Research Article
BibTex RIS Cite

Kıkırdağın Çok Yönlü Dinamiklerinin İncelenmesi: Karşılaştırmalı Modelleme Çalışması

Year 2024, Volume: 12 Issue: 2, 669 - 679, 29.04.2024
https://doi.org/10.29130/dubited.1347207

Abstract

Kıkırdak sayısal modelleri, kıkırdak mekaniği, hastalık ilerlemesi ve klinik müdahalelerin geliştirilmesi konusundaki anlayışımızı ilerletmede hayati bir rol oynamaktadır. Bu çalışmanın amacı, farklı matematiksel modellerin zaman içinde kıkırdak mekanik davranışı üzerindeki etkisini araştırmaktır. Üç senaryoda karşılaştırmalı bir analiz yapılmıştır: tek fazlı model, bifazik model ve fibril takviyeli poroelastik model. Kıkırdağın zaman içinde nasıl davrandığını anlamak için 1000 saniyelik bir rampa gevşeme deplasmanı uygulanmıştır. Bulgular, tek fazlı modelin kıkırdağın zamana bağlı özelliklerini yakalamakta yetersiz kaldığını ortaya koymaktadır. Buna karşılık, kıkırdak modeline sıvı ve kolajen fibrillerin dahil edilmesi kıkırdak direncini önemli ölçüde artırmakta ve kıkırdağın doğrusal olmayan bir şekilde davranmasını sağlamaktadır. Burada sunulan sonuçlar, sıvı basıncı ve fibril takviyesi arasındaki karmaşık etkileşime ışık tutarak, kıkırdağın basınç yükleri altındaki dinamik davranışının daha derin ve daha bütünsel bir şekilde anlaşılmasına önemli bir katkı sağlamaktadır.

