Research Article
BibTex RIS Cite

Green Preparation of Stachys Eudenia-Derived Carbon Quantum Dots and Their Photocatalytic Applications

Year 2024, Volume: 12 Issue: 3, 1614 - 1626, 31.07.2024
https://doi.org/10.29130/dubited.1258057

Abstract

In this present work, the composites were obtained from carbon quantum dots and TiOf via green synthesis and the photoactivities of these composite structures were investigated under ultraviolet light. Carbon quantum dot was obtained from Stachys euadenia which is an endemic plant found only in southern Türkiye. Carbon quantum dot-TiO2 nanocomposites were fabricated via facile hydrothermal approach which is an easy and effectual method to obtaining of environmentally friendly, low cost and well crystallized nanoparticles. The structural and morphological characteristics of these nanocomposites were investigated by X-ray diffraction, tunneling electron microscopy and scanning electron microscopy. Also, optical analyses of carbon quantum dots were carried out by absorbance and fluorescence spectroscopy. Photocatalytic activity of TiO2 and carbon quantum dot-TiO2 nanocomposites were investigated under ultraviolet light illumination with the decomposition of methylene blue dye. Carbon quantum dot-TiO2 nanocomposites show a better activity than TiO2.

References

  • [1] G. Ciardelli and N. Ranieri, “The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation,” Water Res., vol. 35, no. 2, pp. 567–572, Feb. 2001, doi: 10.1016/S0043-1354(00)00286-4.
  • [2] V. Meshko, L. Markovska, M. Mincheva, and A. . Rodrigues, “Adsorption of basic dyes on granular acivated carbon and natural zeolite,” Water Res., vol. 35, no. 14, pp. 3357–3366, Oct. 2001, doi: 10.1016/S0043-1354(01)00056-2.
  • [3] M. F. Abid, M. A. Zablouk, and A. M. Abid-Alameer, “Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration,” J. Environ. Heal. Sci. Eng., vol. 9, no. 1, pp. 1–9, 2012.
  • [4] A. FUJISHIMA and K. HONDA, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37–38, Jul. 1972, doi: 10.1038/238037a0.
  • [5] Z. Zhang, T. Zheng, X. Li, J. Xu, and H. Zeng, “Progress of Carbon Quantum Dots in Photocatalysis Applications,” Part. Part. Syst. Charact., vol. 33, no. 8, pp. 457–472, 2016, doi: 10.1002/ppsc.201500243.
  • [6] Z. W. Heng, W. C. Chong, Y. L. Pang, and C. H. Koo, “An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation,” J. Environ. Chem. Eng., vol. 9, no. 3, p. 105199, Jun. 2021, doi: 10.1016/j.jece.2021.105199.
  • [7] X. Xu et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” J. Am. Chem. Soc., vol. 126, no. 40, pp. 12736–12737, Oct. 2004, doi: 10.1021/ja040082h.
  • [8] Y.-P. Sun et al., “Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence,” J. Am. Chem. Soc., vol. 128, no. 24, pp. 7756–7757, Jun. 2006, doi: 10.1021/ja062677d.
  • [9] R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, and Q. Li, “An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers,” Angew. Chemie Int. Ed., vol. 48, no. 25, pp. 4598–4601, Jun. 2009, doi: 10.1002/anie.200900652.
  • [10] V. Buk and M. E. Pemble, “A highly sensitive glucose biosensor based on a micro disk array electrode design modified with carbon quantum dots and gold nanoparticles,” Electrochim. Acta, vol. 298, pp. 97–105, Mar. 2019, doi: 10.1016/j.electacta.2018.12.068.
  • [11] Y.-Q. Zhang, D.-K. Ma, Y.-G. Zhang, W. Chen, and S.-M. Huang, “N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells,” Nano Energy, vol. 2, no. 5, pp. 545–552, Sep. 2013, doi: 10.1016/j.nanoen.2013.07.010.
  • [12] H. Li et al., “Carbon Quantum Dots/TiO x Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19%,” Nano Lett., vol. 17, no. 4, pp. 2328–2335, Apr. 2017, doi: 10.1021/acs.nanolett.6b05177.
  • [13] C. Baslak, S. Demirel, A. Kocyigit, H. Alatli, and M. Yildirim, “Supercapacitor behaviors of carbon quantum dots by green synthesis method from tea fermented with kombucha,” Mater. Sci. Semicond. Process., vol. 147, p. 106738, Aug. 2022, doi: 10.1016/j.mssp.2022.106738.
  • [14] Ç. Kırbıyık, A. Toprak, C. Başlak, M. Kuş, and M. Ersöz, “Nitrogen-doped CQDs to enhance the power conversion efficiency of perovskite solar cells via surface passivation,” J. Alloys Compd., vol. 832, p. 154897, Aug. 2020, doi: 10.1016/j.jallcom.2020.154897.
  • [15] J. Tang et al., “Carbon Nanodots Featuring Efficient FRET for Real-Time Monitoring of Drug Delivery and Two-Photon Imaging,” Adv. Mater., vol. 25, no. 45, pp. 6569–6574, Dec. 2013, doi: 10.1002/adma.201303124.
  • [16] R. Wang, K. Q. Lu, Z. R. Tang, and Y. J. Xu, “Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis,” J. Mater. Chem. A, vol. 5, no. 8, pp. 3717–3734, 2017, doi: 10.1039/c6ta08660h.
  • [17] M. Liu, Y. Xu, F. Niu, J. J. Gooding, and J. Liu, “Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging,” Analyst, vol. 141, no. 9, pp. 2657–2664, 2016, doi: 10.1039/C5AN02231B.
