Research Article
BibTex RIS Cite

Non-Terrestrial Network Concepts in 5G and Beyond Communication Technologies

Year 2024, Volume: 12 Issue: 4, 1930 - 1943, 23.10.2024
https://doi.org/10.29130/dubited.1438753

Abstract

Mobile communication systems used in 5G and beyond will provide high-capacity, reliable and low-latency services within wide coverage areas. Currently, terrestrial networks are widely used, but it is expected that these networks will be replaced by hybrid network solutions where terrestrial and non-terrestrial networks operate together. These hybrid ones can perform cutting-edge complimentary solutions when the traditional networks have weak signal levels and geographical difficulties. The main motivation of this study can be stated as the increasing use of hybrid network structures for the solution of digital divine and access problems. In this study, design optimizations of hybrid wireless networks according to different system architectures and performance analyzes are given and various non-terrestrial network technologies are compared.

References

  • [1] G. Araniti, A. Iera, S. Pizzi and F. Rinaldi, "Toward 6G Non-Terrestrial Networks," in IEEE Network, vol. 36, no. 1, pp. 113-120, 2022.
  • [2] P. Rost et al., “Mobile network architecture evolution toward 5G,” IEEE Commununication Magazine, vol. 54, no. 5, pp. 84–91, 2016.
  • [3] L. Kuang, X. Chen, C. Jiang, H. Zhang, and S. Wu, “Radio resource management in future terrestrial-satellite communication networks,” IEEE Wireless Commununication, vol. 24, no. 5, pp. 81–87, 2017.
  • [4] X. Zhu ve C. Jiang, “Integrated Satellite-Terrestrial Networks Toward 6G: Architectures, Applications, and Challenges”, IEEE Internet of Things Journal, vol.9, no.1, 2022.
  • [5] S. Zhang, J. Liu, H. Guo, M. Qi, and N. Kato, “Envisioning device-todevice communications in 6G,” IEEE Netw., vol. 34, no. 3, pp. 86–91, 2020.
  • [6] G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, “6G: Opening new horizons for integration of comfort, security, and intelligence,” IEEE Wireless Commununication, vol. 27, no. 5, pp. 126–132, 2020.
  • [7] T. Li, J. Yuan, and M. Torlak, “Network throughput optimization for random access narrowband cognitive radio Internet of Things (NB-CRIoT),” IEEE Internet Things Journal, vol. 5, no. 3, pp. 1436–1448, 2018.
  • [8] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband LEO satellite communications: Architectures and key technologies,” IEEE Wireless Commununication, vol. 26, no. 2, pp. 55–61, 2019.
  • [9] K. Maine, C. Devieux, and P. Swan, “Overview of IRIDIUM satellite network,” in Proc. IEEE WESCON, 1995, pp. 483–490.
  • [10] X. Zhu and C. Jiang, "Creating Efficient Integrated Satellite-Terrestrial Networks in the 6G Era," IEEE Wireless Communications, vol. 29, no. 4, pp. 154-160, 2022.
  • [11] Fair Tech Institute, “The Role of Satellite Communications in Disaster Management”, Washington, US, White Paper, 10 March 2022. [Online] Available at: https://accesspartnership.com/access-partnership-releases-the-role-of-satellite-communications-in-disaster-management-whitepaper-under-the-fair-techinstitute/
  • [12] I. del Portillo, B. G. Cameron, and E. F. Crawley, “A technical comparison of three low earth orbit satellite constellation systems to provide global broadband,” Acta Astronautica, vol. 159, pp. 123–135, 2019.
  • [13] J. P. Choi and C. Joo, “Challenges for efficient and seamless spaceterrestrial heterogeneous networks,” IEEE Commununication Magazine, vol. 53, no. 5, pp. 156–162, 2015.
  • [14] “(Release 15) study on new radio (NR) to support nonterrestrial networks,” 3GPP, Sophia Antipolis, France, Rep. TR 38.811 V15.3.0. Release 15, Jul. 2020. [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/38_series/38.811