Project Number

None

References

  • [1] A. Maroudas, "Physicochemical properties of cartilage in the light of ion exchange theory", Biophysical Journal, vol. 8, no. 5, pp. 575-595, 1968.
  • [2] V.C. Mow, M.H. Holmes, and W.M. Lai, "Fluid transport and mechanical properties of articular cartilage: a review", Journal of Biomechanics, vol. 17, no. 5, pp. 377-394, 1984.
  • [3] S. Uzuner, L. Li, S Kucuk, and K. Memisoglu, "Changes in knee joint mechanics after medial meniscectomy determined with a poromechanical model", Journal of Biomechanical Engineering, vol. 142, no. 10, pp. 101006, 2020.
  • [4] J. Eschweiler, N. Horn, B. Rath, M. Betsch, A. Baroncini, M. Tingart, and F. Migliorini, "The biomechanics of cartilage—An overview", J Life, vol. 11, no. 4, pp. 302, 2021.
  • [5] E. Kheir and D. Shaw, "Hyaline articular cartilage", Orthopaedics and Trauma, vol. 23, no. 6, pp. 450-455, 2009.
  • [6] Z. Abusara, M. Von Kossel, and W. Herzog, "In vivo dynamic deformation of articular cartilage in intact joints loaded by controlled muscular contractions", J PloS One, vol. 11, no. 1, pp. e0147547, 2016.
  • [7] S. Uzuner, G. Kuntze, L. Li, J. Ronsky, and S. Kucuk, "Creep behavior of human knee joint determined with high-speed biplanar video-radiography and finite element simulation", Journal of the Mechanical Behavior of Biomedical Materials, vol. 125, no. pp. 104905, 2022.
  • [8] J.A. Buckwalter, H.J. Mankin, and A.J. Grodzinsky, "Articular cartilage and osteoarthritis", Instructional Course Lectures-American Academy of Orthopaedic Surgeons, vol. 54, no. pp. 465, 2005.
  • [9] K. Boettcher, S. Grumbein, U. Winkler, J. Nachtsheim, and O. Lieleg, "Adapting a commercial shear rheometer for applications in cartilage research", Review of Scientific Instruments, vol. 85, no. 9, pp. 093903, 2014.
  • [10] J. Stolberg-Stolberg, P. Foehr, I. Pflieger, L. Kuntz, C. Von Deimling, A. Obermeier, P.M. Prodinger, C.U. Grosse, and R. Burgkart, "Analysis of cartilage creep recovery using a highly dynamic closed-loop test system", Journal of Bionic Engineering, vol. 15, no. 6, pp. 1057-1066, 2018.
  • [11] J.J. Elsner, S. Portnoy, F. Guilak, A. Shterling, and E. Linder-Ganz, "MRI-based characterization of bone anatomy in the human knee for size matching of a medial meniscal implant", Journal of Biomechanical Engineering, vol. 132, no. 10, pp. 2010.
  • [12] S. Uzuner, M.L. Rodriguez, L.P. Li, and S. Kucuk, "Dual fluoroscopic evaluation of human tibiofemoral joint kinematics during a prolonged standing: A pilot study", Engineering Science and Technology, an International Journal, vol. 22, no. 3, pp. 794-800, 2019.
  • [13] F. Galbusera, M. Freutel, L. Dürselen, M. D’aiuto, D. Croce, T. Villa, V. Sansone, and B. Innocenti, "Material models and properties in the finite element analysis of knee ligaments: a literature review", Frontiers in Bioengineering Biotechnology, vol. 2, no. pp. 54, 2014.
  • [14] M. Freutel, H. Schmidt, L. Dürselen, A. Ignatius, and F. Galbusera, "Finite element modeling of soft tissues: material models, tissue interaction and challenges", J Clinical Biomechanics, vol. 29, no. 4, pp. 363-372, 2014.
  • [15] A.E. Peters, R. Akhtar, E.J. Comerford, and K.T. Bates, "Tissue material properties and computational modelling of the human knee: A critical review", PeerJ Preprints, pp. 1-48, 2018.
  • [16] V.C. Mow, S. Kuei, W.M. Lai, and C.G. Armstrong, "Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments", Journal of Biomechanical Engineering, vol. 102, no. 1, pp. 73-84, 1980.
  • [17] G. Ateshian, W. Lai, W. Zhu, and V. Mow, "An asymptotic solution for the contact of two biphasic cartilage layers", Journal of Biomechanics, vol. 27, no. 11, pp. 1347-1360, 1994.
  • [18] L.P. Li, M.D. Buschmann, and A. Shirazi-Adl, "Strain-rate dependent stiffness of articular cartilage in unconfined compression", Journal of Biomechanical Engineering, vol. 125, no. 2, pp. 161-168, 2003.
  • [19] H. Atmaca, A. Özkan, İ. Mutlu, T. Çelik, L. Ugur, and Y. Kisioglu, "The effect of proximal tibial corrective osteotomy on menisci, tibia and tarsal bones: a finite element model study of tibia vara", The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 10, no. 1, pp. 93-97, 2014.
  • [20] J.M. Colletti Jr, W.H. Akeson, and S.L. Woo, "A comparison of the physical behavior of normal articular cartilage and the arthroplasty surface", JBJS, vol. 54, no. 1, pp. 147-160, 1972.
  • [21] G. Kempson, M. Freeman, and S. Swanson, "The determination of a creep modulus for articular cartilage from indentation tests on the human femoral head", Journal of Biomechanics, vol. 4, no. 4, pp. 239-250, 1971.
  • [22] M.A. Biot, "General theory of three‐dimensional consolidation", Journal of Applied Physics, vol. 12, no. 2, pp. 155-164, 1941.
  • [23] M. Kazemi and L. Li, "Computational Poromechanics of Human Knee Joint", in Journal of Physics: Conference Series, presented at IOP Publishing, vol. 341, no. 1, pp. 0120142012, 2012.
  • [24] L. Li, J. Soulhat, M. Buschmann, and A. Shirazi-Adl, "Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model", Clinical Biomechanics, vol. 14, no. 9, pp. 673-682, 1999.
  • [25] R.K. Korhonen and S. Saarakkala, "Biomechanics and modeling of skeletal soft tissues", Theoretical Biomechanics, vol. 6, pp. 113-132, 2011.
  • [26] J.J. Sarver, P.S. Robinson, and D.M. Elliott, "Methods for quasi-linear viscoelastic modeling of soft tissue: application to incremental stress-relaxation experiments", Journal of Biomechanical Engineering, vol. 125, no. 5, pp. 754-758, 2003.
  • [27] L. Yoo, H. Kim, V. Gupta, and J.L. Demer, "Quasilinear viscoelastic behavior of bovine extraocular muscle tissue", Investigative Ophthalmology & Visual Science, vol. 50, no. 8, pp. 3721-3728, 2009.
  • [28] J. Wu, W. Herzog, and M. Epstein, "Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues", Journal of Biomechanics, vol. 31, no. 2, pp. 165-169, 1997.
  • [29] S. Uzuner, E. Zurnacı, M. Rodriguez and S. Kucuk, "Investigation of the effect of mesh density and element type on behavior of biphasic soft tissues in finite element analysis", in International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18), Karabuk, Türkiye, May 11-13, 2018, pp. 693-697.
  • [30] V.C. Mow, G.A. Ateshian, and R.L. Spilker, "Biomechanics of diarthrodial joints: a review of twenty years of progress", Journal of Biomechanical Engineering, vol. 115, no. 4B, pp. 460-467, 1993.
  • [31] M. Kazemi, Y. Dabiri, and L.P. Li, "Recent advances in computational mechanics of the human knee joint", Computational and Mathematical Methods in Medicine, vol. 2013, no. Special Issue, pp. 27, 2013.
  • [32] H. Tang, M.J. Buehler, and B. Moran, "A constitutive model of soft tissue: from nanoscale collagen to tissue continuum", J Annals of Biomedical Engineering, vol. 37, no. pp. 1117-1130, 2009.
  • [33] J. Soulhat, M. Buschmann, and A. Shirazi-Adl, "A fibril-network-reinforced biphasic model of cartilage in unconfined compression", J Biomech Eng., vol. 121, no. 3, pp. 340-347, 1999.
  • [34] L.P. Li, J.T.M. Cheung, and W. Herzog, "Three-dimensional fibril-reinforced finite element model of articular cartilage", Medical & Biological Engineering & Computing, vol. 47, no. 6, pp. 607, 2009.
  • [35] P.L. Chandran and V.H. Barocas, "Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse", J. Biomech. Eng., vol. 126, no. 2, pp. 152-166, 2004.

