Research Article
BibTex RIS Cite

Lactifluus Bertillonii Mantarından Sentezlenen Gümüş Nano Partiküllerinin Karakterizasyonu, Mik Yöntemiyle Antimikrobiyal Aktivitesinin Belirlenmesi Ve Moleküler Modelleme Yöntemi İle MAO-A Inhıbıtor Özelliklerinin İncelenmesi

Year 2024, Volume: 12 Issue: 4, 2033 - 2049, 23.10.2024
https://doi.org/10.29130/dubited.1445798

Abstract

Bu çalışma, minimum inhibitör konsantrasyon (MIC) yöntemi kullanılarak Lactifluus bertillonii mantarlarından yeşil, çevre dostu bir sentez işlemi kullanılarak üretilen AgNP'lerin antimikrobiyal aktivitesine odaklanmaktadır. Ayrıca mantar ekstraktında bulunan kimyasalların inhibitör özellikleri de belirlenmiştir. Çalışmanın bir parçası olarak SEM, TEM, UV-vis ve FT-IR cihazları kullanılmıştır. Karakterizasyondaki ortalama parçacık boyutu, görüntüleme programı tarafından 10.471 nm olarak belirlendi. Ayrıca MIC yöntemi kullanılarak yapılan antimikrobiyal aktivite testlerinde AgNP'lerin Klebsiella pneumoniae'ye karşı aktivitesinin 512 µg/ml olması daha hassas sonuçlar vermektedir. Depresyon tedavisinde hedef enzim olan ve 2Z5X kodlama yapısı insanlardan türetilen MAO-A enzimi, kenetlenme araştırmasında kullanıldı. Isoquercitrin (-8,2 kcal/mol), Rutin (-9,3 kcal/mol), Fisetin (-8,2 kcal/mol), Chrysin (-9,4 kcal/mol), Quercetin (-10,6 kcal/mol), Naringenin (8,8 kcal/mol), Kaemferol (-10,8 kcal/mol) ve Luteolin (-10,8 kcal/mol) üç boyutlu yapıları, DFT/B3LYP/6-31G(d,p) temel seti kullanılarak Gaussian09 programında optimize edildi. Daha sonra AutoDock Vina yazılımı yardımıyla bu yapıların bağlanma enerjileri belirlendi. Bağlanma enerjilerinin MAO-A inhibitörleri özelliğine sahip olduklarını gösterdiği gösterilmiştir.