  • [18] L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang, and S. Chen, “Nanosized Carbon Particles From Natural Gas Soot,” Chem. Mater., vol. 21, no. 13, pp. 2803–2809, Jul. 2009, doi: 10.1021/cm900709w.
  • [19] C.-X. Li, C. Yu, C.-F. Wang, and S. Chen, “Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs,” J. Mater. Sci., vol. 48, no. 18, pp. 6307–6311, Sep. 2013, doi: 10.1007/s10853-013-7430-6.
  • [20] V. B. Kumar, J. Tang, K. J. Lee, V. G. Pol, and A. Gedanken, “In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries,” RSC Adv., vol. 6, no. 70, pp. 66256–66265, 2016, doi: 10.1039/C6RA09926B.
  • [21] Z.-C. Yang et al., “Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate,” Chem. Commun., vol. 47, no. 42, p. 11615, 2011, doi: 10.1039/c1cc14860e.
  • [22] S. Dey, A. Govindaraj, K. Biswas, and C. N. R. Rao, “Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples,” Chem. Phys. Lett., vol. 595–596, pp. 203–208, Mar. 2014, doi: 10.1016/j.cplett.2014.02.012.
  • [23] J. Jiang, Y. He, S. Li, and H. Cui, “Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement,” Chem. Commun., vol. 48, no. 77, p. 9634, 2012, doi: 10.1039/c2cc34612e.
  • [24] J. Zhou, Z. Sheng, H. Han, M. Zou, and C. Li, “Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source,” Mater. Lett., vol. 66, no. 1, pp. 222–224, Jan. 2012, doi: 10.1016/j.matlet.2011.08.081.
  • [25] A. Tyagi, K. M. Tripathi, N. Singh, S. Choudhary, and R. K. Gupta, “Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis,” RSC Adv., vol. 6, no. 76, pp. 72423–72432, 2016, doi: 10.1039/C6RA10488F.
  • [26] Z. Ramezani, M. Qorbanpour, and N. Rahbar, “Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: Application in cell imaging and As3+ determination,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 549, pp. 58–66, Jul. 2018, doi: 10.1016/j.colsurfa.2018.04.006.
  • [27] C.-L. Li et al., “Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells,” J. Mater. Chem. B, vol. 2, no. 28, p. 4564, 2014, doi: 10.1039/c4tb00216d.
  • [28] A.-M. Alam, B.-Y. Park, Z. K. Ghouri, M. Park, and H.-Y. Kim, “Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications,” Green Chem., vol. 17, no. 7, pp. 3791–3797, 2015, doi: 10.1039/C5GC00686D.
  • [29] C. Karaman, “Orange Peel Derived‐Nitrogen and Sulfur Co‐doped Carbon Dots: a Nano‐booster for Enhancing ORR Electrocatalytic Performance of 3D Graphene Networks,” Electroanalysis, vol. 33, no. 5, pp. 1356–1369, May 2021, doi: 10.1002/elan.202100018.
  • [30] V. Ramar, S. Moothattu, and K. Balasubramanian, “Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: A green way to remove pollution,” Sol. Energy, vol. 169, pp. 120–127, Jul. 2018, doi: 10.1016/j.solener.2018.04.040.
  • [31] M. Sabet and K. Mahdavi, “Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions,” Appl. Surf. Sci., vol. 463, no. June 2018, pp. 283–291, 2019, doi: 10.1016/j.apsusc.2018.08.223.
  • [32] M. Asha Jhonsi and S. Thulasi, “A novel fluorescent carbon dots derived from tamarind,” Chem. Phys. Lett., vol. 661, pp. 179–184, Sep. 2016, doi: 10.1016/j.cplett.2016.08.081.
  • [33] S. Ahmadian-Fard-Fini, M. Salavati-Niasari, and H. Safardoust-Hojaghan, “Hydrothermal green synthesis and photocatalytic activity of magnetic CoFe2O4–carbon quantum dots nanocomposite by turmeric precursor,” J. Mater. Sci. Mater. Electron., vol. 28, no. 21, pp. 16205–16214, Nov. 2017, doi: 10.1007/s10854-017-7522-1.
  • [34] W. Li, Z. Yue, C. Wang, W. Zhang, and G. Liu, “An absolutely green approach to fabricate carbon nanodots from soya bean grounds,” RSC Adv., vol. 3, no. 43, p. 20662, 2013, doi: 10.1039/c3ra43330g.
  • [35] Z. W. Heng, W. C. Chong, Y. L. Pang, L. C. Sim, and C. H. Koo, “Photocatalytic degradation of organic pollutants using green oil palm frond-derived carbon quantum dots/titanium dioxide as multifunctional photocatalysts under visible light radiation,” Chinese J. Chem. Eng., vol. 51, pp. 21–34, Nov. 2022, doi: 10.1016/j.cjche.2021.10.021.
  • [36] M. Shafique, M. S. Mahr, M. Yaseen, and H. N. Bhatti, “CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye,” Mater. Chem. Phys., vol. 278, p. 125583, Feb. 2022, doi: 10.1016/j.matchemphys.2021.125583.
  • [37] P. H. Davis, “Additamenta ad floram anatoliae: II,” Kew Bull., vol. 6, no. 1, p. 63, 1951, doi: 10.2307/4120290.
  • [38] H. Ding, L.-W. Cheng, Y.-Y. Ma, J.-L. Kong, and H.-M. Xiong, “Luminescent carbon quantum dots and their application in cell imaging,” New J. Chem., vol. 37, no. 8, p. 2515, 2013, doi: 10.1039/c3nj00366c.
  • [39] S. F. Lim et al., “In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans,” Nano Lett., vol. 6, no. 2, pp. 169–174, Feb. 2006, doi: 10.1021/nl0519175.
  • [40] E. Karacaoglu, O. A. Yildirim, T. Ozturk, and M. Gul, “Effect of lanthanum doping on structural, optical, and photocatalytic properties of YVO4,” J. Mater. Res., vol. 38, no. 14, pp. 3536–3547, 2023, doi: 10.1557/s43578-023-01077-8.

