Synthesis, Characterization and Photophysical Properties of 2-Quinolone-Based Compounds
Year 2024,
Volume: 12 Issue: 2, 642 - 653, 29.04.2024
Tahir Savran
Abstract
2-Quinolone (1,2-dihydroquinoline) and 1-aza coumarin derivatives are quinoline class pharmacophore structures known for their versatile bioactive and stable photophysical properties. In the present study, N-amino (2) and N-acetamido (3) derivatives of 2-quinolone-based 1-aza Coumarin-3-carboxylic acid were synthesized. Structure characterizations of the synthesized compounds were performed using 1H NMR, IR, 13C NMR spectral techniques. The synthesized compounds are thought to be precursor structures for the development of new bioactive agents because of their structural similarity. The photophysical sensitivities of compounds (2 and 3), which have the 1-Aza coumarin skeleton, in different solvents were examined by ultraviolet−visible (UV−Vis) absorption spectroscopy and fluorescence spectroscopy methods. In addition, the compounds synthesized in this study could serve as fluorophores, fluorescently active and bioactive new Schiff base sensors in different fluorescence studies.
Ethical Statement
This work is an original work; Scientific ethical principles and rules were followed at all stages of the study, including preparation, data collection, analysis and presentation of information. I have cited and included references for all data and information not obtained within the scope of the study; No changes were made to the data used. If at any time a situation contrary to this statement regarding the study is detected, all moral and legal consequences will be accepted.
Supporting Institution
Karamanoglu Mehmetbey University
Thanks
This work is supported by Karamanoglu Mehmetbey University Scientific Project (Project no: 15–YL–20)
References
- [1] S. M. Prajapati, K. D. Patel, R. H. Vekariya, S. N. Panchal, and H. D. Patel, “Recent advances in the synthesis of quinolines: A review,” RSC Adv., vol. 4, no. 47, pp. 24463–24476, 2014, doi: 10.1039/c4ra01814a.
- [2] P. Yadav and K. Shah, “Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry,” Bioorg. Chem., 109, 2021, doi: 10.1016/j.bioorg.2021.104639.
- [3] B. Suh and B. Lorber, “From the Section of Infectious Diseases, Temple University Health Sciences Center, School of Medicine, Philadelphia, Pennsylvania MEDICAL CLINICS OF NORTH AMERICA,” Antimicrob. Ther. II, vol. 79, no. 4, pp. 869–894, 1995.
- [4] R. I. H. Al-bayati and M. F. Radi, “Synthesis of novel 2-quinolone derivatives,” African J. Pure Appl. Chem., vol. 4, no. November, pp. 228–232, 2010.
- [5] A. R. Syniugin et al., “Design, synthesis and evaluation of 3-quinoline carboxylic acids as new inhibitors of protein kinase CK2,” J. Enzyme Inhib. Med. Chem., vol. 31, no. September, pp. 160–169, 2016, doi: 10.1080/14756366.2016.1222584.
- [6] J. Prathyusha and C. A. Deepti, “Synthesis, Antimicrobial, and Antitubercular Activities of Novel N-Pyrazolylbenzamide Derivatives,” Rasayan J. Chem., vol. 15, no. 4, pp. 2407–2416, 2022, doi: 10.31788/RJC.2022.1547092.
- [7] M. I. Andersson and A. P. MacGowan, “Development of the quinolones,” J. Antimicrob. Chemother., vol. 51, no. SUPPL. 1, pp. 1–11, 2003, doi: 10.1093/jac/dkg212.
- [8] G. Kumar, A. Sathe, V. S. Krishna, D. Sriram, and S. M. Jachak, “Synthesis and biological evaluation of dihydroquinoline carboxamide derivatives as anti-tubercular agents,” Eur. J. Med. Chem., vol. 157, pp. 1–13, 2018, doi: 10.1016/j.ejmech.2018.07.046.
- [9] O. Tabarrini et al., “Studies of anti-HIV transcription inhibitor quinolones: Identification of potent N1-vinyl derivatives,” ChemMedChem, vol. 5, no. 11, pp. 1880–1892, 2010, doi: 10.1002/cmdc.201000267.
- [10] V. T. Andriole, “The quinolones: Past, present, and future,” Clin. Infect. Dis., vol. 41, no. 2 SUPPL., pp. 113–119, 2005, doi: 10.1086/428051.