References

  • [1] V. Sarsar, K.K. Selwal and M.K. Selwal, “Green synthesis of silver nanoparticles using leaf extract of Mangifera indica and evaluation of their antimicrobial activity”, J Microbiol Biotech Res, vol. 5, no. 3, pp. 27–32, 2013.
  • [2] R. M. Slawson, J. T. Trevors, and H. Lee, “Silver accumulation and resistance in Pseudomonas stutzeri”, Arch. Microbiol., vol. 158, no. 6, pp. 398–404, Nov. 1992.
  • [3] H. Nalwa, ‘Handbook of nanostructured materials and nanotechnology, five-volume set’, 1999.
  • [4] W. Jahn, “Chemical aspects of the use of gold clusters in structural biology”, J. Struct. Biol., vol. 2, no. 127, pp. 106–112, 1999.
  • [5] M. Zannotti, V. Vicomandi, A. Rossi, M. Minicucci, S. Ferraro, L. Petetta, and R. Giovannetti “Tuning of hydrogen peroxide etching during the synthesis of silver nanoparticles. An application of triangular nanoplates as plasmon sensors for Hg2+ in”, J. Mol. Liq., vol. 309, p. 113238, 2020.
  • [6] M.A. Kakakhel, W. Sajjad, F. Wu, N. Bibi, K. Shah, Z. Yali and W. Wang, “Green synthesis of silver nanoparticles and their shortcomings, animal blood a potential source for silver nanoparticles: A review”, J. Hazard. Mater. Adv., vol. 1, p. 100005, 2021.
  • [7] R. Magaye and J. Zhao, “Recent progress in studies of metallic nickel and nickel-based nanoparticles’ genotoxicity and carcinogenicity”, Environ. Toxicol. Pharmacol., vol. 3, no. 34, pp. 644–650, 2012.
  • [8] K. Maaz, “Silver Nanoparticles: Fabrication, Characterization and Applications”, IntechOpen, 2018.
  • [9] L. Wang, T. Zhang, P. Li, W. Huang, J. Tang, P. Wang, J. Liu, Q. Yuan, R. Bai, B. Li, K. Zhang, Y. Zhao and C. Chen, “Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity”, ACS Publ., vol. 9, no. 6, pp. 6532–6547, Jun. 2015.
  • [10] A. Syafiuddin, M. Razman Salim, A. Beng Hong Kueh, T. Hadibarata, and H. Nur, “A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges”, J. Chinese Chem. Soc., vol. 64, no. 7, pp. 732–756, Jul. 2017.
  • [11] M. Köktürk, A. Yiğit and E. Sulukan, “Green Synthesis Iron Oxide Nanoparticles (Fe@ AV NPs) Induce Developmental Toxicity and Anxiety-Like Behavior in Zebrafish Embryo-Larvae”, Mar. Sci. Technol. Bull., vol. 12, no. 1, pp. 39–50, 2023.
  • [12] F., Kränzlin, “Fungi of Switzerland: english translation: Virginia L. Waters: a contribution to the knowledge of the fungal flora of Switzerland.”, Mykologia, 2005. [Online]. Available: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=Kränzlin%2C+F.%2C+2005.+Fungi+of+Switzerland%2C+Vol.+6.+Verlag+Mykologia+Lucerne%2C+İsviçre.+320.&btnG=. [Accessed: 21-Feb-2024].
  • [13] M. Caboň and S. Adamčík, “Ecology and distribution of white milkcaps in Slovakia.”, Czech Mycol., vol. 2, no. 66, 2014.
  • [14] Y. Tuo, N. Rong, J. Hu, G. Zhao, Y. Wang, Z. Zhang, Z. Qi, Y. Li and B. Zhang, “Exploring the relationships between macrofungi diversity and major environmental factors in Wunvfeng National Forest Park in Northeast China”, J. Fungi, vol. 2, no. 8, p. 98, 2022.
  • [15] X.H. Xu, A.M. Chen, N. Yao, T.C. Wen, Y. Pei and W.P. Zhang, “Three New Species of Lactifluus (Basidiomycota, Russulaceae) from Guizhou Province, Southwest China”, J. Fungi, vol. 1, no. 9, p. 122, 2023.
  • [16] Y. KESİCİ, S., UZUN, ‘Adaklı (Yüksekova/Hakkâri) ve çevre köylerde belirlenen makromantarlar’, Mantar Derg., vol. 12, no. 2, pp. 148–162, 2021.
  • [17] H. Dogan, Ö. Öztürk and M.A.Ş. Şanda, ‘The Mycobiota of Samanli Mountains in Turkey’, Trak. Univ. J. Nat. Sci., vol. 22, no. 2, pp. 215–243, 2021.
  • [18] G. Kaşik, S. Alkan, S. Aktaş, C. Öztürk, and H. Esra AKGÜL, ‘MacrofMacrofungi of Yenice (Karabük) District and New Records for Turkey’, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Derg., vol. 25, no. 6, pp. 1264–1278, 2022.
  • [19] A. Keleş, K. Demirel, Y. Uzun, and A. Kaya, ‘Macrofungi of Ayder (Rize/Turkey) high plateau’, Biol. Divers. Conserv., vol. 3, no. 7, pp. 177–183, 2014.
  • [20] H. Solak, M.H., Işıloğlu, M., Kalmış, and E., Allı, ‘Macrofungi of Turkey: Checklist’, İzmir, 2007. [Online]. Available: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=Solak%2C+M.H.%2C+Işıloğlu%2C+M.%2C+Kalmış%2C+E.%2C+Allı%2C+H.+2015.+Macrofungi+of+Turkey%2C+Checklist+Volume+2.+Üniversiteliler+Ofset%2C+İzmir.&btnG=. [Accessed: 21-Feb-2024].