Exploring the Multifaceted Dynamics of Cartilage: A Comparative Modeling Study

Year 2024, Volume: 12 Issue: 2, 669 - 679, 29.04.2024
https://doi.org/10.29130/dubited.1347207

Abstract

Cartilage numeric models play a vital role in advancing our understanding of cartilage mechanics, disease progression, and the development of clinical interventions. The aim of this study is to investigate the influence of different mathematical models on cartilage mechanical behavior over time. A comparative analysis was conducted across three scenarios: the single-phase, biphasic, and fibril-reinforced poroelastic models. To understand how cartilage behaves over time, a 1000-second ramp relaxation displacement was applied. The findings reveal that the single-phase model falls short of capturing the time-dependent characteristics of cartilage. Conversely, the inclusion of fluid and collagen fibrils within the cartilage model significantly enhances cartilage resilience and enables the cartilage to behave non-linearly. The results presented herein make a substantial contribution to a deeper and more holistic comprehension of cartilage's dynamic behavior under compressive loads, shedding light on the intricate interplay between fluid pressure and fibril reinforcement.

Supporting Institution

None

Project Number

None

Thanks

None

References

  • [1] A. Maroudas, "Physicochemical properties of cartilage in the light of ion exchange theory", Biophysical Journal, vol. 8, no. 5, pp. 575-595, 1968.
  • [2] V.C. Mow, M.H. Holmes, and W.M. Lai, "Fluid transport and mechanical properties of articular cartilage: a review", Journal of Biomechanics, vol. 17, no. 5, pp. 377-394, 1984.
  • [3] S. Uzuner, L. Li, S Kucuk, and K. Memisoglu, "Changes in knee joint mechanics after medial meniscectomy determined with a poromechanical model", Journal of Biomechanical Engineering, vol. 142, no. 10, pp. 101006, 2020.
  • [4] J. Eschweiler, N. Horn, B. Rath, M. Betsch, A. Baroncini, M. Tingart, and F. Migliorini, "The biomechanics of cartilage—An overview", J Life, vol. 11, no. 4, pp. 302, 2021.
  • [5] E. Kheir and D. Shaw, "Hyaline articular cartilage", Orthopaedics and Trauma, vol. 23, no. 6, pp. 450-455, 2009.
  • [6] Z. Abusara, M. Von Kossel, and W. Herzog, "In vivo dynamic deformation of articular cartilage in intact joints loaded by controlled muscular contractions", J PloS One, vol. 11, no. 1, pp. e0147547, 2016.
  • [7] S. Uzuner, G. Kuntze, L. Li, J. Ronsky, and S. Kucuk, "Creep behavior of human knee joint determined with high-speed biplanar video-radiography and finite element simulation", Journal of the Mechanical Behavior of Biomedical Materials, vol. 125, no. pp. 104905, 2022.
  • [8] J.A. Buckwalter, H.J. Mankin, and A.J. Grodzinsky, "Articular cartilage and osteoarthritis", Instructional Course Lectures-American Academy of Orthopaedic Surgeons, vol. 54, no. pp. 465, 2005.
  • [9] K. Boettcher, S. Grumbein, U. Winkler, J. Nachtsheim, and O. Lieleg, "Adapting a commercial shear rheometer for applications in cartilage research", Review of Scientific Instruments, vol. 85, no. 9, pp. 093903, 2014.
  • [10] J. Stolberg-Stolberg, P. Foehr, I. Pflieger, L. Kuntz, C. Von Deimling, A. Obermeier, P.M. Prodinger, C.U. Grosse, and R. Burgkart, "Analysis of cartilage creep recovery using a highly dynamic closed-loop test system", Journal of Bionic Engineering, vol. 15, no. 6, pp. 1057-1066, 2018.
  • [11] J.J. Elsner, S. Portnoy, F. Guilak, A. Shterling, and E. Linder-Ganz, "MRI-based characterization of bone anatomy in the human knee for size matching of a medial meniscal implant", Journal of Biomechanical Engineering, vol. 132, no. 10, pp. 2010.
  • [12] S. Uzuner, M.L. Rodriguez, L.P. Li, and S. Kucuk, "Dual fluoroscopic evaluation of human tibiofemoral joint kinematics during a prolonged standing: A pilot study", Engineering Science and Technology, an International Journal, vol. 22, no. 3, pp. 794-800, 2019.
  • [13] F. Galbusera, M. Freutel, L. Dürselen, M. D’aiuto, D. Croce, T. Villa, V. Sansone, and B. Innocenti, "Material models and properties in the finite element analysis of knee ligaments: a literature review", Frontiers in Bioengineering Biotechnology, vol. 2, no. pp. 54, 2014.
  • [14] M. Freutel, H. Schmidt, L. Dürselen, A. Ignatius, and F. Galbusera, "Finite element modeling of soft tissues: material models, tissue interaction and challenges", J Clinical Biomechanics, vol. 29, no. 4, pp. 363-372, 2014.