Stachys Eudenia'dan Türetilmiş Karbon Kuantum Noktalarının Yeşil Sentezi ve Fotokatalitik Uygulamaları

Year 2024, Volume: 12 Issue: 3, 1614 - 1626, 31.07.2024
https://doi.org/10.29130/dubited.1258057

Abstract

Bu çalışmada, karbon kuantum noktaları ve TiO2 kombinasyonu elde edilmiştir ve bu kompozit yapıların ultraviyole ışık altındaki fotoaktiviteleri rapor edilmiştir. Karbon kuantum noktası, sadece Türkiye'nin güneyinde bulunan endemik bir bitki olan Stachys euadenia'dan elde edilmiştir. Karbon kuantum nokta-TiO2 nanokompozitleri, çevre dostu, düşük maliyetli ve iyi kristalleşmiş nanoparçacıkların elde edilmesinde basit ve etkili bir yöntem olan kolay hidrotermal yaklaşımla üretilmiştir. Bu nanokompozitlerin yapısal ve morfolojik özellikleri; X-ışını kırınımı, tünelleme elektron mikroskopisi ve taramalı elektron mikroskopisi analizleri ile karakterize edilmiştir. Ayrıca, karbon kuantum noktalarının optiksel analizleri soğuurma ve floresans spektroskopisi ile gerçekleştirilmiştir. TiO2 ve karbon kuantum nokta-TiO2 nanokompozitlerinin fotokatalitik aktivitesi ultraviyole ışık aydınlatması altında metilen mavisi boyasının bozulmasıyla incelenmiştir. Karbon kuantum nokta-TiO2 nanokompozitleri, TiO2'den daha iyi bir aktivite göstermiştir.

