Research Article
BibTex RIS Cite

Sıvı Ortamda Gerçek Zamanlı Biyoalgılama için Moleküler Baskılı Kitosan Modifiye Kuvars Ayar Çatalı Sensör Geliştirilmesi

Year 2024, Volume: 12 Issue: 1, 337 - 347, 26.01.2024
https://doi.org/10.29130/dubited.1351846

Abstract

Yüksek hassasiyet ve seçicilikle çalışan, doğru ve hızlı teşhis talebini karşılamak üzere bir dizi yeni duyusal teknoloji ortaya çıkmıştır. Bu çalışma kapsamında, sensör teknolojilerine dayalı çağdaş teşhis yöntemleri için kritik önem taşıyan sıvı ortamda çalışan Kuvars Ayar Çatal (QTF) tabanlı sensörler tasarımı üzerine detaylı bilgi sunmaktadır. Bu çalışma, biyomedikal uygulamalar için bir çevirici olarak kuvars ayar çatalın piezoelektrik kristal olarak kullanılması ile, QTF çatallarını moleküler baskılı kitosan ile modifiye etmeyi amaçlamaktadır Gerçek zamanlı veri toplama ile, model bir protein olan BSA kullanarak QTF rezonans frekansındaki değişimleri hem kuru hem de sıvı ortamlarda takip edilmiştir. Elde edilen sonuçlara göre, QTF tabanlı sensör, kuru koşullarda BSA tespiti yapamamaktadır. Ancak sıvı matris içinde 5 ila 25 µg/mL aralığında frekans değişimleri ölçülebildiği gösterilmiştir. Sensördeki BSA konsantrasyonuna bağlı olarak, tepki süresi BSA konsantrasyonuna bağlı olarak 2 ila 10 dakika arasında değişmektedir. Geliştirilen QTF tabanlı sensörle, sıvı matris içinde 1.1069 Hz/ µg hassasiyette ölçüm yapabilmektedir. Moleküler baskılı kitosanın üstün özellikleri sayesinde, sıvı çözeltilerde bile gerçek zamanlı veri toplama yeteneğine sahip bir QTF tabanlı biyosensör geliştirilmiştir.