  • [15] “(Release 16) technical specification group services and system aspects,” 3GPP, Sophia Antipolis, France, Rep. TR 21.916 V0.4.0. Release 16, Mar. 2020. [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/21_series/21.916
  • [16] 5G Americas, “The 5G evolution: 3GPP releases 16–17,” 3GPP, Sophia Antipolis, France, Rep. TR 1, Jan. 2020. [Online]. Available: https://www.5gamericas.org/wpcontent/uploads/2020/01/5GEvolution-3GPP-R16-R17-FINAL.pdf
  • [17] M. Latva-aho and K. Leppanen, “Key drivers and research challenges for 6G ubiquitous wireless intelligence,” Oulu, Finland, Univ. Oulu, While Paper, 2019. [Online]. Available: http://urn.fi/urn:isbn:9789526223544.
  • [18] A. Guidotti et al., “Architectures and key technical challenges for 5G systems incorporating satellites,” IEEE Transaction on Vehicular Technologies, vol. 68, no. 3, pp. 2624–2639, 2019.
  • [19] M. K. Arti and M. R. Bhatnagar, “Beamforming and combining in hybrid satellite-terrestrial cooperative systems,” IEEE Commununication Letters, vol. 18, no. 3, pp. 483–486, 2014.
  • [20] X. Artiga et al., “Shared access satellite-terrestrial reconfigurable backhaul network enabled by smart antennas at mmWave band,” IEEE Network, vol. 32, no. 5, pp. 46–53, 2018.
  • [21] M. Jia, X. Gu, Q. Guo, W. Xiang, and N. Zhang, “Broadband hybrid satellite-terrestrial communication systems based on cognitive radio toward 5G,” IEEE Wireless Commununications, vol. 23, no. 6, pp. 96–106, 2016.
  • [22] W. Saad, M. Bennis, et al., “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, 2019.
  • [23] E. Yaacoub and M.-S. Alouini, “A key 6G challenge and opportunity—connecting the base of the pyramid: A survey on rural connectivity,” Proceedings of the IEEE, vol. 108, no. 4, 2020, pp. 533–582.
  • [24] K. David and H. Berndt, “6G vision and requirements: Is there any need for beyond 5G?” IEEE Vehicular Technology Magazine, vol. 13, no. 3, pp. 72–80, 2018.
  • [25] S. Dang, O. Amin, et al., “What should 6G be?” Nature Electronics, vol. 3, no. 1, pp. 20–29, 2020.
  • [26] TR 38.811, “Study on New Radio (NR) to Support Non-Terrestrial Networks,” v. 15.4.0, Oct. 2020.
  • [27] TR 38.821, “Solutions for NR to Support Non-Terrestrial Networks (NTN),” v. 16.0.0, Jan. 2020.
  • [28] X. Lin, S. Rommer, S. Euler, E. A. Yavuz and R. S. Karlsson, "5G from Space: An Overview of 3GPP Non-Terrestrial Networks," in IEEE Communications Standards Magazine, vol. 5, no. 4, pp. 147-153, 2021.
  • [29] P. Chini, G. Giambene, S. Kota, “A survey on mobile satellite systems,” International Journal of Satellite Communications, vol. 28, pp. 29-57, 2009.
  • [30] M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, R. Prasad, “Satellite Communications Supporting Internet of Remote Things,” IEEE Internet of Things Journal, vol. 3, no. 1, pp. 113-123, 2016.
  • [31] J. Liu, Y. Shi, Z. M. Fadlullah, N. Kato, “Space-Air-Ground Integrated Network: A Survey,” IEEE Communications Surveys & Tutorials, vol. 20, pp. 2714-2741, 2018.
  • [32] G. Araniti, A. Iera, A. Molinaro, “The Role of HAPS in Supporting Multimedia Broadcast and Multicast Services in Terrestrial-Satellite Integrated Systems,” Wireless Personal Communications, vol. 32, pp. 195–213,2005.
  • [33] B. E. Y. Belmekki and M. -S. Alouini, "Unleashing the Potential of Networked Tethered Flying Platforms: Prospects, Challenges, and Applications," IEEE Open Journal of Vehicular Technology, vol. 3, pp. 278-320, 2022.
  • [34] G. Araniti, A. Iera, S. Pizzi and F. Rinaldi, "Toward 6G non-terrestrial networks", IEEE Networks, vol. 36, no. 1, pp. 113-120, 2021.
  • [35] M. Kishk, A. Bader and M.-S. Alouini, "Aerial base station deployment in 6G cellular networks using tethered drones: The mobility and endurance tradeoff", IEEE Vehicular Technology Magazine, vol. 15, no. 4, pp. 103-111, 2020.