References

  • [1] G. Ciardelli and N. Ranieri, “The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation,” Water Res., vol. 35, no. 2, pp. 567–572, Feb. 2001, doi: 10.1016/S0043-1354(00)00286-4.
  • [2] V. Meshko, L. Markovska, M. Mincheva, and A. . Rodrigues, “Adsorption of basic dyes on granular acivated carbon and natural zeolite,” Water Res., vol. 35, no. 14, pp. 3357–3366, Oct. 2001, doi: 10.1016/S0043-1354(01)00056-2.
  • [3] M. F. Abid, M. A. Zablouk, and A. M. Abid-Alameer, “Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration,” J. Environ. Heal. Sci. Eng., vol. 9, no. 1, pp. 1–9, 2012.
  • [4] A. FUJISHIMA and K. HONDA, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37–38, Jul. 1972, doi: 10.1038/238037a0.
  • [5] Z. Zhang, T. Zheng, X. Li, J. Xu, and H. Zeng, “Progress of Carbon Quantum Dots in Photocatalysis Applications,” Part. Part. Syst. Charact., vol. 33, no. 8, pp. 457–472, 2016, doi: 10.1002/ppsc.201500243.
  • [6] Z. W. Heng, W. C. Chong, Y. L. Pang, and C. H. Koo, “An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation,” J. Environ. Chem. Eng., vol. 9, no. 3, p. 105199, Jun. 2021, doi: 10.1016/j.jece.2021.105199.
  • [7] X. Xu et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” J. Am. Chem. Soc., vol. 126, no. 40, pp. 12736–12737, Oct. 2004, doi: 10.1021/ja040082h.
  • [8] Y.-P. Sun et al., “Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence,” J. Am. Chem. Soc., vol. 128, no. 24, pp. 7756–7757, Jun. 2006, doi: 10.1021/ja062677d.
  • [9] R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, and Q. Li, “An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers,” Angew. Chemie Int. Ed., vol. 48, no. 25, pp. 4598–4601, Jun. 2009, doi: 10.1002/anie.200900652.
  • [10] V. Buk and M. E. Pemble, “A highly sensitive glucose biosensor based on a micro disk array electrode design modified with carbon quantum dots and gold nanoparticles,” Electrochim. Acta, vol. 298, pp. 97–105, Mar. 2019, doi: 10.1016/j.electacta.2018.12.068.
  • [11] Y.-Q. Zhang, D.-K. Ma, Y.-G. Zhang, W. Chen, and S.-M. Huang, “N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells,” Nano Energy, vol. 2, no. 5, pp. 545–552, Sep. 2013, doi: 10.1016/j.nanoen.2013.07.010.
  • [12] H. Li et al., “Carbon Quantum Dots/TiO x Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19%,” Nano Lett., vol. 17, no. 4, pp. 2328–2335, Apr. 2017, doi: 10.1021/acs.nanolett.6b05177.
  • [13] C. Baslak, S. Demirel, A. Kocyigit, H. Alatli, and M. Yildirim, “Supercapacitor behaviors of carbon quantum dots by green synthesis method from tea fermented with kombucha,” Mater. Sci. Semicond. Process., vol. 147, p. 106738, Aug. 2022, doi: 10.1016/j.mssp.2022.106738.
  • [14] Ç. Kırbıyık, A. Toprak, C. Başlak, M. Kuş, and M. Ersöz, “Nitrogen-doped CQDs to enhance the power conversion efficiency of perovskite solar cells via surface passivation,” J. Alloys Compd., vol. 832, p. 154897, Aug. 2020, doi: 10.1016/j.jallcom.2020.154897.
  • [15] J. Tang et al., “Carbon Nanodots Featuring Efficient FRET for Real-Time Monitoring of Drug Delivery and Two-Photon Imaging,” Adv. Mater., vol. 25, no. 45, pp. 6569–6574, Dec. 2013, doi: 10.1002/adma.201303124.
  • [16] R. Wang, K. Q. Lu, Z. R. Tang, and Y. J. Xu, “Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis,” J. Mater. Chem. A, vol. 5, no. 8, pp. 3717–3734, 2017, doi: 10.1039/c6ta08660h.
  • [17] M. Liu, Y. Xu, F. Niu, J. J. Gooding, and J. Liu, “Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging,” Analyst, vol. 141, no. 9, pp. 2657–2664, 2016, doi: 10.1039/C5AN02231B.
  • [18] L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang, and S. Chen, “Nanosized Carbon Particles From Natural Gas Soot,” Chem. Mater., vol. 21, no. 13, pp. 2803–2809, Jul. 2009, doi: 10.1021/cm900709w.
  • [19] C.-X. Li, C. Yu, C.-F. Wang, and S. Chen, “Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs,” J. Mater. Sci., vol. 48, no. 18, pp. 6307–6311, Sep. 2013, doi: 10.1007/s10853-013-7430-6.
  • [20] V. B. Kumar, J. Tang, K. J. Lee, V. G. Pol, and A. Gedanken, “In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries,” RSC Adv., vol. 6, no. 70, pp. 66256–66265, 2016, doi: 10.1039/C6RA09926B.
  • [21] Z.-C. Yang et al., “Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate,” Chem. Commun., vol. 47, no. 42, p. 11615, 2011, doi: 10.1039/c1cc14860e.