- [11] A. M. Emmerson and A. M. Jones, “The quinolones: Decades of development and use,” J. Antimicrob. Chemother., vol. 51, no. SUPPL. 1, pp. 13–20, 2003, doi: 10.1093/jac/dkg208.
- [12] A. A. Al-Amiery, R. I. H. Al-Bayati, K. Y. Saour, and M. F. Radi, “Cytotoxicity, antioxidant, and antimicrobial activities of novel 2-quinolone derivatives derived from coumarin,” Res. Chem. Intermed., vol. 38, no. 2, pp. 559–569, 2012, doi: 10.1007/s11164-011-0371-2.
- [13] M. Radi, A. Al-Amiery, and R. AL-Bayati, “Synthesis, spectroscopic and antimicrobial studies of transition metal complexes of N-amino quinolone derivatives,” Br. J. Pharmacol. Toxicol., vol. 2, no. 1, pp. 5–11, 2019, doi: 10.3390/ecsoc-14-00435.
- [14] M. P. Wentland, D. M. Bailey, J. B. Cornett, R. A. Dobson, R. G. Powles, and R. B. Wagner, “Novel Amino-Substituted 3-Quinolinecarboxylic Acid Antibacterial Agents: Synthesis and Structure-Activity Relationships,” J. Med. Chem., vol. 27, no. 9, pp. 1103–1108, 1984, doi: 10.1021/jm00375a003.
- [15] F. Ushiyama et al., “Lead identification of 8-(methylamino)-2-oxo-1,2-dihydroquinoline derivatives as DNA Gyrase Inhibitors: hit-to-lead generation involving thermodynamic evaluation,” ACS Omega, vol. 5, no. 17, pp. 10145–10159, 2020, doi: 10.1021/acsomega.0c00865.
- [16] I. Tomassoli et al., “Synthesis, biological assessment and molecular modeling of new dihydroquinoline-3-carboxamides and dihydroquinoline-3-carbohydrazide derivatives as cholinesterase inhibitors, and Ca channel antagonists,” Eur. J. Med. Chem., vol. 46, no. 1, pp. 1–10, 2011, doi: 10.1016/j.ejmech.2010.08.054.
- [17] M. Sechi et al., “Design and synthesis of novel dihydroquinoline-3-carboxylic acids as HIV-1 integrase inhibitors,” Bioorganic Medicine and Chemistry, vol. 17, no. 7, pp. 2925–2935, 2009, doi: 10.1016/j.bmc.2008.10.088.
- [18] E. Stern et al., “Pharmacomodulations around the 4-oxo-1,4-dihydroquinoline-3-carboxamides, a class of potent CB2-selective cannabinoid receptor ligands: Consequences in receptor affinity and functionality,” J. Med. Chem., vol. 50, no. 22, pp. 5471–5484, 2007, doi: 10.1021/jm070387h.
- [19] R, R, Deore; G,S, Chen; C-S, Chen,; P-T. Chang; M-H. Chuang; T-R. Chern; H-C, Wang; J-W. Chern, “2-Hydroxy-1-oxo-1,2-dihydroisoquinoline-3-carboxylic Acid with Inbuilt β-NHydroxy-γ-keto-acid Pharmacophore as HCV NS5B Polymerase Inhibitors,” Curr. Med. Chem., vol. 19, no. 4, pp. 613–621, 2012.
- [20] R. G. Kalkhambkar, G. M. Kulkarni, C. M. Kamanavalli, N. Premkumar, S. M. B. Asdaq, and C. M. Sun, “Synthesis and biological activities of some new fluorinated coumarins and 1-aza coumarins,” Eur. J. Med. Chem., vol. 43, no. 10, pp. 2178–2188, 2008, doi: 10.1016/j.ejmech.2007.08.007.
- [21] M. Kulkarni, G. Kulkarni, C.-H. Lin, and C.-M. Sun, “Recent Advances in Coumarins and 1-Azacoumarins as Versatile Biodynamic Agents,” Curr. Med. Chem., vol. 13, no. 23, pp. 2795–2818, 2006, doi: 10.2174/092986706778521968.
- [22] S. B. Bakare, “Synthesis and anticancer evaluation of some coumarin and azacoumarin derivatives,” Polish J. Chem. Technol., vol. 23, no. 2, pp. 27–34, 2021, doi: 10.2478/pjct-2021-0013.
- [23] H. Ji et al., “Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactate transport inhibitors,” Bioorganic Medicine and Chemistry, vol. 29, no. November 2020, 2021, doi: 10.1016/j.bmc.2020.115870.
