAPP) on the mechanical properties of injection moulded Kenaf/CNTs/PP composites,” Sains Malaysiana, vol. 47, no. 6, pp. 1285-1291, 2018
  • [19] M. Tasdemir and U. Yerleşen, “Study on the friciton and wear behaviors of modified hdpe/glass spheres composites,” Romanian Journal of Materials, vol. 45, no. 1, pp. 59-66, 2015.
  • [20] H. Celebi, “Thermal conductivity and tensile properties of hollow glass microsphere/polypropylene composites,” Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering, vol. 18, no. 3, pp. 746-753, 2017.
  • [21] K. Mizera, M. Chrzaszcz and J. Ryszkowska, “Thermal and mechanical properties of ureaurethane elastomer composites with hollow glass spheres,” Polymer Composites, vol. 39, no. 6, pp. 2019-2028, 2018.
  • [22] I. Souissi, F. Lachtar, A. Elloumi and A. Bergeret, “Properties of wood polymer composites based on polypropylene/olive wood four: efects of fiber treatment and compatibilizer,” Iranian Polymer Journal, 2022. doi: 10.1007/s13726-022-01089-x
  • [23] S. N. Patankar, A. Das and Y. A. Kranov, “Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres,” Compos Part A Applied Science Manufacturing, vol. 40, no. 6-7, pp. 897–903, 2009.
  • [24] M. A. Abdelwahab, M. Misra and A. K. Mohanty, “Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on interfacial adhesion and performance,” Industrial Crops and Products, vol. 132, pp. 497-510, 2019.
  • [25] J. Kotek, I. Kelnar, J. Baldrian and M. Raab, “Structural transformations of isotactic polypropylene induced by heating and UV light,” European Polymer Journal, vol. 40, no. 12, pp. 2731-2738, 2004.
  • [26] M. Tasdemir, “High density polyethylene red mud polymer composites effect of UV annealing,” ICAMS 2016-6 th International Conference on Advanced Materials and Systems, Romania, 2016, pp. 171-176.
  • [27] M. Tasdemir, “Acrylonitrile butadiene styrene/red mud polymer composites: ultraviolet annealing,” Advanced Science, Engineering and Medicine, vol. 8, no. 10, pp. 804-809, 2016

Cam Küre Takviyeli Polimer Kompozitlerde UV Yaşlandırma ve Uyumlaştırıcı Etkisinin İncelenmesi

Year 2024, Volume: 12 Issue: 1, 39 - 48, 26.01.2024
https://doi.org/10.29130/dubited.1184670

Abstract

Maleik anhidrit aşılı polipropilen (MAPP) oranı ve UV (Ultraviyole) yaşlandırma işleminin polipropilen (PP)/cam küreler (GS) polimer kompozitlerinin mekanik ve morfolojik özellikleri üzerindeki etkileri üzerine bir araştırma yapılmıştır. UV yaşlandırma, 70 C sıcaklıkta 0, 15, 30 gün olacak şekilde üç farklı bekletme süresinde gerçekleştirilmiştir. Polipropilen matris içerisine %1, 5, 10 ve 15 oranlarında katılan cam küre parçacıkları ekstrüderde karıştırılarak homojen bir karışım elde edilmiştir. Ekstrüderde elde edilen karışım kırıcıdan geçirilerek granül formuna getirilmiştir, ardından enjeksiyon makinesinde standartlara uygun şekilde test numuneleri kalıplanmıştır. MAPP ve UV tutma süresinin, PP/cam küreler kompozitlerinin elastik modülü, akma mukavemeti, kopmadaki çekme mukavemetleri, %uzama, İzod darbe mukavemeti, sertlik, yoğunluk ve morfolojik özelliklerine etkileri araştırılmıştır. MAPP ve UV tutma süresinin, kompozitlerin elastiklik modülü ve yoğunluğu gibi mekanik özellikleri üzerinde marjinal etkileri vardır. Sonuçlar, artan MAPP içeriğinin ve UV tutma süresinin elastiklik modülü ve yoğunluğunun artmasına neden olduğunu, buna karşın UV tutma süresi arttıkça İzod darbe dayanımı ve %uzamanın azaldığını göstermiştir. MAPP içeriği kompozitin termal davranışına etki ederek vicat yumuşama sıcaklığı ve ısıl çarpılma sıcaklığı-HDT değerlerinde önemli derecede artışa sebep olmuştur. Ayrıca, bu deneylerde cam küre parçacıklarının mikro yapısını ve malzeme dağılımını değerlendirmek için taramalı elektron mikroskobu (SEM) incelemesi yapılmıştır.