  • [22] S. Dey, A. Govindaraj, K. Biswas, and C. N. R. Rao, “Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples,” Chem. Phys. Lett., vol. 595–596, pp. 203–208, Mar. 2014, doi: 10.1016/j.cplett.2014.02.012.
  • [23] J. Jiang, Y. He, S. Li, and H. Cui, “Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement,” Chem. Commun., vol. 48, no. 77, p. 9634, 2012, doi: 10.1039/c2cc34612e.
  • [24] J. Zhou, Z. Sheng, H. Han, M. Zou, and C. Li, “Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source,” Mater. Lett., vol. 66, no. 1, pp. 222–224, Jan. 2012, doi: 10.1016/j.matlet.2011.08.081.
  • [25] A. Tyagi, K. M. Tripathi, N. Singh, S. Choudhary, and R. K. Gupta, “Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis,” RSC Adv., vol. 6, no. 76, pp. 72423–72432, 2016, doi: 10.1039/C6RA10488F.
  • [26] Z. Ramezani, M. Qorbanpour, and N. Rahbar, “Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: Application in cell imaging and As3+ determination,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 549, pp. 58–66, Jul. 2018, doi: 10.1016/j.colsurfa.2018.04.006.
  • [27] C.-L. Li et al., “Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells,” J. Mater. Chem. B, vol. 2, no. 28, p. 4564, 2014, doi: 10.1039/c4tb00216d.
  • [28] A.-M. Alam, B.-Y. Park, Z. K. Ghouri, M. Park, and H.-Y. Kim, “Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications,” Green Chem., vol. 17, no. 7, pp. 3791–3797, 2015, doi: 10.1039/C5GC00686D.
  • [29] C. Karaman, “Orange Peel Derived‐Nitrogen and Sulfur Co‐doped Carbon Dots: a Nano‐booster for Enhancing ORR Electrocatalytic Performance of 3D Graphene Networks,” Electroanalysis, vol. 33, no. 5, pp. 1356–1369, May 2021, doi: 10.1002/elan.202100018.
  • [30] V. Ramar, S. Moothattu, and K. Balasubramanian, “Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: A green way to remove pollution,” Sol. Energy, vol. 169, pp. 120–127, Jul. 2018, doi: 10.1016/j.solener.2018.04.040.
  • [31] M. Sabet and K. Mahdavi, “Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions,” Appl. Surf. Sci., vol. 463, no. June 2018, pp. 283–291, 2019, doi: 10.1016/j.apsusc.2018.08.223.
  • [32] M. Asha Jhonsi and S. Thulasi, “A novel fluorescent carbon dots derived from tamarind,” Chem. Phys. Lett., vol. 661, pp. 179–184, Sep. 2016, doi: 10.1016/j.cplett.2016.08.081.
  • [33] S. Ahmadian-Fard-Fini, M. Salavati-Niasari, and H. Safardoust-Hojaghan, “Hydrothermal green synthesis and photocatalytic activity of magnetic CoFe2O4–carbon quantum dots nanocomposite by turmeric precursor,” J. Mater. Sci. Mater. Electron., vol. 28, no. 21, pp. 16205–16214, Nov. 2017, doi: 10.1007/s10854-017-7522-1.
  • [34] W. Li, Z. Yue, C. Wang, W. Zhang, and G. Liu, “An absolutely green approach to fabricate carbon nanodots from soya bean grounds,” RSC Adv., vol. 3, no. 43, p. 20662, 2013, doi: 10.1039/c3ra43330g.
  • [35] Z. W. Heng, W. C. Chong, Y. L. Pang, L. C. Sim, and C. H. Koo, “Photocatalytic degradation of organic pollutants using green oil palm frond-derived carbon quantum dots/titanium dioxide as multifunctional photocatalysts under visible light radiation,” Chinese J. Chem. Eng., vol. 51, pp. 21–34, Nov. 2022, doi: 10.1016/j.cjche.2021.10.021.
  • [36] M. Shafique, M. S. Mahr, M. Yaseen, and H. N. Bhatti, “CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye,” Mater. Chem. Phys., vol. 278, p. 125583, Feb. 2022, doi: 10.1016/j.matchemphys.2021.125583.
  • [37] P. H. Davis, “Additamenta ad floram anatoliae: II,” Kew Bull., vol. 6, no. 1, p. 63, 1951, doi: 10.2307/4120290.
  • [38] H. Ding, L.-W. Cheng, Y.-Y. Ma, J.-L. Kong, and H.-M. Xiong, “Luminescent carbon quantum dots and their application in cell imaging,” New J. Chem., vol. 37, no. 8, p. 2515, 2013, doi: 10.1039/c3nj00366c.
  • [39] S. F. Lim et al., “In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans,” Nano Lett., vol. 6, no. 2, pp. 169–174, Feb. 2006, doi: 10.1021/nl0519175.
  • [40] E. Karacaoglu, O. A. Yildirim, T. Ozturk, and M. Gul, “Effect of lanthanum doping on structural, optical, and photocatalytic properties of YVO4,” J. Mater. Res., vol. 38, no. 14, pp. 3536–3547, 2023, doi: 10.1557/s43578-023-01077-8.
There are 40 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Canan Başlak 0000-0003-1444-1272

