Research Article
BibTex RIS Cite

İniş Takımı Sisteminin Aktif Titreşim Kontrolü

Year 2024, Volume: 12 Issue: 3, 1692 - 1701, 31.07.2024
https://doi.org/10.29130/dubited.1177711

Abstract

Uçağın iniş ve kalkış sırasındaki titreşimi büyük bir problemdir. Uçağın yerle dinamik etkileşimi nedeniyle oluşan titreşim ciddi sorunlara neden olur. Bu nedenle, titreşim azaltılmalı veya mümkünse bazı harici yollarla tamamen absorbe edilmelidir. Bu nedenle bu çalışmada bir uçağın aktif titreşim kontrolü incelenmiştir. Uçağın hareket denklemi Newton'un ikinci yasası ile elde edilmiş ve MATLAB/Simulink ortamında simüle edilmiştir. İniş takımı sistemine iki farklı kontrolör takılmıştır. Aktif sistem için oransal, integral türev (PID) ve doğrusal ikinci dereceden regülatör (LQR) kontrolörü kullanılmıştır. Çalışmada, pilotun kabiliyet performansı üzerinde zararlı etkileri olduğu için gövdenin dikey yer değiştirmesi ve ivmelenmesi hedef olarak belirlenmiştir. Simülasyon, pasif ve aktif sistemler için B sınıfı yol ve tümsek yol altında aynı anda koşturulmuştur. Kontrolörlerin performansı birbirlerine ve ayrıca pasif bir sistemin performansına göre karşılaştırılmıştır. Sonuçlardan, tümsek yol uyarımı altında, LQR ve PID kontrolörlerinin gövde deplasmanında sırasıyla %57.32 ve %53.34 iyileştirme elde edilmiştir. Benzer şekilde B yol profili altında, pasif sistemlere kıyasla LQR ve PID kontrolörlerinin gövdenin dikey ivmesini sırasıyla %92.86 ve %53.55 oranında iyileştirdiği de elde edilmiştir.

Supporting Institution

Bu çalışmayı destekleyen kurum yoktur.

References

  • C. Han, B. H. Kang, S. B. Choi, J. M. Tak, and J. H. Hwang, “Control of landing efficiency of an aircraft landing gear system with magnetorheological dampers,” J. Aircr., vol. 56, no. 5, pp. 1980–1986, 2019, doi: 10.2514/1.C035298.
  • B. H. Kang, J. Y. Yoon, G. W. Kim, and S. B. Choi, “Landing efficiency control of a six-degree-of-freedom aircraft model with magnetorheological dampers: Part 1—Modeling,” J. Intell. Mater. Syst. Struct., vol. 32, no. 12, pp. 1323–1335, 2021, doi: 10.1177/1045389X20942578.
  • S. Sivaprakasam, “Aircraft Random Vibration Analysis using Active Landing Gears,” J. Low Freq. Noise Vib. Act. Control, vol. 34, no. December, 2015.
  • S. Sivaprakasam and A. P. Haran, “Parametric Analysis and Vibration Control of Landing Gear with PID Controller,” Eur. J. Sci. Res., vol. 89, no. 3, pp. 441–453, 2012.
  • H. Yazici and M. Sever, “Observer based optimal vibration control of a full aircraft system having active landing gears and biodynamic pilot model,” Shock Vib., vol. 2016, 2016, doi: 10.1155/2016/2150493.
  • S. Sivakumar and A. P. Haran, “Mathematical model and vibration analysis of aircraft with active landing gears,” JVC/Journal Vib. Control, vol. 21, no. 2, pp. 229–245, 2015, doi: 10.1177/1077546313486908.
  • M. Pirooz, S. H. Mirmahdi, and S. R. Moafi, “Promoting both passenger comfort and aircraft handling of 6 DOF landing gear utilizing variable mechanical admittance approach,” Vibroengineering Procedia, vol. 30, pp. 79–85, 2020, doi: 10.21595/vp.2019.21221.
  • A. Toloei, E. Aghamirbaha, and M. Zarchi, “Mathematical model and vibration analysis of aircraft with active landing gear system using linear quadratic regulator technique,” Int. J. Eng. Trans. B Appl., vol. 29, no. 2, pp. 137–144, 2016, doi: 10.5829/idosi.ije.2016.29.02b.01.
  • D. Y. Lee, Y. J. Nam, R. Yamane, and M. K. Park, “Performance evaluation on vibration control of MR landing gear,” J. Phys. Conf. Ser., vol. 149, p. 012068, 2009, doi: 10.1088/1742-6596/149/1/012068.
  • W. Liu, W. Shi, and H. Ya, “Semi-Active Vibration Control of Landing Gear Using Magneto-Rhelological Dampers,” SAE Int. J. Aerosp., vol. 4, no. 2, pp. 958–964, 2011, doi: 10.4271/2011-01-2583.
  • D. Saxena and H. Rathore, “Vibration Control of MR Damper Landing Gear,” Int. J. Adv. Res. Artif. Intell., vol. 2, no. 3, pp. 72–76, 2013.
  • B. Sateesh and D. K. Maiti, “Closed-loop active vibration control of a typical nose landing gear with torsional MR fluid based damper,” Struct. Eng. Mech., vol. 31, no. 1, pp. 39–56, 2009, doi: 10.12989/sem.2009.31.1.039.
  • A. A. Gharapurkar, A. F. Jahromi, R. B. Bhat, and W. F. Xie, “Semi-Active control of aircraft landing gear system using H-infinity control approach,” 2013 Int. Conf. Connect. Veh. Expo, ICCVE 2013 - Proc., pp. 679–686, 2013, doi: 10.1109/ICCVE.2013.6799877.
  • F. Tyan, Y.-F. Hong, S.-H. Tu, and W. S. Jeng, “Generation of random road profiles,” J. Adv. Eng., vol. 4, no. 2, pp. 151–156, 2009.
  • ISO, “Mechanical vibration – road surface profiles – reporting of measured data, Technical Report, ISO,” 1995.