- [24] H. Katerinopoulos, “The Coumarin Moiety as Chromophore of Fluorescent Ion Indicators in Biological Systems,” Curr. Pharm. Des., vol. 10, no. 30, pp. 3835–3852, 2005, doi: 10.2174/1381612043382666.
- [25] N. A. Al-Masoudi, N. J. Al-Salihi, Y. A. Marich, and T. Markus, “Synthesis, and Fluorescence Properties of Coumarin and Benzocoumarin Derivatives Conjugated Pyrimidine Scaffolds for Biological Imaging Applications,” J. Fluoresc., vol. 25, no. 6, pp. 1847–1854, 2015, doi: 10.1007/s10895-015-1677-z.
- [26] Erdik, E. Spectroscopic Methods in Organic Chemistry, Seventh Edition. 2020.
- [27] E. Pretsch, P. Bühlmann, and M. Badertscher, Structure Determination of Organic Compounds: Tables of Spectral Data, Fifth Edition. 2000.
- [28] S. Batari, G. Timari, A. Messmer, B. Potanyi, L. Vavari-Debreczy, “Synthesis of N-(1-aziridinyl)-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acids,” Heterocycles, vol. 45, no. 6, pp. 1097–1110, 1997.
- [29] R. Lahiri, A. A. Ansari, and Y. D. Vankar, “Recent developments in design and synthesis of bicyclic azasugars, carbasugars and related molecules as glycosidase inhibitors,” Chem. Soc. Rev., vol. 42, no. 12, pp. 5102–5118, 2013, doi: 10.1039/c3cs35525j.
- [30] C. Chakraborty, V. P. Vyavahare, V. G. Puranik, and D. D. Dhavale, “Synthesis of five and six membered aminocyclitols: stereoselective Michael and Henry reaction approach with d-glucose derived α,β-unsaturated ester,” Tetrahedron, vol. 64, no. 40, pp. 9574–9580, 2008, doi: 10.1016/j.tet.2008.07.049.
2-Kinolon Temelli Bileşiklerin Sentezi, Karakterizasyonu ve Fotofiziksel Özellikleri
Year 2024,
Volume: 12 Issue: 2, 642 - 653, 29.04.2024
Tahir Savran
Abstract
2-Kinolon (1,2-dihidrokinolin) ve 1-aza kumarin türevleri çok yönlü biyoaktif ve kararlı fotofiziksel özellikleriyle bilinen kinolin sınıfı farmakofor yapılardır. Sunulan çalışmada 2-kinolon temelli 1-aza kumarin-3-karboksilik asit’in N-amino (2) ve N-asetamido (3) türevlerinin sentezi yapılmıştır. Sentezlenen bileşiklerin yapı karakterizasyonu 1H NMR, IR, 13C NMR spektral teknikleriyle gerçekleştirilmiştir. Sentezlenen bileşiklerin yapı benzerliğinden dolayı yeni biyoaktif ajanların geliştirilmesinde öncü yapılar olabileceği düşünülmektedir. 1-Aza kumarin iskeletine sahip bu bileşiklerin (2 ve 3) farklı çözücülerdeki fotofiziksel duyarlılıkları mor ötesi-görünür bölge (UV-GB) absorpsiyon spektroskopisi ve floresans spektroskopisi yöntemleriyle incelenmiştir. Ayrıca çalışmada sentezlenen bileşikler, farklı floresans çalışmalarda florofor, floresan aktif ve biyoaktif yeni Schiff bazı algılayıcı gibi görevler alabilir.
Ethical Statement
Bu çalışma, özgün bir çalışma olup; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davranılmıştır. Çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterilmiş ve bu kaynaklarda yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapılmamıştır. Herhangi bir zamanda, çalışmayla ilgili yapılan bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlar kabul edilecektir.
Supporting Institution
Karamanoğlu Mehmetbey Üniversitesi
Thanks
Bu çalışma Karamanoğlu Mehmetbey Üniversitesi Bilimsel Projesi (Proje no: 15–YL–20) tarafından desteklenmektedir.
References
- [1] S. M. Prajapati, K. D. Patel, R. H. Vekariya, S. N. Panchal, and H. D. Patel, “Recent advances in the synthesis of quinolines: A review,” RSC Adv., vol. 4, no. 47, pp. 24463–24476, 2014, doi: 10.1039/c4ra01814a.
