Research Article
BibTex RIS Cite
Year 2024, Volume: 12 Issue: 1, 602 - 611, 26.01.2024

Abstract

References

  • [1] Maden Tetkik Arama Genel Müdürlüğü. (2020, 07 Ağustos). Feldispat (Feldspat) [Çevrimiçi]. Erişim:https://www.mta.gov.tr/v3.0/bilgi-merkezi/feldispat.
  • [2] R. Bolger, "Feldspar and Nepheline Syenite Turkish Delight in Export Sales," Industrial Minerals, No.332, pp. 25-45, 1995.
  • [3] İ. Bayraktar, S. Ersayın, Ö.Y. Gülsoy, “Upgrading Titanium Bearing Na-Feldspar by Flotation Using Sulphonates, Succinamate and Soaps of Vegetable Oils,” Minerals Engineering, vol.1, no.12, pp. 1363-1374, 1997.
  • [4] D. Kalyon, Ö. Gülsoy, “Feldispat Kuvars Ayırımında Hidroflorik Asit Kullanılmayan Flotasyon Yöntemlerinin Karşılaştırılması,” Yerbilimleri (Earth Sciences), c.26, s.1, ss. 49-59, 2005.
  • [5] S. Kulaksız, Y. Özçelik, “Türkiye ve Dünyada Feldspat Üretimi-Fiyat Değişimi ve Politikası,” 2. Endüstriyel Hammaddeler Sempozyumu, İzmir, Türkiye, 1997, ss. 40-50.
  • [6] İ. Gülgönül, M.S. Çelik, “Sodyum ve potasyum feldispatların seçimli ayrımında NaCl’nin etki mekanizması,” itüdergisi/d mühendislik, c.4, s.4, ss.62-72, 2005.
  • [7] H. Kodama, et al, “Quantification of crystalline and noncrystalline material in ground kaolinite by X-ray powder diffraction, infrared, solid-state nuclear magnetic resonance, and chemical-dissolution analyses,” Clays and Clay Minerals, vol.37, no.4, pp.364–370, 1989.
  • [8] S. J. Chipera and D. L. Bish, “Baseline studies of the clay minerals society source clays: Powder X-ray diffraction analyses,” Clays and Clay Minerals, vol.49, no.5, pp.398–409, 2001.
  • [9] J. Srodon, “Quantitative mineralogy of sedimentary rocks with emphasis on clays and with applications to K-Ar dating,” Mineralogical Magazine, vol.66, no.5, pp.677– 687, 2002.
  • [10] J. Vogt, et al, “Investigation of the clay fraction <2μm of the clay minerals society reference clays,” Clays and Clay Minerals, vol.50, no.3, pp.388–400, 2002.
  • [11] L. Vaculíková, “New possibilities of identification of clay minerals and micas in sedimentary rocks using infrared spectroscopy with Fourier transformation,”. Final Report of Post-Doc Project of Czech Science Foundation, Ostrava, Czech, 2006.
  • [12] G. Akar Şen, H. Yılmaz, “Feldispat cevheri karakterizasyonunda flotasyon yönteminin önemi,” Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c.24, s.4, ss.359-372, 2022.
  • [13] A. Geçer, A. Büyükutku, M. Karadavut, “ATR-FTIR Analizini Kullanarak Kumtaşı-Şeyl Rezervuarının Hidrokarbon Doygunluğunun Belirlenmesi ve Kumtaşı Rezervuarı Üzerine Kil Etkisi, Trakya Havzası,” 69. Türkiye Jeoloji Kurultayı, Ankara, Türkiye, 2016, ss. 556-557.
  • [14] M. Rıtz, L. Vaculikova, E. Plevova, “Application of infrared spectroscopy and chemometric methods to identification of selected minerals,” Acta Geodyn. Geomater., Vol.8, No.1(161), pp.47–58, 2011.
  • [15] S. Y. Lin, S. L. Wang, “Advances in simultaneous DSC–FTIR microspectroscopy for rapid solid-state chemical stability studies: Some dipeptide drugs as examples,” Adv Drug Delivery Rev, vol.64, no.2012, pp.461-478, 2011.
  • [16] X. Zhu, L. Chen, J. Pumpanen, M. Keinanen, H. Laudon, A. Ojala, M. Palviainen, M. Kiirikki, K. Neitola, F. Berninger, “Assessment of a portable UV–Vis spectrophotometer’s performance for stream water DOC and Fe content monitoring in remote areas,” Talanta, vol.224, no.121919, pp.1-8, 2021.
  • [17] G. Pekcan Ertokuş, M. Bineci Doğan, “Simultaneous Determination of Binary Drug Components in Pharmaceutical Formulations with Chemometric Methods,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.10, no.2, pp.1171-1179, 2020.
  • [18] A. M. Garcia Rodriguez, A. Garcia de Torres, J. M. Cano Pavon, C. Bosch Ojeda, “Simultaneous determination of iron, cobalt, nickel and copper by UV-visible spectrophotometry with multivariate calibration,” Talanta, vol.47, no.2, pp.463-470, 1998.
  • [19] E. Dinç, Ö. Üstündağ, “A New Application of Chemometric Techniques to HPLC Data fort he Simultaneous Analysis of a Two-Component Mixture,” Journal of Liquid Chromatography&Related Technologies, vol.28, no.14 , pp.2179-2194, 2005.
  • [20] H. Bekiroğlu Ataş, A. Kenar, M. Taştekin, “An electronic tongue for simultaneous determination of Ca2+, Mg2+, K+ and NH4+ in water samples by multivariate calibration methods,” Talanta, vol.217, no.121110, pp.1-12, 2020.
  • [21] A.Kaba, A. H. Aktaş, “Çeşitli ligandları kullanarak Fe3+ , Al3+ ve Cu2+ nin bir arada spektrofotometrik tayinleri için yöntem geliştirilmesi ve elde edilen verilerin en küçük kareler kalibrasyon yöntemi (PLS) ve temel bileşen regresyon (PCR) yöntemi ile değerlendirilmesi,” Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c.18, s.1, ss.71-79. (2014).
  • [22] M. Origlieri. (2023, January 22). Albite [Online]. Available: https://rruff.info/Albite/R050253
  • [23] University of Arizona Mineral Museum. (2023, January 22). Microcline [Online]. Available: https://rruff.info/Microcline/R040154
  • [24] University of Arizona Mineral Museum. (2023, January 22). Anorthite [Online]. Available: https://rruff.info/Anorthite/R060082
  • [25] C. Ferone, B. Liguori, I. Capasso, F. Colangelo, R. Cioffi, E. Cappelletto, R. Di Maggio, “Thermally treated clay sediments as geopolymer source material,” Applied Clay Science, vol.107, no.C, pp.195-204, 2015.
  • [26] O. Özbay, “Malkara (Tekirdağ) Yöresindeki Kömüraltı Killerinin Mineralojik-Jeokimyasal İncelemesi,” Yüksek lisans tezi, Jeoloji Mühendisliği Ana Bilim Dalı, Balıkesir Üniversitesi, Balıkesir, Türkiye, 2014.
  • [27] J. D. Russell and A. R. Fraser, Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, 1st edition, London, U.K.: Chapman and Hall, 1994, ch. 2, pp.11-67.
  • [28] J. Burger and A. Gowen, Data handling in hyperspectral image analysis,” Chemometrics and Intelligent Laboratory Systems, vol.108, no.1, pp.13-22, 2011.
  • [29] İ. Tarhan, M.R. Bakır, O. Kalkan, H. Kara, “Multivariate modeling for quantifying adulteration of sunflower oil with low level of safflower oil using ATR-FTIR, UV-visible, and fluorescence spectroscopies: A comparative approach," Food Analytical Methods, vol.14, no.2, pp.361-371, 2021.

