Research Article
BibTex RIS Cite

Aynı Anda Buharlaştırma Yöntemiyle Üretilen CIGS İnce Filmlerin Yapısal Özelliklerinin İncelenmesi ve Kutup Figürlerinin Belirlenmesi

Year 2025, Volume: 13 Issue: 1, 1 - 12, 30.01.2025
https://doi.org/10.29130/dubited.1121646

Abstract

Bu çalışmada dörtlü element kompozisyonundan oluşan ve elektro-optik uygulamalarda sıkça kullanılan CIGS ince filmler, aynı anda termal buharlaştırma yöntemiyle üretilmiş, yapısal ve elektriksel özellikleri incelenmiştir. SEM ve AFM sistemleri ile yüzey ve kalınlık analizleri, XRD sistemi ile detaylı yapı ve doku analizleri gerçekleştirilmiştir. SEM ve AFM görüntüleri incelenerek histogram eğrileri ve bunlara bağlı Gaussian teğetleri elde edilmiştir. SEM görüntülerinde film yüzeyinde farklı boyutlarda kümelenmelerin olduğu görülmüş ve histogram grafiği incelenerek bu kümelenmelerin homojen şekilde dağıldığı belirlenmiştir. AFM görüntülerinden ortalama yüzey pürüzlülüğünün 4,94 nm olduğu görülmüştür. AFM görüntülerinden elde edilen histogram grafikleri incelendiğinde de pürüzlülüğe sebep olan yapılanmaların yüzeyde homojen dağıldıkları tespit edilmiştir. Üretilen filmlerin 20˚- 60˚ 2θ aralığında XRD ölçümleri alınmış, filmlerin tetragonal Cu(In0.5Ga0.5)Se2 yapısında ve (112), (204/220) ve (312/116) yönelimlerine sahip olduğu belirlenmiştir. Doku analizleri sonucunda elde edilen kutup figürleri çıkarılmış ve deneysel kutup figürleri ile tekrar hesaplanan teorik kutup figürleri karşılaştırılmıştır. Çalışmanın sonucunda deneysel kutup figürleri ile tekrar hesaplanan teorik kutup figürleri arasındaki benzerlik oranlarının, XRD ölçümlerindeki pik şiddetleri ile orantılı olarak değiştiği tespit edilmiştir. Üretilen CIGS filmine ait kristal yönelimlerinin şiddeti ve film düzlemi boyunca dağılımlarının homojenliği kutup figürlerinin analizi ile çalışılmıştır. Literatürde yüksek verimler elde edilmiş çalışmalardaki kristal yapılar ile kıyaslanarak verimli güneş gözelerini üretmede kullanılabilirliği tespit edilmeye çalışılmıştır. Filmlerin Hall etkisi ölçümleri oda sıcaklığında, 1,1 Tesla manyetik alan altında ve 3 µA akım seviyesinde alınmıştır. Üretilen CIGS ince filmin p tipinde olduğu görülmüş ve sırasıyla öz direnci ve taşıyıcı yoğunluğunun 3,33×102 Ω.cm ve 1,36×1011 cm-3 olduğu hesaplanmıştır.

Thanks

Makalenin yazarlarından Celal Alp YAVRU’ ya 100/2000 Doktora Programı kapsamında destek veren Yükseköğretim Kurulu (YÖK)’ na teşekkür ederiz.