5G ve Ötesi Haberleşme Teknolojilerinde Karasal Olmayan Ağ Konseptleri

Year 2024, Volume: 12 Issue: 4, 1930 - 1943, 23.10.2024
https://doi.org/10.29130/dubited.1438753

Abstract

5G ve ötesinde kullanılan mobil iletişim sistemleri, geniş kapsama alanlarında yüksek kapasiteli, güvenilir ve düşük gecikmeli hizmetler sunacaktır. Şu anda mobil karasal ağlar yaygın olarak kullanılmakla birlikte, ilerleyen dönemde bu ağların yerini karasal ve karasal olmayan ağların birlikte çalıştığı hibrit ağ çözümlerinin alması beklenmektedir. Karasal ağların sinyal seviyeleri zayıf olduğunda ve coğrafi zorlukların engelleyici olduğu durumlarda; bu hibrit ağ çözümlerinin kullanıldığı en son teknolojiler tamamlayıcı çözümler olarak sunulmaktadır. Bu çalışmanın ana motivasyonu, dijital ayrılık ve erişim sorunlarının çözümü için hibrit ağ yapılarının kullanımının önerilmesi olarak belirtilebilir. Bu çalışmada hibrit kablosuz ağların farklı sistem mimarilerine göre tasarım optimizasyonları ve performans analizleri verilerek çeşitli karasal olmayan ağ teknolojileri karşılaştırılmıştır.