  • [15] A.E. Peters, R. Akhtar, E.J. Comerford, and K.T. Bates, "Tissue material properties and computational modelling of the human knee: A critical review", PeerJ Preprints, pp. 1-48, 2018.
  • [16] V.C. Mow, S. Kuei, W.M. Lai, and C.G. Armstrong, "Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments", Journal of Biomechanical Engineering, vol. 102, no. 1, pp. 73-84, 1980.
  • [17] G. Ateshian, W. Lai, W. Zhu, and V. Mow, "An asymptotic solution for the contact of two biphasic cartilage layers", Journal of Biomechanics, vol. 27, no. 11, pp. 1347-1360, 1994.
  • [18] L.P. Li, M.D. Buschmann, and A. Shirazi-Adl, "Strain-rate dependent stiffness of articular cartilage in unconfined compression", Journal of Biomechanical Engineering, vol. 125, no. 2, pp. 161-168, 2003.
  • [19] H. Atmaca, A. Özkan, İ. Mutlu, T. Çelik, L. Ugur, and Y. Kisioglu, "The effect of proximal tibial corrective osteotomy on menisci, tibia and tarsal bones: a finite element model study of tibia vara", The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 10, no. 1, pp. 93-97, 2014.
  • [20] J.M. Colletti Jr, W.H. Akeson, and S.L. Woo, "A comparison of the physical behavior of normal articular cartilage and the arthroplasty surface", JBJS, vol. 54, no. 1, pp. 147-160, 1972.
  • [21] G. Kempson, M. Freeman, and S. Swanson, "The determination of a creep modulus for articular cartilage from indentation tests on the human femoral head", Journal of Biomechanics, vol. 4, no. 4, pp. 239-250, 1971.
  • [22] M.A. Biot, "General theory of three‐dimensional consolidation", Journal of Applied Physics, vol. 12, no. 2, pp. 155-164, 1941.
  • [23] M. Kazemi and L. Li, "Computational Poromechanics of Human Knee Joint", in Journal of Physics: Conference Series, presented at IOP Publishing, vol. 341, no. 1, pp. 0120142012, 2012.
  • [24] L. Li, J. Soulhat, M. Buschmann, and A. Shirazi-Adl, "Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model", Clinical Biomechanics, vol. 14, no. 9, pp. 673-682, 1999.
  • [25] R.K. Korhonen and S. Saarakkala, "Biomechanics and modeling of skeletal soft tissues", Theoretical Biomechanics, vol. 6, pp. 113-132, 2011.
  • [26] J.J. Sarver, P.S. Robinson, and D.M. Elliott, "Methods for quasi-linear viscoelastic modeling of soft tissue: application to incremental stress-relaxation experiments", Journal of Biomechanical Engineering, vol. 125, no. 5, pp. 754-758, 2003.
  • [27] L. Yoo, H. Kim, V. Gupta, and J.L. Demer, "Quasilinear viscoelastic behavior of bovine extraocular muscle tissue", Investigative Ophthalmology & Visual Science, vol. 50, no. 8, pp. 3721-3728, 2009.
  • [28] J. Wu, W. Herzog, and M. Epstein, "Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues", Journal of Biomechanics, vol. 31, no. 2, pp. 165-169, 1997.
  • [29] S. Uzuner, E. Zurnacı, M. Rodriguez and S. Kucuk, "Investigation of the effect of mesh density and element type on behavior of biphasic soft tissues in finite element analysis", in International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18), Karabuk, Türkiye, May 11-13, 2018, pp. 693-697.
  • [30] V.C. Mow, G.A. Ateshian, and R.L. Spilker, "Biomechanics of diarthrodial joints: a review of twenty years of progress", Journal of Biomechanical Engineering, vol. 115, no. 4B, pp. 460-467, 1993.
  • [31] M. Kazemi, Y. Dabiri, and L.P. Li, "Recent advances in computational mechanics of the human knee joint", Computational and Mathematical Methods in Medicine, vol. 2013, no. Special Issue, pp. 27, 2013.
  • [32] H. Tang, M.J. Buehler, and B. Moran, "A constitutive model of soft tissue: from nanoscale collagen to tissue continuum", J Annals of Biomedical Engineering, vol. 37, no. pp. 1117-1130, 2009.
  • [33] J. Soulhat, M. Buschmann, and A. Shirazi-Adl, "A fibril-network-reinforced biphasic model of cartilage in unconfined compression", J Biomech Eng., vol. 121, no. 3, pp. 340-347, 1999.
  • [34] L.P. Li, J.T.M. Cheung, and W. Herzog, "Three-dimensional fibril-reinforced finite element model of articular cartilage", Medical & Biological Engineering & Computing, vol. 47, no. 6, pp. 607, 2009.
  • [35] P.L. Chandran and V.H. Barocas, "Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse", J. Biomech. Eng., vol. 126, no. 2, pp. 152-166, 2004.
There are 35 citations in total.