Ethical Statement

-

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] G. L. Coté, R. M. Lec, M. V. Pishko, “Emerging biomedical sensing technologies and their applications”. IEEE sensors journal, 3(3), 251-266, 2003.
  • [2] E. Reimhult, F. Höök, “Design of surface modifications for nanoscale sensor applications. Sensors”, 15(1), 1635-1675, 2015.
  • [3] C. Alemán, G. Fabregat, E. Armelin, J. J. Buendía, J. Llorca, “Plasma surface modification of polymers for sensor applications”. Journal of Materials Chemistry B, 6(41), 6515-6533, 2018.
  • [4] L. Uzun, A. P. Turner, “Molecularly-imprinted polymer sensors: Realising their potential”. Biosensors and Bioelectronics, 76, 131-144, 2016.
  • [5] A. Bossi, F. Bonini, A. P. F. Turner, S. A. Piletsky, “Molecularly imprinted polymers for the recognition of proteins: the state of the art”. Biosensors and Bioelectronics, 22(6), 1131-1137, 2007.
  • [6] U. Chadha, P. Bhardwaj, R. Agarwal, P. Rawat, R. Agarwal, I. Gupta, A. Chakravorty, “Recent progress and growth in biosensors technology: A critical review”. Journal of Industrial and Engineering Chemistry, 109, 21-51, 2022.
  • [7] L. Xu, Y. A. Huang, Q. J. Zhu, C. Ye, “Chitosan in molecularly-imprinted polymers: Current and future prospects. International Journal of Molecular Sciences”, 16(8), 18328-18347, 2015.
  • [8] F. Zouaoui, S. Bourouina-Bacha, M. Bourouina, N. Jaffrezic-Renault, N. Zine, A. Errachid, “Electrochemical sensors based on molecularly imprinted chitosan: A review”. TrAC Trends in Analytical Chemistry, 130, 115982, 2020.
  • [9] S. Chauhan, A. Thakur, “Chitosan-based biosensors-A comprehensive Review”. Materials Today: Proceedings, 2023.
  • [10] S. Allen, X. Chen, J. Davies, M. C. Davies, A. C. Dawkes, J. C. Edwards, P. M. Williams, “Detection of antigen− antibody binding events with the atomic force microscope”. Biochemistry, 36(24), 7457-7463, 1997.
  • [11] W. A. Atia, C. C. Davis, “A phase-locked shear-force microscope for distance regulation in near-field optical microscopy”. Applied Physics Letters, 70(4), 405-407, 1997.
  • [12] F. J. Giessibl, “Atomic resolution on Si (111)-(7× 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork”. Applied Physics Letters, 76(11), 1470-1472, 2000.
  • [13] H. Göttlich, R. W. Stark, J. D. Pedarnig, W. M. Heckl, “Noncontact scanning force microscopy based on a modified tuning fork sensor”. Review of Scientific Instruments, 71(8), 3104-3107, 2000.
  • [14] J. U. Schmidt, H. Bergander, L. M. Eng, “Experimental and theoretical analysis of shear–force interaction in the non-contact regime with 100 pN force resolution”. Applied surface science, 157(4), 295-301, 2000.
  • [15] S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near‐field optical microscopy”. Journal of Microscopy, 202(1), 2-6, 2001.
  • [16] X. Su, C. Dai, J. Zhang, S. J. O'Shea, “Quartz tuning fork biosensor”. Biosensors and Bioelectronics, 17(1-2), 111-117, 2002.
  • [17] J. Zhang, S. O’shea, “Tuning forks as micromechanical mass sensitive sensors for bio-or liquid detection”. Sensors and Actuators B: Chemical, 94(1), 65-72, 2003.
  • [18] J. M. Friedt, E. Carry, “Introduction to the quartz tuning fork”. American Journal of Physics, 75(5), 415-422, 2007.
  • [19] H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring”. Nature communications, 8(1), 1-8, 2017.
  • [20] G. K. Can, H. F. Özgüzar, G. Kabay, P. Kömürcü, M. Mutlu, “Simultaneous insulation and modification of quartz tuning fork surface by single-step plasma polymerization technique with amine-rich precursors”. MRS Communications, 8(2), 541-549, 2018.
  • [21] H. Wu, L. Dong, X. Yin, A. Sampaolo, P. Patimisco, W. Ma, S. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with VT relaxation self-calibration”. Sensors and Actuators B: Chemical, 297, 126753, 2019.
  • [22] H. F. Özgüzar, G. K. Can, G. Kabay, M. Mutlu, “Quartz tuning fork as a mass sensitive biosensor platform with a bi-layer film modification via plasma polymerization”. MRS Communications, 9(2), 710-718, 2019.
  • [23] X. Yin, H. Wu, L. Dong, B. Li, W. Ma, L. Zhang, F. K. Tittel, “ppb-Level SO2 Photoacoustic Sensors with a Suppressed Absorption–Desorption Effect by Using a 7.41 μm External-Cavity Quantum Cascade Laser”. ACS sensors, 5(2), 549-556, 2020.
  • [24] G. Kaleli-Can, H. F. Özgüzar, M. Mutlu, “Development of mass sensitive sensor platform based on plasma polymerization technique: Quartz tuning fork as transducer”. Applied Surface Science, 540, 148360, 2021.
  • [25] G. Kaleli-Can, H. F. Özgüzar, M. Mutlu, “Development of QTF-based mass-sensitive immunosensor for phenylketonuria diagnosis”. Applied Physics A, 128(4), 277, 2022.
  • [26] M. Monier, A. M. A. El-Sokkary, “Preparation of molecularly imprinted cross-linked chitosan/glutaraldehyde resin for enantioselective separation of L-glutamic acid”. International journal of biological macromolecules, 47(2), 207-213, 2010.
  • [27] S. Roy, H. C. Kim, L. Zhai, J. Kim, “Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films”. Carbohydrate polymers, 231, 115729, 2020.
  • [28] X. Zhou, T. Jiang, J. Zhang, J. Zhu, X. Wang, Z. Zhu, “A quartz tuning fork-based humidity sensor using nanocrystalline zinc oxide thin film coatings”. In 2006 IEEE International Conference on Information Acquisition (pp. 1152-1157). IEEE, 2006.
  • [29] A. Atik, T. Günal, P. A. Bozkurt, S. N. Köse, B. Alp, C. Yandım, G. Kaleli-Can, “Characterization of cisplatin loaded hydrophilic glycol chitosan modified eumelanin nanoparticles for potential controlled-release application”. Journal of Drug Delivery Science and Technology, 84, 104440, 2023.
  • [30] D. Demir, S. Gündoğdu, S. Gundogdu, Ş. Kılıç, T. Kartallıoğlu, E. Baysoy, G. Kaleli Can, “A comparison of different strategies for the modification of quartz tuning forks based mass sensitive sensors using natural melanin nanoparticles”. Akıllı Sistemler ve Uygulamaları Dergisi, 4(2), 128-132, 2021.