References

  • [1] N. Kumar, S. Mireja, V. Khandelwal, B. Arun, and G. Manik, “Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study,” Composites Part B: Engineering, vol. 109, pp. 277-285, 2017.
  • [2] Y. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, “Electrical and thermal conductivity of polymers filled with metal powders,” European polymer Journal, vol. 38, no. 9, pp. 1887-1897, 2002.
  • [3] Y. Guo, K. Ruan, X. Shi, X. Yang and J. Gu, “Factors affecting thermal conductivities of the polymers and polymer composites: A review,” Composites Science and Technology, vol. 193, doi:108134, 2020.
  • [4] K. Ruan, X. Shi, Y. Guo, and J. Gu, “Interfacial thermal resistance in thermally conductive polymer composites: A review,” Composites Communications, vol. 22, doi:100518, 2020.
  • [5] I. H. Tavman, “Thermal and mechanical properties of copper powder filled poly (ethylene) composites,” Powder Technology, vol. 91, pp. 63-67, 1997.
  • [6] I. H. Tavman, “Thermal and mechanical properties of aluminum powder-filled high-density polyethylene composites,” Journal Applied Polymer Science, vol. 62, no. 12, pp. 2161-2167, 1996.
  • [7] K. Jung-it, P. H. Kang and Y. C. Nho, “Positive temperature coefficient behavior of polymer composites having a high melting temperature,” Journal Applied Polymer Science, vol. 92, no. 1, pp. 394-401, 2004.
  • [8] S. Nikkeshi, and M. T. Kudo, “Dynamic viscoelastic properties and thermal properties of Ni powder–epoxy resin composites,” Journal Applied Polymer Science, vol. 69, no. 13, pp. 2593-2598, 1998.
  • [9] A. J. Nunez, P. C. Sturm, J. M. Kenny, M. I. Aranguren, N. E. Marcovich and M. M. Reboredo, “Mechanical characterization of polypropylene–wood flour composites,” Journal Applied Polymer Science, vol. 88, pp. 1420-1428, 2003.
  • [10] W. Liu, L. Cheng and S. Li, “Review of electrical properties for polypropylene based nanocomposite,” Composites Communications, vol. 10, pp. 221-225, 2018.
  • [11] M. Taşdemir, “Mechanical properties of polypropylene biocomposites with sea weeds,” Nanomaterials Science & Engineering, vol. 1, no. 1, pp. 22-29, 2019.
  • [12] S. H. Yetgin, “Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4725-4735, 2019.
  • [13] O. Yagcı, B. Gumus, M. Taşdemir, “Thermal, structural and dynamical mechanical properties of hollow glass sphere-reinforced polypropylene composites,” Polymer Bulletin, vol. 78, pp. 3089-3101, 2021.
  • [14] F. Özkaya, F. Özen, E. İlhan ve S. Aslanlar, “Cam küre takviyeli polipropilen kompozit malzemelerin delaminasyon faktörünün deneysel olarak incelenmesi,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, c. 19, ss. 843-849, 2019.
  • [15] S. H. Yegin, “Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4725-4735, 2019.
  • [16] B. Gumus, “Effect of montmorillonite clay on physical properties of HDPE/HGS composites,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 21, pp. 735-744, 2021.
  • [17] Y. P. Mamunya, H. Zois, L. Apekis and E. V. Lebedev, “Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites,” Powder &Technology, vol. 140, pp. 49-55, 2004.
  • [18] Z. Razak, A. B. Sulong, N. Muhamad, C. H. Haron, M. K. Fadzly, M. D. Radzi, D. Tholibon, I. Tharazi and N. F. Ismail, “The Effects of maleic anhydride grafted PP (MAPP) on the mechanical properties of injection moulded Kenaf/CNTs/PP composites,” Sains Malaysiana, vol. 47, no. 6, pp. 1285-1291, 2018
  • [19] M. Tasdemir and U. Yerleşen, “Study on the friciton and wear behaviors of modified hdpe/glass spheres composites,” Romanian Journal of Materials, vol. 45, no. 1, pp. 59-66, 2015.
  • [20] H. Celebi, “Thermal conductivity and tensile properties of hollow glass microsphere/polypropylene composites,” Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering, vol. 18, no. 3, pp. 746-753, 2017.
  • [21] K. Mizera, M. Chrzaszcz and J. Ryszkowska, “Thermal and mechanical properties of ureaurethane elastomer composites with hollow glass spheres,” Polymer Composites, vol. 39, no. 6, pp. 2019-2028, 2018.
  • [22] I. Souissi, F. Lachtar, A. Elloumi and A. Bergeret, “Properties of wood polymer composites based on polypropylene/olive wood four: efects of fiber treatment and compatibilizer,” Iranian Polymer Journal, 2022. doi: 10.1007/s13726-022-01089-x
  • [23] S. N. Patankar, A. Das and Y. A. Kranov, “Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres,” Compos Part A Applied Science Manufacturing, vol. 40, no. 6-7, pp. 897–903, 2009.
  • [24] M. A. Abdelwahab, M. Misra and A. K. Mohanty, “Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on interfacial adhesion and performance,” Industrial Crops and Products, vol. 132, pp. 497-510, 2019.
  • [25] J. Kotek, I. Kelnar, J. Baldrian and M. Raab, “Structural transformations of isotactic polypropylene induced by heating and UV light,” European Polymer Journal, vol. 40, no. 12, pp. 2731-2738, 2004.
  • [26] M. Tasdemir, “High density polyethylene red mud polymer composites effect of UV annealing,” ICAMS 2016-6 th International Conference on Advanced Materials and Systems, Romania, 2016, pp. 171-176.
  • [27] M. Tasdemir, “Acrylonitrile butadiene styrene/red mud polymer composites: ultraviolet annealing,” Advanced Science, Engineering and Medicine, vol. 8, no. 10, pp. 804-809, 2016
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Elif Ulutaş 0000-0001-7753-8878