Utilization of FTIR Spectroscopic Method in Classification and Analysis of Mineral Samples Containing Sodium and Potassium

Year 2024, Volume: 12 Issue: 1, 602 - 611, 26.01.2024

Abstract

Seramik, porselen ve cam sanayiinde ham madde; kaynak elektrodu, kauçuk, plastik ve boya sanayiinde dolgu malzemesi olarak kullanılan feldspatın içerdiği Na2O ve K2O oranı, erime noktasından kullanılacağı alanlara pek çok konuda belirleyici rol oynamaktadır. Fakat Na-feldspat ve K-feldspat benzer fizikokimyasal özelliklere sahip olmaları nedeniyle bulundukları doğal mineral ortamından geleneksel yöntemlerle ayrılıp analiz edilmesi güçtür. Bu çalışmada FTIR-ATR (Fourier dönüşümlü kızılötesi-azaltılmış toplam yansıma) spektroskopisi ve çok değişkenli istatistiksel teknikler kullanılarak feldspat numunelerindeki Na2O ve K2O yüzdeleri hiçbir ön işlem uygulamadan, doğal ortamında analiz edilmiştir. Na-feldspat ve K-feldspat numuneleri sınıflandırılmıştır.

References

  • [1] Maden Tetkik Arama Genel Müdürlüğü. (2020, 07 Ağustos). Feldispat (Feldspat) [Çevrimiçi]. Erişim:https://www.mta.gov.tr/v3.0/bilgi-merkezi/feldispat.
  • [2] R. Bolger, "Feldspar and Nepheline Syenite Turkish Delight in Export Sales," Industrial Minerals, No.332, pp. 25-45, 1995.
  • [3] İ. Bayraktar, S. Ersayın, Ö.Y. Gülsoy, “Upgrading Titanium Bearing Na-Feldspar by Flotation Using Sulphonates, Succinamate and Soaps of Vegetable Oils,” Minerals Engineering, vol.1, no.12, pp. 1363-1374, 1997.
  • [4] D. Kalyon, Ö. Gülsoy, “Feldispat Kuvars Ayırımında Hidroflorik Asit Kullanılmayan Flotasyon Yöntemlerinin Karşılaştırılması,” Yerbilimleri (Earth Sciences), c.26, s.1, ss. 49-59, 2005.
  • [5] S. Kulaksız, Y. Özçelik, “Türkiye ve Dünyada Feldspat Üretimi-Fiyat Değişimi ve Politikası,” 2. Endüstriyel Hammaddeler Sempozyumu, İzmir, Türkiye, 1997, ss. 40-50.
  • [6] İ. Gülgönül, M.S. Çelik, “Sodyum ve potasyum feldispatların seçimli ayrımında NaCl’nin etki mekanizması,” itüdergisi/d mühendislik, c.4, s.4, ss.62-72, 2005.
  • [7] H. Kodama, et al, “Quantification of crystalline and noncrystalline material in ground kaolinite by X-ray powder diffraction, infrared, solid-state nuclear magnetic resonance, and chemical-dissolution analyses,” Clays and Clay Minerals, vol.37, no.4, pp.364–370, 1989.
  • [8] S. J. Chipera and D. L. Bish, “Baseline studies of the clay minerals society source clays: Powder X-ray diffraction analyses,” Clays and Clay Minerals, vol.49, no.5, pp.398–409, 2001.
  • [9] J. Srodon, “Quantitative mineralogy of sedimentary rocks with emphasis on clays and with applications to K-Ar dating,” Mineralogical Magazine, vol.66, no.5, pp.677– 687, 2002.
  • [10] J. Vogt, et al, “Investigation of the clay fraction <2μm of the clay minerals society reference clays,” Clays and Clay Minerals, vol.50, no.3, pp.388–400, 2002.
  • [11] L. Vaculíková, “New possibilities of identification of clay minerals and micas in sedimentary rocks using infrared spectroscopy with Fourier transformation,”. Final Report of Post-Doc Project of Czech Science Foundation, Ostrava, Czech, 2006.
  • [12] G. Akar Şen, H. Yılmaz, “Feldispat cevheri karakterizasyonunda flotasyon yönteminin önemi,” Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c.24, s.4, ss.359-372, 2022.
  • [13] A. Geçer, A. Büyükutku, M. Karadavut, “ATR-FTIR Analizini Kullanarak Kumtaşı-Şeyl Rezervuarının Hidrokarbon Doygunluğunun Belirlenmesi ve Kumtaşı Rezervuarı Üzerine Kil Etkisi, Trakya Havzası,” 69. Türkiye Jeoloji Kurultayı, Ankara, Türkiye, 2016, ss. 556-557.