Active Vibration Control of Landing Gear System

Year 2024, Volume: 12 Issue: 3, 1692 - 1701, 31.07.2024
https://doi.org/10.29130/dubited.1177711

Abstract

The vibration of the aircraft when taxing, landing, and taking off is a great problem. Vibration induced due to the dynamic interaction of aircraft with the ground causes serious problems. Therefore, the vibration should be reduced or completely absorbed if possible by some external means. So, in this study active vibration control of an aircraft LG is investigated. The equation of motion of the aircraft LG system is obtained by Newton’s second law and simulated in MATLAB/Simulink environment. Two different controllers are fitted to the landing gear system. Proportional, integral derivative (PID) and Linear Quadratic Regulator (LQR) controllers are used in controlling active suspension structure. In the study, vertical displacement and acceleration of the fuselage are set as objective since it has harmful effects on the performance of the pilot’s capability. Simulation is run under B grade road and bump road for passive and active systems simultaneously. The performance of controllers is compared to one another and also with that of a passive system. From the results, it was obtained that under bump road excitation, LQR and PID controllers make 57.32% and 53.34% improvement in fuselage displacement, respectively. Similarly, under B Grade road, compared to passive systems LQR and PID controllers improve the vertical acceleration of the fuselage by 92.86% and 53.55% respectively.