Details

Primary Language English
Subjects Biomechanic
Journal Section Articles
Authors

Sabri Uzuner 0000-0002-9099-1324

Project Number None
Publication Date April 29, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Uzuner, S. (2024). Exploring the Multifaceted Dynamics of Cartilage: A Comparative Modeling Study. Duzce University Journal of Science and Technology, 12(2), 669-679. https://doi.org/10.29130/dubited.1347207
AMA Uzuner S. Exploring the Multifaceted Dynamics of Cartilage: A Comparative Modeling Study. DUBİTED. April 2024;12(2):669-679. doi:10.29130/dubited.1347207
Chicago Uzuner, Sabri. “Exploring the Multifaceted Dynamics of Cartilage: A Comparative Modeling Study”. Duzce University Journal of Science and Technology 12, no. 2 (April 2024): 669-79. https://doi.org/10.29130/dubited.1347207.
EndNote Uzuner S (April 1, 2024) Exploring the Multifaceted Dynamics of Cartilage: A Comparative Modeling Study. Duzce University Journal of Science and Technology 12 2 669–679.
IEEE S. Uzuner, “Exploring the Multifaceted Dynamics of Cartilage: A Comparative Modeling Study”, DUBİTED, vol. 12, no. 2, pp. 669–679, 2024, doi: 10.29130/dubited.1347207.
ISNAD Uzuner, Sabri. “Exploring the Multifaceted Dynamics of Cartilage: A Comparative Modeling Study”. Duzce University Journal of Science and Technology 12/2 (April 2024), 669-679. https://doi.org/10.29130/dubited.1347207.
JAMA Uzuner S. Exploring the Multifaceted Dynamics of Cartilage: A Comparative Modeling Study. DUBİTED. 2024;12:669–679.
MLA Uzuner, Sabri. “Exploring the Multifaceted Dynamics of Cartilage: A Comparative Modeling Study”. Duzce University Journal of Science and Technology, vol. 12, no. 2, 2024, pp. 669-7, doi:10.29130/dubited.1347207.
Vancouver Uzuner S. Exploring the Multifaceted Dynamics of Cartilage: A Comparative Modeling Study. DUBİTED. 2024;12(2):669-7.