  • [21] I. Akata, Y. Uzun, and A. Kaya, ‘Macrofungal diversity of Zigana Mountain (Gümüşhane/Turkey)’, 2016.
  • [22] A. 2020 Sesli, E., Asan, A., Selçuk, F., Abacı Günyar, Ö., Akata, I., Akgül, S., Alkan, S., Allı, H., Aydoğdu, H., Berikten, D., Demirel, K., Demirel, R., Doğan, H. H., Erdoğdu, M., Ergül, C. C., Eroğlu, G., Giray, G., Halikî Uztan, A., Kabaktepe, Ş., Kadaifçiler, ‘Türkiye mantarları listesi’, İstanbul: Ali Nihat Gökyiğit Vakfı Yayını., 2020. [Online]. Available: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=Sesli%2C+E.%2C+Asan%2C+A.%2C+Selçuk%2C+F.%2C+Abacı+Günyar%2C+Ö.%2C+Akata%2C+I.%2C+Akgül%2C+S.%2C+Alkan%2C+S.%2C+Allı%2C+H.%2C+Aydoğdu%2C+H.%2C+Berikten%2C+D.%2C+Demirel%2C+K.%2C+Demirel%2C+R.%2C+Doğa. [Accessed: 21-Feb-2024].
  • [23] S. S. Suri, H. Fenniri, and B. Singh, ‘Nanotechnology-based drug delivery systems’, J. Occup. Med. Toxicol., vol. 2, no. 1, 2007.
  • [24] H. P. Borase, B.K. Salunke, R.B. Salunkhe, C.D. Patil, J.E. Hallsworth, B.S. Kim, and S.V. Patil, ‘Plant extract: A promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles’, Appl. Biochem. Biotechnol., vol. 173, no. 1, pp. 1–29, 2014.
  • [25] K. K. Jain, ‘Advances in the field of nanooncology’, BMC Med., vol. 8, p. 83, Dec. 2010.
  • [26] Y. V. Anisimova, S. I. Gelperina, C. A. Peloquin, and L. B. Heifets, ‘Nanoparticles as antituberculosis drugs carriers: Effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages’, J. Nanoparticle Res., vol. 2, no. 2, pp. 165–171, 2000.
  • [27] S. Mohanty, P. Jena, R. Mehta, R. Pati, B. Banerjee, S. Patil and A. Sonawane, ‘Cationic antimicrobial peptides and biogenic silver nanoparticles kill mycobacteria without eliciting DNA damage and cytotoxicity in mouse macrophages’, Am Soc Microbiol, vol. 57, no. 8, pp. 3688–3698, Aug. 2013.
  • [28] H. S. Devi, M. A. Boda, M. A. Shah, S. Parveen, and A. H. Wani, ‘Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity’, Green Process. Synth., vol. 8, no. 1, pp. 38–45, Jan. 2019.
  • [29] D. Ozturk, A. Ozguven, V. Yonten, and M. Ertas, ‘Green synthesis, characterization and antimicrobial activity of silver nanoparticles using Ornithogalum narbonense L.’, Inorg. Nano-Metal Chem., vol. 52, no. 3, pp. 329–341, 2022.
  • [30] E. N. Gecer, R. Erenler, C. Temiz, N. Genc, and I. Yildiz, ‘Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile’, Part. Sci. Technol., vol. 40, no. 1, pp. 50–57, 2022.
  • [31] P. A. Wayne, ‘Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement’, CLSI Doc. M100-S20, 2010.
  • [32] G. Geoprincy, B. N. Srri, U. Poonguzhali, N. N. Gandhi, and S. Renganathan, ‘A review on green synthesis of silver nanoparticles’, Asian J. Pharm. Clin. Res., 6(1), 8-12, 2013.
  • [33] B. K. Salunke, J. Shin, S. S. Sawant, B. Alkotaini, S. Lee, and B. S. Kim, ‘Rapid biological synthesis of silver nanoparticles using Kalopanax pictus plant extract and their antimicrobial activity’, J. Chem. Eng. , vol. 31, no. 11, pp. 2035–2040, Nov. 2014.
  • [34] R. Rani, D. Sharma, M. Chaturvedi, and J.P. Yadav, ‘Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus’, J Nanomed Nanotechnol, vol. 4, no. 8, p. 1000457, 2017.
  • [35] T. K. Dua, S. Giri, G. Nandi, R. Sahu, T. K. Shaw, and P. Paul, ‘Green synthesis of silver nanoparticles using Eupatorium adenophorum leaf extract: characterizations, antioxidant, antibacterial and photocatalytic activities’, Chem. Pap., vol. 77, no. 6, pp. 2947–2956, Jun. 2023.
  • [36] D. Philip, C. Unni, S.A. Aromal, and V. K. Vidhu, ‘Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles’, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 2, no. 78, pp. 899–904, 2011.
  • [37] J. M. War, A. H. Wani, A. U. Nisa, and M.Y. Bhat, ‘Green Synthesis, Characterization and In Vitro Antimicrobial Activity of Silver Nanoparticles (AgNPs) Using Fungal Aqueous Extract’, Nano, vol. 17, no. 13, Dec. 2022.
  • [38] R. Erenler, M. N. Atalar, İ. Yıldız, E.N. Geçer, A. Yıldırım, İ. Demirtaş and M.H. Alma, ‘Quantitative analysis of bioactive compounds by LC-MS/MS from Inula graveolens’, Bütünleyici ve Anadolu Tıbbı Derg., vol. 3, no. 4, pp. 3–10, 2023.