References

  • [1] S. H. Kang, Y. K. Kim, D. S. Choi, and Y. E. Sung, “Characterization of electrodeposited CuInSe2 (CIS) film,” Electrochimica Acta, vol. 51, no. 21, pp. 4433–4438, 2006.
  • [2] M. Al-Hattab, L. Moudou, M. Khenfouch, O. Bajjou, Y. Chrafih, and K. Rahmani, “Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software,” Solar Energy, vol. 227, Elsevier Ltd, pp. 13–22, 2021.
  • [3] H. H. Sheu, Y. T. Hsu, S.Y. Jian, and S.C. Liang, “The effect of Cu concentration in the photovoltaic efficiency of CIGS solar cells prepared by co-evaporation technique,” Vacuum, vol. 131, pp. 278–284, 2016.
  • [4] W. Liu, H. Li, B. Qiao, S. Zhao, Z. Xu, and D. Song, “Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation,” Solar Energy, vol. 233, pp. 337–344, 2022.
  • [5] M. P. Suryawanshi, G. L. Agawane, S. M. Bhosale, S. W. Shin, P. S. Patil, J. H. Kim, and A. V. Moholkar, “CZTS based thin film solar cells: a status review,” Materials Technology, vol. 28, no. 1–2, pp. 98–109, 2013.
  • [6] W. Daranfed, M. S. Aida, N. Attaf, J. Bougdira, and H. Rinnert, “Cu 2ZnSnS 4 thin films deposition by ultrasonic spray pyrolysis,” J Alloys Compd, vol. 542, pp. 22–27, 2012.
  • [7] Y. Atasoy, B. M. Başol, I. Polat, M. Tomakin, M. Parlak, and E. Bacaksiz, “Cu(In,Ga)(Se,Te)2 pentenary thin films formed by reaction of precursor layers,” Thin Solid Films, vol. 592, no. 2, pp. 189–194, 2015.
  • [8] Y. Atasoy, “Düşük tellür katkılı CuInGaSe2 ince filmlerin yapısal özelliklerinin incelenmesi”, Journal of the Institute of Science and Technology, vol. 9, no. 4, pp. 2088–2096, 2019.
  • [9] U. Rau, D. Braunger, R. Herberholz, and W. Schock, “Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices,” J Appl Phys, vol. 86, no. 1, pp. 497–505, 1999.
  • [10] M. Katerski, A. Mere, V. Kazlauskiene, J. Miskinis, A. Saar, L. Matisen, A. Kikas, M. Krunks, “Surface analysis of spray deposited copper indium disulfide films,” Thin Solid Films, vol. 516, no. 20, pp. 7110–7115, 2008.
  • [11] D. Lee, S. Park, and J. Kim, “Structural analysis of CIGS fi lm prepared by chemical spray deposition,” Current Applied Physics, vol. 11, no. 1, pp. S88–S92, 2011.
  • [12] F. Long, W. Wang, J. Du, and Z. Zou, “CIS(CIGS) thin films prepared for solar cells by one-step electrodeposition in alcohol solution,” Journal of Physics: Conference Series, vol. 152, p. 012074, 2009.
  • [13] I. L. Repins, D. Fisher, W. K. Batchelor, L. Woods, and M. E. Beck, “A non-contact low-cost sensor for improved repeatability in co-evaporated CIGS,” Progress in Photovoltaics: Research and Applications, vol. 13, no. 4, pp. 311–323, 2005.
  • [14] M. Kaleli and C. Alp Yavru, “Depth profile crystal orientation determination of Cu(In1−xGax)Se2 thin films by GIXRD method applying skin depth theory,” Journal of Materials Science: Materials in Electronics, vol. 30, no. 22, pp. 20154–20159, 2019.
  • [15] J. Piekoszewski, J. J. Loferski, R. Beaulieu, J. Beall, B. Roessler and J. Shewchun, “RF-Sputtered CulnSe2 thin films”, Solar Energy Materials, vol. 2, no. 3, pp. 363–372, 1980.
  • [16] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, “Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%,” IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1863–1867, 2019.