  • [14] M. Rıtz, L. Vaculikova, E. Plevova, “Application of infrared spectroscopy and chemometric methods to identification of selected minerals,” Acta Geodyn. Geomater., Vol.8, No.1(161), pp.47–58, 2011.
  • [15] S. Y. Lin, S. L. Wang, “Advances in simultaneous DSC–FTIR microspectroscopy for rapid solid-state chemical stability studies: Some dipeptide drugs as examples,” Adv Drug Delivery Rev, vol.64, no.2012, pp.461-478, 2011.
  • [16] X. Zhu, L. Chen, J. Pumpanen, M. Keinanen, H. Laudon, A. Ojala, M. Palviainen, M. Kiirikki, K. Neitola, F. Berninger, “Assessment of a portable UV–Vis spectrophotometer’s performance for stream water DOC and Fe content monitoring in remote areas,” Talanta, vol.224, no.121919, pp.1-8, 2021.
  • [17] G. Pekcan Ertokuş, M. Bineci Doğan, “Simultaneous Determination of Binary Drug Components in Pharmaceutical Formulations with Chemometric Methods,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.10, no.2, pp.1171-1179, 2020.
  • [18] A. M. Garcia Rodriguez, A. Garcia de Torres, J. M. Cano Pavon, C. Bosch Ojeda, “Simultaneous determination of iron, cobalt, nickel and copper by UV-visible spectrophotometry with multivariate calibration,” Talanta, vol.47, no.2, pp.463-470, 1998.
  • [19] E. Dinç, Ö. Üstündağ, “A New Application of Chemometric Techniques to HPLC Data fort he Simultaneous Analysis of a Two-Component Mixture,” Journal of Liquid Chromatography&Related Technologies, vol.28, no.14 , pp.2179-2194, 2005.
  • [20] H. Bekiroğlu Ataş, A. Kenar, M. Taştekin, “An electronic tongue for simultaneous determination of Ca2+, Mg2+, K+ and NH4+ in water samples by multivariate calibration methods,” Talanta, vol.217, no.121110, pp.1-12, 2020.
  • [21] A.Kaba, A. H. Aktaş, “Çeşitli ligandları kullanarak Fe3+ , Al3+ ve Cu2+ nin bir arada spektrofotometrik tayinleri için yöntem geliştirilmesi ve elde edilen verilerin en küçük kareler kalibrasyon yöntemi (PLS) ve temel bileşen regresyon (PCR) yöntemi ile değerlendirilmesi,” Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c.18, s.1, ss.71-79. (2014).
  • [22] M. Origlieri. (2023, January 22). Albite [Online]. Available: https://rruff.info/Albite/R050253
  • [23] University of Arizona Mineral Museum. (2023, January 22). Microcline [Online]. Available: https://rruff.info/Microcline/R040154
  • [24] University of Arizona Mineral Museum. (2023, January 22). Anorthite [Online]. Available: https://rruff.info/Anorthite/R060082
  • [25] C. Ferone, B. Liguori, I. Capasso, F. Colangelo, R. Cioffi, E. Cappelletto, R. Di Maggio, “Thermally treated clay sediments as geopolymer source material,” Applied Clay Science, vol.107, no.C, pp.195-204, 2015.
  • [26] O. Özbay, “Malkara (Tekirdağ) Yöresindeki Kömüraltı Killerinin Mineralojik-Jeokimyasal İncelemesi,” Yüksek lisans tezi, Jeoloji Mühendisliği Ana Bilim Dalı, Balıkesir Üniversitesi, Balıkesir, Türkiye, 2014.
  • [27] J. D. Russell and A. R. Fraser, Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, 1st edition, London, U.K.: Chapman and Hall, 1994, ch. 2, pp.11-67.
  • [28] J. Burger and A. Gowen, Data handling in hyperspectral image analysis,” Chemometrics and Intelligent Laboratory Systems, vol.108, no.1, pp.13-22, 2011.
  • [29] İ. Tarhan, M.R. Bakır, O. Kalkan, H. Kara, “Multivariate modeling for quantifying adulteration of sunflower oil with low level of safflower oil using ATR-FTIR, UV-visible, and fluorescence spectroscopies: A comparative approach," Food Analytical Methods, vol.14, no.2, pp.361-371, 2021.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fahriye Öğüt 0000-0002-4841-040X