MAO-A Inhibitor Properties by Molecular Modeling Method, Antimicrobial Activity and Characterization of Silver Nanoparticles Synthesized from Lactifluus Bertillonii Mushroom

Year 2024, Volume: 12 Issue: 4, 2033 - 2049, 23.10.2024
https://doi.org/10.29130/dubited.1445798

Abstract

This work focuses on the antimicrobial activity of AgNPs produced using a green, environmentally friendly synthesis process from Lactifluus bertillonii mushrooms using the minimum inhibitory concentration (MIC) method. Additionally, the inhibitory characteristics of the chemicals present in the mushroom extract are also determined. SEM, TEM, UV-vis, and FT-IR instruments are employed as part of the study. The average particle size in the characterisation was determined by the imaging program to be 10.471 nm. Additionally, the activity of AgNPs against Klebsiella pneumoniae was found to be 512 µg/ml in the antimicrobial activity tests carried out using the MIC method, which yields more sensitive results. The target enzyme for treating depression, the MAO-A enzyme, whose 2Z5X coding structure was derived from humans, was employed in docking research. The three dimensional structures of Isoquercitrin (-8.2 kcal/mol), Rutin (-9.3 kcal/mol), Fisetin (-8.2 kcal/mol), Chrysin (-9.4 kcal/mol), Quercetin (-10.6 kcal/mol), Naringenin (8.8 kcal/mol), Kaemferol (-10.8 kcal/mol) and Luteolin (-10.8 kcal/mol) were optimized in the Gaussian09 program using the DFT/B3LYP/6-31G(d,p) basis set. Then, binding energies of these structures were determined with the help of the AutoDock Vina software. Their binding energies have been shown to indicate that they possess the property of MAO-A inhibitors.

Supporting Institution

Iğdır University

Thanks

The study was conducted at Iğdır University Research Laboratory Application and Research Center (ALUM). We would like to thank you very much for the device and laboratory support you provided us throughout the study.