Münir Taşdemir 0000-0001-8635-7251

Publication Date January 26, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Ulutaş, E., & Taşdemir, M. (2024). Cam Küre Takviyeli Polimer Kompozitlerde UV Yaşlandırma ve Uyumlaştırıcı Etkisinin İncelenmesi. Duzce University Journal of Science and Technology, 12(1), 39-48. https://doi.org/10.29130/dubited.1184670
AMA Ulutaş E, Taşdemir M. Cam Küre Takviyeli Polimer Kompozitlerde UV Yaşlandırma ve Uyumlaştırıcı Etkisinin İncelenmesi. DUBİTED. January 2024;12(1):39-48. doi:10.29130/dubited.1184670
Chicago Ulutaş, Elif, and Münir Taşdemir. “Cam Küre Takviyeli Polimer Kompozitlerde UV Yaşlandırma Ve Uyumlaştırıcı Etkisinin İncelenmesi”. Duzce University Journal of Science and Technology 12, no. 1 (January 2024): 39-48. https://doi.org/10.29130/dubited.1184670.
EndNote Ulutaş E, Taşdemir M (January 1, 2024) Cam Küre Takviyeli Polimer Kompozitlerde UV Yaşlandırma ve Uyumlaştırıcı Etkisinin İncelenmesi. Duzce University Journal of Science and Technology 12 1 39–48.
IEEE E. Ulutaş and M. Taşdemir, “Cam Küre Takviyeli Polimer Kompozitlerde UV Yaşlandırma ve Uyumlaştırıcı Etkisinin İncelenmesi”, DUBİTED, vol. 12, no. 1, pp. 39–48, 2024, doi: 10.29130/dubited.1184670.
ISNAD Ulutaş, Elif - Taşdemir, Münir. “Cam Küre Takviyeli Polimer Kompozitlerde UV Yaşlandırma Ve Uyumlaştırıcı Etkisinin İncelenmesi”. Duzce University Journal of Science and Technology 12/1 (January 2024), 39-48. https://doi.org/10.29130/dubited.1184670.
JAMA Ulutaş E, Taşdemir M. Cam Küre Takviyeli Polimer Kompozitlerde UV Yaşlandırma ve Uyumlaştırıcı Etkisinin İncelenmesi. DUBİTED. 2024;12:39–48.
MLA Ulutaş, Elif and Münir Taşdemir. “Cam Küre Takviyeli Polimer Kompozitlerde UV Yaşlandırma Ve Uyumlaştırıcı Etkisinin İncelenmesi”. Duzce University Journal of Science and Technology, vol. 12, no. 1, 2024, pp. 39-48, doi:10.29130/dubited.1184670.
Vancouver Ulutaş E, Taşdemir M. Cam Küre Takviyeli Polimer Kompozitlerde UV Yaşlandırma ve Uyumlaştırıcı Etkisinin İncelenmesi. DUBİTED. 2024;12(1):39-48.