Adnan Kenar 0000-0002-2865-7966

Publication Date January 26, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Öğüt, F., & Kenar, A. (2024). Utilization of FTIR Spectroscopic Method in Classification and Analysis of Mineral Samples Containing Sodium and Potassium. Duzce University Journal of Science and Technology, 12(1), 602-611.
AMA Öğüt F, Kenar A. Utilization of FTIR Spectroscopic Method in Classification and Analysis of Mineral Samples Containing Sodium and Potassium. DUBİTED. January 2024;12(1):602-611.
Chicago Öğüt, Fahriye, and Adnan Kenar. “Utilization of FTIR Spectroscopic Method in Classification and Analysis of Mineral Samples Containing Sodium and Potassium”. Duzce University Journal of Science and Technology 12, no. 1 (January 2024): 602-11.
EndNote Öğüt F, Kenar A (January 1, 2024) Utilization of FTIR Spectroscopic Method in Classification and Analysis of Mineral Samples Containing Sodium and Potassium. Duzce University Journal of Science and Technology 12 1 602–611.
IEEE F. Öğüt and A. Kenar, “Utilization of FTIR Spectroscopic Method in Classification and Analysis of Mineral Samples Containing Sodium and Potassium”, DUBİTED, vol. 12, no. 1, pp. 602–611, 2024.
ISNAD Öğüt, Fahriye - Kenar, Adnan. “Utilization of FTIR Spectroscopic Method in Classification and Analysis of Mineral Samples Containing Sodium and Potassium”. Duzce University Journal of Science and Technology 12/1 (January 2024), 602-611.
JAMA Öğüt F, Kenar A. Utilization of FTIR Spectroscopic Method in Classification and Analysis of Mineral Samples Containing Sodium and Potassium. DUBİTED. 2024;12:602–611.
MLA Öğüt, Fahriye and Adnan Kenar. “Utilization of FTIR Spectroscopic Method in Classification and Analysis of Mineral Samples Containing Sodium and Potassium”. Duzce University Journal of Science and Technology, vol. 12, no. 1, 2024, pp. 602-11.
Vancouver Öğüt F, Kenar A. Utilization of FTIR Spectroscopic Method in Classification and Analysis of Mineral Samples Containing Sodium and Potassium. DUBİTED. 2024;12(1):602-11.