References

  • [1] V. Sarsar, K.K. Selwal and M.K. Selwal, “Green synthesis of silver nanoparticles using leaf extract of Mangifera indica and evaluation of their antimicrobial activity”, J Microbiol Biotech Res, vol. 5, no. 3, pp. 27–32, 2013.
  • [2] R. M. Slawson, J. T. Trevors, and H. Lee, “Silver accumulation and resistance in Pseudomonas stutzeri”, Arch. Microbiol., vol. 158, no. 6, pp. 398–404, Nov. 1992.
  • [3] H. Nalwa, ‘Handbook of nanostructured materials and nanotechnology, five-volume set’, 1999.
  • [4] W. Jahn, “Chemical aspects of the use of gold clusters in structural biology”, J. Struct. Biol., vol. 2, no. 127, pp. 106–112, 1999.
  • [5] M. Zannotti, V. Vicomandi, A. Rossi, M. Minicucci, S. Ferraro, L. Petetta, and R. Giovannetti “Tuning of hydrogen peroxide etching during the synthesis of silver nanoparticles. An application of triangular nanoplates as plasmon sensors for Hg2+ in”, J. Mol. Liq., vol. 309, p. 113238, 2020.
  • [6] M.A. Kakakhel, W. Sajjad, F. Wu, N. Bibi, K. Shah, Z. Yali and W. Wang, “Green synthesis of silver nanoparticles and their shortcomings, animal blood a potential source for silver nanoparticles: A review”, J. Hazard. Mater. Adv., vol. 1, p. 100005, 2021.
  • [7] R. Magaye and J. Zhao, “Recent progress in studies of metallic nickel and nickel-based nanoparticles’ genotoxicity and carcinogenicity”, Environ. Toxicol. Pharmacol., vol. 3, no. 34, pp. 644–650, 2012.
  • [8] K. Maaz, “Silver Nanoparticles: Fabrication, Characterization and Applications”, IntechOpen, 2018.
  • [9] L. Wang, T. Zhang, P. Li, W. Huang, J. Tang, P. Wang, J. Liu, Q. Yuan, R. Bai, B. Li, K. Zhang, Y. Zhao and C. Chen, “Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity”, ACS Publ., vol. 9, no. 6, pp. 6532–6547, Jun. 2015.
  • [10] A. Syafiuddin, M. Razman Salim, A. Beng Hong Kueh, T. Hadibarata, and H. Nur, “A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges”, J. Chinese Chem. Soc., vol. 64, no. 7, pp. 732–756, Jul. 2017.
  • [11] M. Köktürk, A. Yiğit and E. Sulukan, “Green Synthesis Iron Oxide Nanoparticles (Fe@ AV NPs) Induce Developmental Toxicity and Anxiety-Like Behavior in Zebrafish Embryo-Larvae”, Mar. Sci. Technol. Bull., vol. 12, no. 1, pp. 39–50, 2023.
  • [12] F., Kränzlin, “Fungi of Switzerland: english translation: Virginia L. Waters: a contribution to the knowledge of the fungal flora of Switzerland.”, Mykologia, 2005. [Online]. Available: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=Kränzlin%2C+F.%2C+2005.+Fungi+of+Switzerland%2C+Vol.+6.+Verlag+Mykologia+Lucerne%2C+İsviçre.+320.&btnG=. [Accessed: 21-Feb-2024].
  • [13] M. Caboň and S. Adamčík, “Ecology and distribution of white milkcaps in Slovakia.”, Czech Mycol., vol. 2, no. 66, 2014.