- [2] P. Yadav and K. Shah, “Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry,” Bioorg. Chem., 109, 2021, doi: 10.1016/j.bioorg.2021.104639.
- [3] B. Suh and B. Lorber, “From the Section of Infectious Diseases, Temple University Health Sciences Center, School of Medicine, Philadelphia, Pennsylvania MEDICAL CLINICS OF NORTH AMERICA,” Antimicrob. Ther. II, vol. 79, no. 4, pp. 869–894, 1995.
- [4] R. I. H. Al-bayati and M. F. Radi, “Synthesis of novel 2-quinolone derivatives,” African J. Pure Appl. Chem., vol. 4, no. November, pp. 228–232, 2010.
- [5] A. R. Syniugin et al., “Design, synthesis and evaluation of 3-quinoline carboxylic acids as new inhibitors of protein kinase CK2,” J. Enzyme Inhib. Med. Chem., vol. 31, no. September, pp. 160–169, 2016, doi: 10.1080/14756366.2016.1222584.
- [6] J. Prathyusha and C. A. Deepti, “Synthesis, Antimicrobial, and Antitubercular Activities of Novel N-Pyrazolylbenzamide Derivatives,” Rasayan J. Chem., vol. 15, no. 4, pp. 2407–2416, 2022, doi: 10.31788/RJC.2022.1547092.
- [7] M. I. Andersson and A. P. MacGowan, “Development of the quinolones,” J. Antimicrob. Chemother., vol. 51, no. SUPPL. 1, pp. 1–11, 2003, doi: 10.1093/jac/dkg212.
- [8] G. Kumar, A. Sathe, V. S. Krishna, D. Sriram, and S. M. Jachak, “Synthesis and biological evaluation of dihydroquinoline carboxamide derivatives as anti-tubercular agents,” Eur. J. Med. Chem., vol. 157, pp. 1–13, 2018, doi: 10.1016/j.ejmech.2018.07.046.
- [9] O. Tabarrini et al., “Studies of anti-HIV transcription inhibitor quinolones: Identification of potent N1-vinyl derivatives,” ChemMedChem, vol. 5, no. 11, pp. 1880–1892, 2010, doi: 10.1002/cmdc.201000267.
- [10] V. T. Andriole, “The quinolones: Past, present, and future,” Clin. Infect. Dis., vol. 41, no. 2 SUPPL., pp. 113–119, 2005, doi: 10.1086/428051.
- [11] A. M. Emmerson and A. M. Jones, “The quinolones: Decades of development and use,” J. Antimicrob. Chemother., vol. 51, no. SUPPL. 1, pp. 13–20, 2003, doi: 10.1093/jac/dkg208.
- [12] A. A. Al-Amiery, R. I. H. Al-Bayati, K. Y. Saour, and M. F. Radi, “Cytotoxicity, antioxidant, and antimicrobial activities of novel 2-quinolone derivatives derived from coumarin,” Res. Chem. Intermed., vol. 38, no. 2, pp. 559–569, 2012, doi: 10.1007/s11164-011-0371-2.
- [13] M. Radi, A. Al-Amiery, and R. AL-Bayati, “Synthesis, spectroscopic and antimicrobial studies of transition metal complexes of N-amino quinolone derivatives,” Br. J. Pharmacol. Toxicol., vol. 2, no. 1, pp. 5–11, 2019, doi: 10.3390/ecsoc-14-00435.
- [14] M. P. Wentland, D. M. Bailey, J. B. Cornett, R. A. Dobson, R. G. Powles, and R. B. Wagner, “Novel Amino-Substituted 3-Quinolinecarboxylic Acid Antibacterial Agents: Synthesis and Structure-Activity Relationships,” J. Med. Chem., vol. 27, no. 9, pp. 1103–1108, 1984, doi: 10.1021/jm00375a003.
- [15] F. Ushiyama et al., “Lead identification of 8-(methylamino)-2-oxo-1,2-dihydroquinoline derivatives as DNA Gyrase Inhibitors: hit-to-lead generation involving thermodynamic evaluation,” ACS Omega, vol. 5, no. 17, pp. 10145–10159, 2020, doi: 10.1021/acsomega.0c00865.
- [16] I. Tomassoli et al., “Synthesis, biological assessment and molecular modeling of new dihydroquinoline-3-carboxamides and dihydroquinoline-3-carbohydrazide derivatives as cholinesterase inhibitors, and Ca channel antagonists,” Eur. J. Med. Chem., vol. 46, no. 1, pp. 1–10, 2011, doi: 10.1016/j.ejmech.2010.08.054.