Molecularly Imprinted Chitosan Modified Quartz Tuning Fork Sensors for Real Time Biosensing in Liquid Environment

Year 2024, Volume: 12 Issue: 1, 337 - 347, 26.01.2024
https://doi.org/10.29130/dubited.1351846

Abstract

Several new sensing technologies have emerged to meet the escalating demand for accurate and rapid diagnosis. We present an overview of the development of highly sensitive and selective Quartz Tuning Fork (QTF)-based sensors in a liquid environment, which will be critically important for contemporary diagnostic methods reliant on sensing technologies. The purpose of this study is to modify QTF prongs using molecularly imprinted chitosan, in combination with the operation of a quartz tuning fork as a piezoelectric crystal for biomedical applications. Through real-time data acquisition, we evaluate QTF resonance frequency shifts in dry and liquid environments using a model protein, BSA. As a result, the QTF-based sensor fails to detect BSA in dry conditions. It is however possible to measure frequency shifts ranging from 5 to 25 µg /mL within a liquid matrix. There is a rapid equilibration response time of 2 to 10 minutes depending on the concentration of BSA in the sensor. With the developed QTF-based sensor, a sensitivity of 1.1069 Hz/ µg has been achieved within the liquid matrix. As a result of the excellent properties of molecularly imprinted chitosan, it has been possible to develop a QTF-based biosensor capable of acquiring real-time data even when it is in liquid solutions.