  • [14] Y. Tuo, N. Rong, J. Hu, G. Zhao, Y. Wang, Z. Zhang, Z. Qi, Y. Li and B. Zhang, “Exploring the relationships between macrofungi diversity and major environmental factors in Wunvfeng National Forest Park in Northeast China”, J. Fungi, vol. 2, no. 8, p. 98, 2022.
  • [15] X.H. Xu, A.M. Chen, N. Yao, T.C. Wen, Y. Pei and W.P. Zhang, “Three New Species of Lactifluus (Basidiomycota, Russulaceae) from Guizhou Province, Southwest China”, J. Fungi, vol. 1, no. 9, p. 122, 2023.
  • [16] Y. KESİCİ, S., UZUN, ‘Adaklı (Yüksekova/Hakkâri) ve çevre köylerde belirlenen makromantarlar’, Mantar Derg., vol. 12, no. 2, pp. 148–162, 2021.
  • [17] H. Dogan, Ö. Öztürk and M.A.Ş. Şanda, ‘The Mycobiota of Samanli Mountains in Turkey’, Trak. Univ. J. Nat. Sci., vol. 22, no. 2, pp. 215–243, 2021.
  • [18] G. Kaşik, S. Alkan, S. Aktaş, C. Öztürk, and H. Esra AKGÜL, ‘MacrofMacrofungi of Yenice (Karabük) District and New Records for Turkey’, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Derg., vol. 25, no. 6, pp. 1264–1278, 2022.
  • [19] A. Keleş, K. Demirel, Y. Uzun, and A. Kaya, ‘Macrofungi of Ayder (Rize/Turkey) high plateau’, Biol. Divers. Conserv., vol. 3, no. 7, pp. 177–183, 2014.
  • [20] H. Solak, M.H., Işıloğlu, M., Kalmış, and E., Allı, ‘Macrofungi of Turkey: Checklist’, İzmir, 2007. [Online]. Available: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=Solak%2C+M.H.%2C+Işıloğlu%2C+M.%2C+Kalmış%2C+E.%2C+Allı%2C+H.+2015.+Macrofungi+of+Turkey%2C+Checklist+Volume+2.+Üniversiteliler+Ofset%2C+İzmir.&btnG=. [Accessed: 21-Feb-2024].
  • [21] I. Akata, Y. Uzun, and A. Kaya, ‘Macrofungal diversity of Zigana Mountain (Gümüşhane/Turkey)’, 2016.
  • [22] A. 2020 Sesli, E., Asan, A., Selçuk, F., Abacı Günyar, Ö., Akata, I., Akgül, S., Alkan, S., Allı, H., Aydoğdu, H., Berikten, D., Demirel, K., Demirel, R., Doğan, H. H., Erdoğdu, M., Ergül, C. C., Eroğlu, G., Giray, G., Halikî Uztan, A., Kabaktepe, Ş., Kadaifçiler, ‘Türkiye mantarları listesi’, İstanbul: Ali Nihat Gökyiğit Vakfı Yayını., 2020. [Online]. Available: https://scholar.google.com/scholar?hl=tr&as_sdt=0%2C5&q=Sesli%2C+E.%2C+Asan%2C+A.%2C+Selçuk%2C+F.%2C+Abacı+Günyar%2C+Ö.%2C+Akata%2C+I.%2C+Akgül%2C+S.%2C+Alkan%2C+S.%2C+Allı%2C+H.%2C+Aydoğdu%2C+H.%2C+Berikten%2C+D.%2C+Demirel%2C+K.%2C+Demirel%2C+R.%2C+Doğa. [Accessed: 21-Feb-2024].
  • [23] S. S. Suri, H. Fenniri, and B. Singh, ‘Nanotechnology-based drug delivery systems’, J. Occup. Med. Toxicol., vol. 2, no. 1, 2007.
  • [24] H. P. Borase, B.K. Salunke, R.B. Salunkhe, C.D. Patil, J.E. Hallsworth, B.S. Kim, and S.V. Patil, ‘Plant extract: A promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles’, Appl. Biochem. Biotechnol., vol. 173, no. 1, pp. 1–29, 2014.
  • [25] K. K. Jain, ‘Advances in the field of nanooncology’, BMC Med., vol. 8, p. 83, Dec. 2010.
  • [26] Y. V. Anisimova, S. I. Gelperina, C. A. Peloquin, and L. B. Heifets, ‘Nanoparticles as antituberculosis drugs carriers: Effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages’, J. Nanoparticle Res., vol. 2, no. 2, pp. 165–171, 2000.