Gülşah Öztürk 0000-0002-2318-7969

Merve Turğut 0009-0000-1464-6708

Teoman Öztürk 0000-0002-5002-5412

Murat Yıldırım 0000-0002-4541-3752

Publication Date July 31, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Başlak, C., Öztürk, G., Turğut, M., Öztürk, T., et al. (2024). Green Preparation of Stachys Eudenia-Derived Carbon Quantum Dots and Their Photocatalytic Applications. Duzce University Journal of Science and Technology, 12(3), 1614-1626. https://doi.org/10.29130/dubited.1258057
AMA Başlak C, Öztürk G, Turğut M, Öztürk T, Yıldırım M. Green Preparation of Stachys Eudenia-Derived Carbon Quantum Dots and Their Photocatalytic Applications. DUBİTED. July 2024;12(3):1614-1626. doi:10.29130/dubited.1258057
Chicago Başlak, Canan, Gülşah Öztürk, Merve Turğut, Teoman Öztürk, and Murat Yıldırım. “Green Preparation of Stachys Eudenia-Derived Carbon Quantum Dots and Their Photocatalytic Applications”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1614-26. https://doi.org/10.29130/dubited.1258057.
EndNote Başlak C, Öztürk G, Turğut M, Öztürk T, Yıldırım M (July 1, 2024) Green Preparation of Stachys Eudenia-Derived Carbon Quantum Dots and Their Photocatalytic Applications. Duzce University Journal of Science and Technology 12 3 1614–1626.
IEEE C. Başlak, G. Öztürk, M. Turğut, T. Öztürk, and M. Yıldırım, “Green Preparation of Stachys Eudenia-Derived Carbon Quantum Dots and Their Photocatalytic Applications”, DUBİTED, vol. 12, no. 3, pp. 1614–1626, 2024, doi: 10.29130/dubited.1258057.
ISNAD Başlak, Canan et al. “Green Preparation of Stachys Eudenia-Derived Carbon Quantum Dots and Their Photocatalytic Applications”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1614-1626. https://doi.org/10.29130/dubited.1258057.
JAMA Başlak C, Öztürk G, Turğut M, Öztürk T, Yıldırım M. Green Preparation of Stachys Eudenia-Derived Carbon Quantum Dots and Their Photocatalytic Applications. DUBİTED. 2024;12:1614–1626.
MLA Başlak, Canan et al. “Green Preparation of Stachys Eudenia-Derived Carbon Quantum Dots and Their Photocatalytic Applications”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1614-26, doi:10.29130/dubited.1258057.
Vancouver Başlak C, Öztürk G, Turğut M, Öztürk T, Yıldırım M. Green Preparation of Stachys Eudenia-Derived Carbon Quantum Dots and Their Photocatalytic Applications. DUBİTED. 2024;12(3):1614-26.