Project Number

-

References

  • [1] G. L. Coté, R. M. Lec, M. V. Pishko, “Emerging biomedical sensing technologies and their applications”. IEEE sensors journal, 3(3), 251-266, 2003.
  • [2] E. Reimhult, F. Höök, “Design of surface modifications for nanoscale sensor applications. Sensors”, 15(1), 1635-1675, 2015.
  • [3] C. Alemán, G. Fabregat, E. Armelin, J. J. Buendía, J. Llorca, “Plasma surface modification of polymers for sensor applications”. Journal of Materials Chemistry B, 6(41), 6515-6533, 2018.
  • [4] L. Uzun, A. P. Turner, “Molecularly-imprinted polymer sensors: Realising their potential”. Biosensors and Bioelectronics, 76, 131-144, 2016.
  • [5] A. Bossi, F. Bonini, A. P. F. Turner, S. A. Piletsky, “Molecularly imprinted polymers for the recognition of proteins: the state of the art”. Biosensors and Bioelectronics, 22(6), 1131-1137, 2007.
  • [6] U. Chadha, P. Bhardwaj, R. Agarwal, P. Rawat, R. Agarwal, I. Gupta, A. Chakravorty, “Recent progress and growth in biosensors technology: A critical review”. Journal of Industrial and Engineering Chemistry, 109, 21-51, 2022.
  • [7] L. Xu, Y. A. Huang, Q. J. Zhu, C. Ye, “Chitosan in molecularly-imprinted polymers: Current and future prospects. International Journal of Molecular Sciences”, 16(8), 18328-18347, 2015.
  • [8] F. Zouaoui, S. Bourouina-Bacha, M. Bourouina, N. Jaffrezic-Renault, N. Zine, A. Errachid, “Electrochemical sensors based on molecularly imprinted chitosan: A review”. TrAC Trends in Analytical Chemistry, 130, 115982, 2020.
  • [9] S. Chauhan, A. Thakur, “Chitosan-based biosensors-A comprehensive Review”. Materials Today: Proceedings, 2023.
  • [10] S. Allen, X. Chen, J. Davies, M. C. Davies, A. C. Dawkes, J. C. Edwards, P. M. Williams, “Detection of antigen− antibody binding events with the atomic force microscope”. Biochemistry, 36(24), 7457-7463, 1997.
  • [11] W. A. Atia, C. C. Davis, “A phase-locked shear-force microscope for distance regulation in near-field optical microscopy”. Applied Physics Letters, 70(4), 405-407, 1997.
  • [12] F. J. Giessibl, “Atomic resolution on Si (111)-(7× 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork”. Applied Physics Letters, 76(11), 1470-1472, 2000.
  • [13] H. Göttlich, R. W. Stark, J. D. Pedarnig, W. M. Heckl, “Noncontact scanning force microscopy based on a modified tuning fork sensor”. Review of Scientific Instruments, 71(8), 3104-3107, 2000.
  • [14] J. U. Schmidt, H. Bergander, L. M. Eng, “Experimental and theoretical analysis of shear–force interaction in the non-contact regime with 100 pN force resolution”. Applied surface science, 157(4), 295-301, 2000.
  • [15] S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near‐field optical microscopy”. Journal of Microscopy, 202(1), 2-6, 2001.
  • [16] X. Su, C. Dai, J. Zhang, S. J. O'Shea, “Quartz tuning fork biosensor”. Biosensors and Bioelectronics, 17(1-2), 111-117, 2002.
  • [17] J. Zhang, S. O’shea, “Tuning forks as micromechanical mass sensitive sensors for bio-or liquid detection”. Sensors and Actuators B: Chemical, 94(1), 65-72, 2003.
  • [18] J. M. Friedt, E. Carry, “Introduction to the quartz tuning fork”. American Journal of Physics, 75(5), 415-422, 2007.
  • [19] H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring”. Nature communications, 8(1), 1-8, 2017.
  • [20] G. K. Can, H. F. Özgüzar, G. Kabay, P. Kömürcü, M. Mutlu, “Simultaneous insulation and modification of quartz tuning fork surface by single-step plasma polymerization technique with amine-rich precursors”. MRS Communications, 8(2), 541-549, 2018.
  • [21] H. Wu, L. Dong, X. Yin, A. Sampaolo, P. Patimisco, W. Ma, S. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with VT relaxation self-calibration”. Sensors and Actuators B: Chemical, 297, 126753, 2019.
  • [22] H. F. Özgüzar, G. K. Can, G. Kabay, M. Mutlu, “Quartz tuning fork as a mass sensitive biosensor platform with a bi-layer film modification via plasma polymerization”. MRS Communications, 9(2), 710-718, 2019.
  • [23] X. Yin, H. Wu, L. Dong, B. Li, W. Ma, L. Zhang, F. K. Tittel, “ppb-Level SO2 Photoacoustic Sensors with a Suppressed Absorption–Desorption Effect by Using a 7.41 μm External-Cavity Quantum Cascade Laser”. ACS sensors, 5(2), 549-556, 2020.
  • [24] G. Kaleli-Can, H. F. Özgüzar, M. Mutlu, “Development of mass sensitive sensor platform based on plasma polymerization technique: Quartz tuning fork as transducer”. Applied Surface Science, 540, 148360, 2021.
  • [25] G. Kaleli-Can, H. F. Özgüzar, M. Mutlu, “Development of QTF-based mass-sensitive immunosensor for phenylketonuria diagnosis”. Applied Physics A, 128(4), 277, 2022.
  • [26] M. Monier, A. M. A. El-Sokkary, “Preparation of molecularly imprinted cross-linked chitosan/glutaraldehyde resin for enantioselective separation of L-glutamic acid”. International journal of biological macromolecules, 47(2), 207-213, 2010.
  • [27] S. Roy, H. C. Kim, L. Zhai, J. Kim, “Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films”. Carbohydrate polymers, 231, 115729, 2020.
  • [28] X. Zhou, T. Jiang, J. Zhang, J. Zhu, X. Wang, Z. Zhu, “A quartz tuning fork-based humidity sensor using nanocrystalline zinc oxide thin film coatings”. In 2006 IEEE International Conference on Information Acquisition (pp. 1152-1157). IEEE, 2006.
  • [29] A. Atik, T. Günal, P. A. Bozkurt, S. N. Köse, B. Alp, C. Yandım, G. Kaleli-Can, “Characterization of cisplatin loaded hydrophilic glycol chitosan modified eumelanin nanoparticles for potential controlled-release application”. Journal of Drug Delivery Science and Technology, 84, 104440, 2023.
  • [30] D. Demir, S. Gündoğdu, S. Gundogdu, Ş. Kılıç, T. Kartallıoğlu, E. Baysoy, G. Kaleli Can, “A comparison of different strategies for the modification of quartz tuning forks based mass sensitive sensors using natural melanin nanoparticles”. Akıllı Sistemler ve Uygulamaları Dergisi, 4(2), 128-132, 2021.
There are 30 citations in total.