  • [27] S. Mohanty, P. Jena, R. Mehta, R. Pati, B. Banerjee, S. Patil and A. Sonawane, ‘Cationic antimicrobial peptides and biogenic silver nanoparticles kill mycobacteria without eliciting DNA damage and cytotoxicity in mouse macrophages’, Am Soc Microbiol, vol. 57, no. 8, pp. 3688–3698, Aug. 2013.
  • [28] H. S. Devi, M. A. Boda, M. A. Shah, S. Parveen, and A. H. Wani, ‘Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity’, Green Process. Synth., vol. 8, no. 1, pp. 38–45, Jan. 2019.
  • [29] D. Ozturk, A. Ozguven, V. Yonten, and M. Ertas, ‘Green synthesis, characterization and antimicrobial activity of silver nanoparticles using Ornithogalum narbonense L.’, Inorg. Nano-Metal Chem., vol. 52, no. 3, pp. 329–341, 2022.
  • [30] E. N. Gecer, R. Erenler, C. Temiz, N. Genc, and I. Yildiz, ‘Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile’, Part. Sci. Technol., vol. 40, no. 1, pp. 50–57, 2022.
  • [31] P. A. Wayne, ‘Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement’, CLSI Doc. M100-S20, 2010.
  • [32] G. Geoprincy, B. N. Srri, U. Poonguzhali, N. N. Gandhi, and S. Renganathan, ‘A review on green synthesis of silver nanoparticles’, Asian J. Pharm. Clin. Res., 6(1), 8-12, 2013.
  • [33] B. K. Salunke, J. Shin, S. S. Sawant, B. Alkotaini, S. Lee, and B. S. Kim, ‘Rapid biological synthesis of silver nanoparticles using Kalopanax pictus plant extract and their antimicrobial activity’, J. Chem. Eng. , vol. 31, no. 11, pp. 2035–2040, Nov. 2014.
  • [34] R. Rani, D. Sharma, M. Chaturvedi, and J.P. Yadav, ‘Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus’, J Nanomed Nanotechnol, vol. 4, no. 8, p. 1000457, 2017.
  • [35] T. K. Dua, S. Giri, G. Nandi, R. Sahu, T. K. Shaw, and P. Paul, ‘Green synthesis of silver nanoparticles using Eupatorium adenophorum leaf extract: characterizations, antioxidant, antibacterial and photocatalytic activities’, Chem. Pap., vol. 77, no. 6, pp. 2947–2956, Jun. 2023.
  • [36] D. Philip, C. Unni, S.A. Aromal, and V. K. Vidhu, ‘Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles’, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 2, no. 78, pp. 899–904, 2011.
  • [37] J. M. War, A. H. Wani, A. U. Nisa, and M.Y. Bhat, ‘Green Synthesis, Characterization and In Vitro Antimicrobial Activity of Silver Nanoparticles (AgNPs) Using Fungal Aqueous Extract’, Nano, vol. 17, no. 13, Dec. 2022.
  • [38] R. Erenler, M. N. Atalar, İ. Yıldız, E.N. Geçer, A. Yıldırım, İ. Demirtaş and M.H. Alma, ‘Quantitative analysis of bioactive compounds by LC-MS/MS from Inula graveolens’, Bütünleyici ve Anadolu Tıbbı Derg., vol. 3, no. 4, pp. 3–10, 2023.
There are 38 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other), Molecular Imaging
Journal Section Articles
Authors