- [17] M. Sechi et al., “Design and synthesis of novel dihydroquinoline-3-carboxylic acids as HIV-1 integrase inhibitors,” Bioorganic Medicine and Chemistry, vol. 17, no. 7, pp. 2925–2935, 2009, doi: 10.1016/j.bmc.2008.10.088.
- [18] E. Stern et al., “Pharmacomodulations around the 4-oxo-1,4-dihydroquinoline-3-carboxamides, a class of potent CB2-selective cannabinoid receptor ligands: Consequences in receptor affinity and functionality,” J. Med. Chem., vol. 50, no. 22, pp. 5471–5484, 2007, doi: 10.1021/jm070387h.
- [19] R, R, Deore; G,S, Chen; C-S, Chen,; P-T. Chang; M-H. Chuang; T-R. Chern; H-C, Wang; J-W. Chern, “2-Hydroxy-1-oxo-1,2-dihydroisoquinoline-3-carboxylic Acid with Inbuilt β-NHydroxy-γ-keto-acid Pharmacophore as HCV NS5B Polymerase Inhibitors,” Curr. Med. Chem., vol. 19, no. 4, pp. 613–621, 2012.
- [20] R. G. Kalkhambkar, G. M. Kulkarni, C. M. Kamanavalli, N. Premkumar, S. M. B. Asdaq, and C. M. Sun, “Synthesis and biological activities of some new fluorinated coumarins and 1-aza coumarins,” Eur. J. Med. Chem., vol. 43, no. 10, pp. 2178–2188, 2008, doi: 10.1016/j.ejmech.2007.08.007.
- [21] M. Kulkarni, G. Kulkarni, C.-H. Lin, and C.-M. Sun, “Recent Advances in Coumarins and 1-Azacoumarins as Versatile Biodynamic Agents,” Curr. Med. Chem., vol. 13, no. 23, pp. 2795–2818, 2006, doi: 10.2174/092986706778521968.
- [22] S. B. Bakare, “Synthesis and anticancer evaluation of some coumarin and azacoumarin derivatives,” Polish J. Chem. Technol., vol. 23, no. 2, pp. 27–34, 2021, doi: 10.2478/pjct-2021-0013.
- [23] H. Ji et al., “Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactate transport inhibitors,” Bioorganic Medicine and Chemistry, vol. 29, no. November 2020, 2021, doi: 10.1016/j.bmc.2020.115870.
- [24] H. Katerinopoulos, “The Coumarin Moiety as Chromophore of Fluorescent Ion Indicators in Biological Systems,” Curr. Pharm. Des., vol. 10, no. 30, pp. 3835–3852, 2005, doi: 10.2174/1381612043382666.
- [25] N. A. Al-Masoudi, N. J. Al-Salihi, Y. A. Marich, and T. Markus, “Synthesis, and Fluorescence Properties of Coumarin and Benzocoumarin Derivatives Conjugated Pyrimidine Scaffolds for Biological Imaging Applications,” J. Fluoresc., vol. 25, no. 6, pp. 1847–1854, 2015, doi: 10.1007/s10895-015-1677-z.
- [26] Erdik, E. Spectroscopic Methods in Organic Chemistry, Seventh Edition. 2020.
- [27] E. Pretsch, P. Bühlmann, and M. Badertscher, Structure Determination of Organic Compounds: Tables of Spectral Data, Fifth Edition. 2000.
- [28] S. Batari, G. Timari, A. Messmer, B. Potanyi, L. Vavari-Debreczy, “Synthesis of N-(1-aziridinyl)-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acids,” Heterocycles, vol. 45, no. 6, pp. 1097–1110, 1997.
- [29] R. Lahiri, A. A. Ansari, and Y. D. Vankar, “Recent developments in design and synthesis of bicyclic azasugars, carbasugars and related molecules as glycosidase inhibitors,” Chem. Soc. Rev., vol. 42, no. 12, pp. 5102–5118, 2013, doi: 10.1039/c3cs35525j.
- [30] C. Chakraborty, V. P. Vyavahare, V. G. Puranik, and D. D. Dhavale, “Synthesis of five and six membered aminocyclitols: stereoselective Michael and Henry reaction approach with d-glucose derived α,β-unsaturated ester,” Tetrahedron, vol. 64, no. 40, pp. 9574–9580, 2008, doi: 10.1016/j.tet.2008.07.049.