Details

Primary Language English
Subjects Sensor Technology
Journal Section Articles
Authors

Gizem Kaleli Can 0000-0002-4411-622X

Project Number -
Publication Date January 26, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Kaleli Can, G. (2024). Molecularly Imprinted Chitosan Modified Quartz Tuning Fork Sensors for Real Time Biosensing in Liquid Environment. Duzce University Journal of Science and Technology, 12(1), 337-347. https://doi.org/10.29130/dubited.1351846
AMA Kaleli Can G. Molecularly Imprinted Chitosan Modified Quartz Tuning Fork Sensors for Real Time Biosensing in Liquid Environment. DUBİTED. January 2024;12(1):337-347. doi:10.29130/dubited.1351846
Chicago Kaleli Can, Gizem. “Molecularly Imprinted Chitosan Modified Quartz Tuning Fork Sensors for Real Time Biosensing in Liquid Environment”. Duzce University Journal of Science and Technology 12, no. 1 (January 2024): 337-47. https://doi.org/10.29130/dubited.1351846.
EndNote Kaleli Can G (January 1, 2024) Molecularly Imprinted Chitosan Modified Quartz Tuning Fork Sensors for Real Time Biosensing in Liquid Environment. Duzce University Journal of Science and Technology 12 1 337–347.
IEEE G. Kaleli Can, “Molecularly Imprinted Chitosan Modified Quartz Tuning Fork Sensors for Real Time Biosensing in Liquid Environment”, DUBİTED, vol. 12, no. 1, pp. 337–347, 2024, doi: 10.29130/dubited.1351846.
ISNAD Kaleli Can, Gizem. “Molecularly Imprinted Chitosan Modified Quartz Tuning Fork Sensors for Real Time Biosensing in Liquid Environment”. Duzce University Journal of Science and Technology 12/1 (January 2024), 337-347. https://doi.org/10.29130/dubited.1351846.
JAMA Kaleli Can G. Molecularly Imprinted Chitosan Modified Quartz Tuning Fork Sensors for Real Time Biosensing in Liquid Environment. DUBİTED. 2024;12:337–347.
MLA Kaleli Can, Gizem. “Molecularly Imprinted Chitosan Modified Quartz Tuning Fork Sensors for Real Time Biosensing in Liquid Environment”. Duzce University Journal of Science and Technology, vol. 12, no. 1, 2024, pp. 337-4, doi:10.29130/dubited.1351846.
Vancouver Kaleli Can G. Molecularly Imprinted Chitosan Modified Quartz Tuning Fork Sensors for Real Time Biosensing in Liquid Environment. DUBİTED. 2024;12(1):337-4.