  • [17] A. Guchhait, H. A. Dewi, S. W. Leow, H. Wang, G. Han, F. B. Suhaimi, S. Mhaisalkar, H. L. Wong, and N. Mathews, “Over 20% Efficient CIGS-Perovskite Tandem Solar Cells,” ACS Energy Lett, vol. 2, no. 4, pp. 807–812, 2017.
  • [18] T. J. Jacobsson, A. Hultqvist, S. Svanstrom, L. Riekehr, U. B. Cappel, E. Unger, H. Rensmo, E. M. J. Johansson, M. Edoff, G. Boschloo, “2-Terminal CIGS-perovskite tandem cells: A layer by layer exploration,” Solar Energy, vol. 207, vol. 207 no. 1, pp. 270–288, 2020.
  • [19] C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Gratzel, R. Noufi, T. Buonassisi, A. Salleo, and M. D. McGehee, “Semi-transparent perovskite solar cells for tandems with silicon and CIGS,” Energy Environ Sci, vol. 8, no. 3, pp. 956–963, 2015.
  • [20] S. U. Nanayakkara, K. Horowitz, A. Kanevce, M. Woodhouse, and P. Basore, “Evaluating the economic viability of CdTe / CIS and CIGS / CIS tandem photovoltaic modules,” Progress in Photovoltaics, vol. 25, no.4, 2017.
  • [21] S. Gharibzadeh, I. M. Hossain, P. Fassl, B. A. Nejand, T. Abzieher, M. Schultes, E. Ahlswede, P. Jackson, M. Powalla, S. Schafer, M. Rienacker, T. Wietler, R. Peibst, U. Lemmer, B. S. Richards, U. W. Paetzold, “2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Four-Terminal Tandems with Silicon and CIGS,” Adv Funct Mater, vol. 30, no. 19, 2020.
  • [22] D. A. Aldemir, M. Kaleli, and A. C. Yavru, “Electrical and photoelectric properties of Yb/CIGS thin film Schottky photodiode,” Sens Actuators A Phys, vol. 311, pp. 112091, 2020.
  • [23] C. A. Yavru, M. Kaleli, İ. S. Üncü, M. Koç, and D. A. Aldemir, “Solar and infrared light sensing comparison of Yb/CIGS photodiode,” Sens Actuators A Phys, pp. 113973, 2022.
  • [24] B. Theys, T. Klinkert, F. Mollica, E. Leite, F. Donsanti, M. Jubault, D. Lincot, “Revisiting Schottky barriers for CIGS solar cells: Electrical characterization of the Al/Cu(InGa)Se2 contact,” Physica Status Solidi (A) Applications and Materials Science, vol. 213, no. 9, pp. 2425–2430, 2016.
  • [25] S. Fiat, I. Polat, E. Bacaksiz, M. Kompitsas, and G. Çankaya, “The influence of annealing temperature and tellurium (Te) on electrical and dielectrical properties of Al/p-CIGSeTe/Mo Schottky diodes,” Current Applied Physics, vol. 13, no. 6, pp. 1112–1118, 2013.
  • [26] M. Kaleli, C. A. Yavru, M. Koç, S. Akyürekli, A. B. Bayram, “Termal Buharlaştırma Yöntemiyle Hazırlanan Ga Katkılı CuInSe 2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 12, no. 2, pp. 19–32, 2017.
  • [27] C. A. Yavru, İ. S. Üncü, M. Kaleli, and S. Akyürekli, “CIGS İnce Film Yüzeyindeki Morfolojik Farklılıkların GLCM Görüntü İşleme Yöntemi ile İncelenmesi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 17, no. 2, pp. 460–477, 2022.
  • [28] J. H. Yoon, K. H. Yoon, J. K. Kim, J. K. Park, T. S. Lee, Y. J. Baik, T. Y. Seong, and J. H. Jeong, “Effect of the Mo back contact microstructure on the preferred orientation of CIGS thin films,” in Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 2443–2447, 2010.
  • [29] S. Rozeveld, C. Reinhardt, E. Bykov, and A. Wall, “ Measurement of Grain Boundary Properties in Cu(ln,Ga)Se 2 Thin Films ,” Micros Today, vol. 26, no. 3, pp. 32–39, 2018.
  • [30] G. Hanna, T. Glatzel, S. Sadewasser, N. Ott, H. P. Strunk, U. Rau, and J. H. Werner, “Texture and electronic activity of grain boundaries in Cu(In,Ga)Se 2 thin films,” Appl Phys A Mater Sci Process, vol. 82, no. 1, pp. 1–7, 2006.