References

  • [1] G. Araniti, A. Iera, S. Pizzi and F. Rinaldi, "Toward 6G Non-Terrestrial Networks," in IEEE Network, vol. 36, no. 1, pp. 113-120, 2022.
  • [2] P. Rost et al., “Mobile network architecture evolution toward 5G,” IEEE Commununication Magazine, vol. 54, no. 5, pp. 84–91, 2016.
  • [3] L. Kuang, X. Chen, C. Jiang, H. Zhang, and S. Wu, “Radio resource management in future terrestrial-satellite communication networks,” IEEE Wireless Commununication, vol. 24, no. 5, pp. 81–87, 2017.
  • [4] X. Zhu ve C. Jiang, “Integrated Satellite-Terrestrial Networks Toward 6G: Architectures, Applications, and Challenges”, IEEE Internet of Things Journal, vol.9, no.1, 2022.
  • [5] S. Zhang, J. Liu, H. Guo, M. Qi, and N. Kato, “Envisioning device-todevice communications in 6G,” IEEE Netw., vol. 34, no. 3, pp. 86–91, 2020.
  • [6] G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, “6G: Opening new horizons for integration of comfort, security, and intelligence,” IEEE Wireless Commununication, vol. 27, no. 5, pp. 126–132, 2020.
  • [7] T. Li, J. Yuan, and M. Torlak, “Network throughput optimization for random access narrowband cognitive radio Internet of Things (NB-CRIoT),” IEEE Internet Things Journal, vol. 5, no. 3, pp. 1436–1448, 2018.
  • [8] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband LEO satellite communications: Architectures and key technologies,” IEEE Wireless Commununication, vol. 26, no. 2, pp. 55–61, 2019.
  • [9] K. Maine, C. Devieux, and P. Swan, “Overview of IRIDIUM satellite network,” in Proc. IEEE WESCON, 1995, pp. 483–490.
  • [10] X. Zhu and C. Jiang, "Creating Efficient Integrated Satellite-Terrestrial Networks in the 6G Era," IEEE Wireless Communications, vol. 29, no. 4, pp. 154-160, 2022.
  • [11] Fair Tech Institute, “The Role of Satellite Communications in Disaster Management”, Washington, US, White Paper, 10 March 2022. [Online] Available at: https://accesspartnership.com/access-partnership-releases-the-role-of-satellite-communications-in-disaster-management-whitepaper-under-the-fair-techinstitute/
  • [12] I. del Portillo, B. G. Cameron, and E. F. Crawley, “A technical comparison of three low earth orbit satellite constellation systems to provide global broadband,” Acta Astronautica, vol. 159, pp. 123–135, 2019.
  • [13] J. P. Choi and C. Joo, “Challenges for efficient and seamless spaceterrestrial heterogeneous networks,” IEEE Commununication Magazine, vol. 53, no. 5, pp. 156–162, 2015.
  • [14] “(Release 15) study on new radio (NR) to support nonterrestrial networks,” 3GPP, Sophia Antipolis, France, Rep. TR 38.811 V15.3.0. Release 15, Jul. 2020. [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/38_series/38.811
  • [15] “(Release 16) technical specification group services and system aspects,” 3GPP, Sophia Antipolis, France, Rep. TR 21.916 V0.4.0. Release 16, Mar. 2020. [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/21_series/21.916
  • [16] 5G Americas, “The 5G evolution: 3GPP releases 16–17,” 3GPP, Sophia Antipolis, France, Rep. TR 1, Jan. 2020. [Online]. Available: https://www.5gamericas.org/wpcontent/uploads/2020/01/5GEvolution-3GPP-R16-R17-FINAL.pdf
  • [17] M. Latva-aho and K. Leppanen, “Key drivers and research challenges for 6G ubiquitous wireless intelligence,” Oulu, Finland, Univ. Oulu, While Paper, 2019. [Online]. Available: http://urn.fi/urn:isbn:9789526223544.
  • [18] A. Guidotti et al., “Architectures and key technical challenges for 5G systems incorporating satellites,” IEEE Transaction on Vehicular Technologies, vol. 68, no. 3, pp. 2624–2639, 2019.
  • [19] M. K. Arti and M. R. Bhatnagar, “Beamforming and combining in hybrid satellite-terrestrial cooperative systems,” IEEE Commununication Letters, vol. 18, no. 3, pp. 483–486, 2014.
  • [20] X. Artiga et al., “Shared access satellite-terrestrial reconfigurable backhaul network enabled by smart antennas at mmWave band,” IEEE Network, vol. 32, no. 5, pp. 46–53, 2018.
  • [21] M. Jia, X. Gu, Q. Guo, W. Xiang, and N. Zhang, “Broadband hybrid satellite-terrestrial communication systems based on cognitive radio toward 5G,” IEEE Wireless Commununications, vol. 23, no. 6, pp. 96–106, 2016.
  • [22] W. Saad, M. Bennis, et al., “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, 2019.
  • [23] E. Yaacoub and M.-S. Alouini, “A key 6G challenge and opportunity—connecting the base of the pyramid: A survey on rural connectivity,” Proceedings of the IEEE, vol. 108, no. 4, 2020, pp. 533–582.
  • [24] K. David and H. Berndt, “6G vision and requirements: Is there any need for beyond 5G?” IEEE Vehicular Technology Magazine, vol. 13, no. 3, pp. 72–80, 2018.
  • [25] S. Dang, O. Amin, et al., “What should 6G be?” Nature Electronics, vol. 3, no. 1, pp. 20–29, 2020.
  • [26] TR 38.811, “Study on New Radio (NR) to Support Non-Terrestrial Networks,” v. 15.4.0, Oct. 2020.
  • [27] TR 38.821, “Solutions for NR to Support Non-Terrestrial Networks (NTN),” v. 16.0.0, Jan. 2020.
  • [28] X. Lin, S. Rommer, S. Euler, E. A. Yavuz and R. S. Karlsson, "5G from Space: An Overview of 3GPP Non-Terrestrial Networks," in IEEE Communications Standards Magazine, vol. 5, no. 4, pp. 147-153, 2021.
  • [29] P. Chini, G. Giambene, S. Kota, “A survey on mobile satellite systems,” International Journal of Satellite Communications, vol. 28, pp. 29-57, 2009.
  • [30] M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, R. Prasad, “Satellite Communications Supporting Internet of Remote Things,” IEEE Internet of Things Journal, vol. 3, no. 1, pp. 113-123, 2016.
  • [31] J. Liu, Y. Shi, Z. M. Fadlullah, N. Kato, “Space-Air-Ground Integrated Network: A Survey,” IEEE Communications Surveys & Tutorials, vol. 20, pp. 2714-2741, 2018.
  • [32] G. Araniti, A. Iera, A. Molinaro, “The Role of HAPS in Supporting Multimedia Broadcast and Multicast Services in Terrestrial-Satellite Integrated Systems,” Wireless Personal Communications, vol. 32, pp. 195–213,2005.
  • [33] B. E. Y. Belmekki and M. -S. Alouini, "Unleashing the Potential of Networked Tethered Flying Platforms: Prospects, Challenges, and Applications," IEEE Open Journal of Vehicular Technology, vol. 3, pp. 278-320, 2022.
  • [34] G. Araniti, A. Iera, S. Pizzi and F. Rinaldi, "Toward 6G non-terrestrial networks", IEEE Networks, vol. 36, no. 1, pp. 113-120, 2021.
  • [35] M. Kishk, A. Bader and M.-S. Alouini, "Aerial base station deployment in 6G cellular networks using tethered drones: The mobility and endurance tradeoff", IEEE Vehicular Technology Magazine, vol. 15, no. 4, pp. 103-111, 2020.
There are 35 citations in total.