Yasemin Keşkek Karabulut 0000-0002-6742-783X

Aybek Yiğit 0000-0001-8279-5908

Ayşe Karacalı Tunç 0000-0002-6453-9887

Büşra Merve Sarıtaş 0000-0001-8955-4699

Sedat Kesici 0000-0002-0284-1247

Yusuf Uzun 0000-0002-0537-4517

Cemil Sadullahoğlu 0000-0002-0442-9045

Publication Date October 23, 2024
Submission Date March 1, 2024
Acceptance Date June 2, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Keşkek Karabulut, Y., Yiğit, A., Karacalı Tunç, A., Sarıtaş, B. M., et al. (2024). MAO-A Inhibitor Properties by Molecular Modeling Method, Antimicrobial Activity and Characterization of Silver Nanoparticles Synthesized from Lactifluus Bertillonii Mushroom. Duzce University Journal of Science and Technology, 12(4), 2033-2049. https://doi.org/10.29130/dubited.1445798
AMA Keşkek Karabulut Y, Yiğit A, Karacalı Tunç A, Sarıtaş BM, Kesici S, Uzun Y, Sadullahoğlu C. MAO-A Inhibitor Properties by Molecular Modeling Method, Antimicrobial Activity and Characterization of Silver Nanoparticles Synthesized from Lactifluus Bertillonii Mushroom. DUBİTED. October 2024;12(4):2033-2049. doi:10.29130/dubited.1445798
Chicago Keşkek Karabulut, Yasemin, Aybek Yiğit, Ayşe Karacalı Tunç, Büşra Merve Sarıtaş, Sedat Kesici, Yusuf Uzun, and Cemil Sadullahoğlu. “MAO-A Inhibitor Properties by Molecular Modeling Method, Antimicrobial Activity and Characterization of Silver Nanoparticles Synthesized from Lactifluus Bertillonii Mushroom”. Duzce University Journal of Science and Technology 12, no. 4 (October 2024): 2033-49. https://doi.org/10.29130/dubited.1445798.
EndNote Keşkek Karabulut Y, Yiğit A, Karacalı Tunç A, Sarıtaş BM, Kesici S, Uzun Y, Sadullahoğlu C (October 1, 2024) MAO-A Inhibitor Properties by Molecular Modeling Method, Antimicrobial Activity and Characterization of Silver Nanoparticles Synthesized from Lactifluus Bertillonii Mushroom. Duzce University Journal of Science and Technology 12 4 2033–2049.
IEEE Y. Keşkek Karabulut, A. Yiğit, A. Karacalı Tunç, B. M. Sarıtaş, S. Kesici, Y. Uzun, and C. Sadullahoğlu, “MAO-A Inhibitor Properties by Molecular Modeling Method, Antimicrobial Activity and Characterization of Silver Nanoparticles Synthesized from Lactifluus Bertillonii Mushroom”, DUBİTED, vol. 12, no. 4, pp. 2033–2049, 2024, doi: 10.29130/dubited.1445798.
ISNAD Keşkek Karabulut, Yasemin et al. “MAO-A Inhibitor Properties by Molecular Modeling Method, Antimicrobial Activity and Characterization of Silver Nanoparticles Synthesized from Lactifluus Bertillonii Mushroom”. Duzce University Journal of Science and Technology 12/4 (October 2024), 2033-2049. https://doi.org/10.29130/dubited.1445798.
JAMA Keşkek Karabulut Y, Yiğit A, Karacalı Tunç A, Sarıtaş BM, Kesici S, Uzun Y, Sadullahoğlu C. MAO-A Inhibitor Properties by Molecular Modeling Method, Antimicrobial Activity and Characterization of Silver Nanoparticles Synthesized from Lactifluus Bertillonii Mushroom. DUBİTED. 2024;12:2033–2049.
MLA Keşkek Karabulut, Yasemin et al. “MAO-A Inhibitor Properties by Molecular Modeling Method, Antimicrobial Activity and Characterization of Silver Nanoparticles Synthesized from Lactifluus Bertillonii Mushroom”. Duzce University Journal of Science and Technology, vol. 12, no. 4, 2024, pp. 2033-49, doi:10.29130/dubited.1445798.
Vancouver Keşkek Karabulut Y, Yiğit A, Karacalı Tunç A, Sarıtaş BM, Kesici S, Uzun Y, Sadullahoğlu C. MAO-A Inhibitor Properties by Molecular Modeling Method, Antimicrobial Activity and Characterization of Silver Nanoparticles Synthesized from Lactifluus Bertillonii Mushroom. DUBİTED. 2024;12(4):2033-49.