References

  • C. Han, B. H. Kang, S. B. Choi, J. M. Tak, and J. H. Hwang, “Control of landing efficiency of an aircraft landing gear system with magnetorheological dampers,” J. Aircr., vol. 56, no. 5, pp. 1980–1986, 2019, doi: 10.2514/1.C035298.
  • B. H. Kang, J. Y. Yoon, G. W. Kim, and S. B. Choi, “Landing efficiency control of a six-degree-of-freedom aircraft model with magnetorheological dampers: Part 1—Modeling,” J. Intell. Mater. Syst. Struct., vol. 32, no. 12, pp. 1323–1335, 2021, doi: 10.1177/1045389X20942578.
  • S. Sivaprakasam, “Aircraft Random Vibration Analysis using Active Landing Gears,” J. Low Freq. Noise Vib. Act. Control, vol. 34, no. December, 2015.
  • S. Sivaprakasam and A. P. Haran, “Parametric Analysis and Vibration Control of Landing Gear with PID Controller,” Eur. J. Sci. Res., vol. 89, no. 3, pp. 441–453, 2012.
  • H. Yazici and M. Sever, “Observer based optimal vibration control of a full aircraft system having active landing gears and biodynamic pilot model,” Shock Vib., vol. 2016, 2016, doi: 10.1155/2016/2150493.
  • S. Sivakumar and A. P. Haran, “Mathematical model and vibration analysis of aircraft with active landing gears,” JVC/Journal Vib. Control, vol. 21, no. 2, pp. 229–245, 2015, doi: 10.1177/1077546313486908.
  • M. Pirooz, S. H. Mirmahdi, and S. R. Moafi, “Promoting both passenger comfort and aircraft handling of 6 DOF landing gear utilizing variable mechanical admittance approach,” Vibroengineering Procedia, vol. 30, pp. 79–85, 2020, doi: 10.21595/vp.2019.21221.
  • A. Toloei, E. Aghamirbaha, and M. Zarchi, “Mathematical model and vibration analysis of aircraft with active landing gear system using linear quadratic regulator technique,” Int. J. Eng. Trans. B Appl., vol. 29, no. 2, pp. 137–144, 2016, doi: 10.5829/idosi.ije.2016.29.02b.01.
  • D. Y. Lee, Y. J. Nam, R. Yamane, and M. K. Park, “Performance evaluation on vibration control of MR landing gear,” J. Phys. Conf. Ser., vol. 149, p. 012068, 2009, doi: 10.1088/1742-6596/149/1/012068.
  • W. Liu, W. Shi, and H. Ya, “Semi-Active Vibration Control of Landing Gear Using Magneto-Rhelological Dampers,” SAE Int. J. Aerosp., vol. 4, no. 2, pp. 958–964, 2011, doi: 10.4271/2011-01-2583.
  • D. Saxena and H. Rathore, “Vibration Control of MR Damper Landing Gear,” Int. J. Adv. Res. Artif. Intell., vol. 2, no. 3, pp. 72–76, 2013.
  • B. Sateesh and D. K. Maiti, “Closed-loop active vibration control of a typical nose landing gear with torsional MR fluid based damper,” Struct. Eng. Mech., vol. 31, no. 1, pp. 39–56, 2009, doi: 10.12989/sem.2009.31.1.039.
  • A. A. Gharapurkar, A. F. Jahromi, R. B. Bhat, and W. F. Xie, “Semi-Active control of aircraft landing gear system using H-infinity control approach,” 2013 Int. Conf. Connect. Veh. Expo, ICCVE 2013 - Proc., pp. 679–686, 2013, doi: 10.1109/ICCVE.2013.6799877.
  • F. Tyan, Y.-F. Hong, S.-H. Tu, and W. S. Jeng, “Generation of random road profiles,” J. Adv. Eng., vol. 4, no. 2, pp. 151–156, 2009.
  • ISO, “Mechanical vibration – road surface profiles – reporting of measured data, Technical Report, ISO,” 1995.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ufuk Demircioglu 0000-0002-9707-8271

Sefa Burhan Eker 0000-0003-0682-2016

Ali Suat Yıldız 0000-0001-6914-5222

Publication Date July 31, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Demircioglu, U., Eker, S. B., & Yıldız, A. S. (2024). Active Vibration Control of Landing Gear System. Duzce University Journal of Science and Technology, 12(3), 1692-1701. https://doi.org/10.29130/dubited.1177711
AMA Demircioglu U, Eker SB, Yıldız AS. Active Vibration Control of Landing Gear System. DUBİTED. July 2024;12(3):1692-1701. doi:10.29130/dubited.1177711
Chicago Demircioglu, Ufuk, Sefa Burhan Eker, and Ali Suat Yıldız. “Active Vibration Control of Landing Gear System”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1692-1701. https://doi.org/10.29130/dubited.1177711.
EndNote Demircioglu U, Eker SB, Yıldız AS (July 1, 2024) Active Vibration Control of Landing Gear System. Duzce University Journal of Science and Technology 12 3 1692–1701.
IEEE U. Demircioglu, S. B. Eker, and A. S. Yıldız, “Active Vibration Control of Landing Gear System”, DUBİTED, vol. 12, no. 3, pp. 1692–1701, 2024, doi: 10.29130/dubited.1177711.
ISNAD Demircioglu, Ufuk et al. “Active Vibration Control of Landing Gear System”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1692-1701. https://doi.org/10.29130/dubited.1177711.
JAMA Demircioglu U, Eker SB, Yıldız AS. Active Vibration Control of Landing Gear System. DUBİTED. 2024;12:1692–1701.
MLA Demircioglu, Ufuk et al. “Active Vibration Control of Landing Gear System”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1692-01, doi:10.29130/dubited.1177711.
Vancouver Demircioglu U, Eker SB, Yıldız AS. Active Vibration Control of Landing Gear System. DUBİTED. 2024;12(3):1692-701.