Details

Primary Language English
Subjects Electronics, Sensors and Digital Hardware (Other)
Journal Section Articles
Authors

Erdem Demircioglu 0000-0002-0779-0215

Hasan Hüseyin Ertok This is me 0009-0003-1773-3366

İlyas Çankaya 0000-0002-6072-3097

Nedim Sözbir 0000-0002-9024-7722

Publication Date October 23, 2024
Submission Date March 20, 2024
Acceptance Date May 26, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Demircioglu, E., Ertok, H. H., Çankaya, İ., Sözbir, N. (2024). Non-Terrestrial Network Concepts in 5G and Beyond Communication Technologies. Duzce University Journal of Science and Technology, 12(4), 1930-1943. https://doi.org/10.29130/dubited.1438753
AMA Demircioglu E, Ertok HH, Çankaya İ, Sözbir N. Non-Terrestrial Network Concepts in 5G and Beyond Communication Technologies. DUBİTED. October 2024;12(4):1930-1943. doi:10.29130/dubited.1438753
Chicago Demircioglu, Erdem, Hasan Hüseyin Ertok, İlyas Çankaya, and Nedim Sözbir. “Non-Terrestrial Network Concepts in 5G and Beyond Communication Technologies”. Duzce University Journal of Science and Technology 12, no. 4 (October 2024): 1930-43. https://doi.org/10.29130/dubited.1438753.
EndNote Demircioglu E, Ertok HH, Çankaya İ, Sözbir N (October 1, 2024) Non-Terrestrial Network Concepts in 5G and Beyond Communication Technologies. Duzce University Journal of Science and Technology 12 4 1930–1943.
IEEE E. Demircioglu, H. H. Ertok, İ. Çankaya, and N. Sözbir, “Non-Terrestrial Network Concepts in 5G and Beyond Communication Technologies”, DUBİTED, vol. 12, no. 4, pp. 1930–1943, 2024, doi: 10.29130/dubited.1438753.
ISNAD Demircioglu, Erdem et al. “Non-Terrestrial Network Concepts in 5G and Beyond Communication Technologies”. Duzce University Journal of Science and Technology 12/4 (October 2024), 1930-1943. https://doi.org/10.29130/dubited.1438753.
JAMA Demircioglu E, Ertok HH, Çankaya İ, Sözbir N. Non-Terrestrial Network Concepts in 5G and Beyond Communication Technologies. DUBİTED. 2024;12:1930–1943.
MLA Demircioglu, Erdem et al. “Non-Terrestrial Network Concepts in 5G and Beyond Communication Technologies”. Duzce University Journal of Science and Technology, vol. 12, no. 4, 2024, pp. 1930-43, doi:10.29130/dubited.1438753.
Vancouver Demircioglu E, Ertok HH, Çankaya İ, Sözbir N. Non-Terrestrial Network Concepts in 5G and Beyond Communication Technologies. DUBİTED. 2024;12(4):1930-43.