  • [31] R. Krishnan, M. Riley, S. Lee, and T. M. Lu, “Formation of biaxially textured molybdenum thin films under the influence of recrystallization conditions,” Thin Solid Films, vol. 519, no. 16, pp. 5429–5432, 2011.
  • [32] M. L. Lobanov, S. V. Danilov, V. I. Pastukhov, S. A. Averin, Y. Y. Khrunyk, and A. A. Popov, “The crystallographic relationship of molybdenum textures after hot rolling and recrystallization,” Materials and Design, vol. 109, no. July, pp. 251–255, 2016.
  • [33] A. B. Jain, Y. R. Toda, and D. N. Gujarathi, “Structural and Electrical properties of Thermally Evaporated Nanostructured CuInSe Thin Films,” vol. 9, no. 2, pp. 19–26, 2017.
  • [34] M. A. Contreras, B. Egaas, K. Raöanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, “Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells,” Progress in Photovoltaics: Research and Applications, vol. 7, no.4, pp. 311–316, 1999.
  • [35] A. Slobodskyy, T. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1-x Gax Se2 film for solar cells, structural and optical characterization,” Applied Physics Letters, vol. 97, no. 25, Dec. 2010.
  • [36] Y. M. Xue, B. H. Yang, C. Q. Qu, L. Zhang, C. M. Xu, and Y. Sun, “Structural and electrical properties of co-evaporated In, Ga rich CIGS thin films,” Optoelectronics Letters, vol. 4, no. 6, pp. 0437–0439, Nov. 2008.
  • [37] R. Caballero, C. A. Kaufmann, T. Eisenbarth, T. Unold, S. Schorr, R. Hesse, R. Klenk, and H. W. Schock “The effect of NaF precursors on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Physica Status Solidi (A) Applications and Materials Science, vol. 206, no. 5, pp. 1049–1053, May 2009.
  • [38] D.H. Cho, Y.-D. Chung, K.-S. Lee, J.-H. Kim, S.-J. Park, and J. Kim, “Control of Na diffusion from soda-lime glass and NaF film into Cu(In,Ga)Se2 for thin-film solar cells,”, pp. 1–4, 2014.
  • [39] H. Wang, Z. Yang, X. L. Kou, Y. A. Cai, W. Liu, T. Yu, J. B. Pang, C. J. Li, and Y. Sun “Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process,” Semiconductor Science and Technology, vol. 25, no. 5, 2010.
  • [40] D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla, and A. N. Tiwari, “Microstructural and chemical studies of interfaces between Cu(In,Ga) Se 2 and In 2 S 3 layers,” J Appl Phys, vol. 97, no. 8, pp. 084908, 2005.
  • [41] B. K. H. Al-Maiyaly, I. H. Khudayer, A. H. A. Alrazak, “Effect of Thickness on the Electrical Conductivity and Hall Effect Measurements of (CIGS) Films” Ibn Al- Haitham jour. For pure and Appl. Science, vol.27, no.3, pp. 300-308, 2014.

Investigation of Structural Properties and Determination of Pole Figures of CIGS Thin Films Produced by Co-Evaporation Method

Year 2025, Volume: 13 Issue: 1, 1 - 12, 30.01.2025
https://doi.org/10.29130/dubited.1121646

Abstract

In this study, CIGS thin films, which consist of quaternary element composition and are frequently used in electro-optical applications, were produced by the thermal co-evaporation method, and their structural and electrical properties were investigated. Surface and thickness analyze were performed with SEM and AFM systems, and detailed structure and texture analyzes were performed with the XRD system. By examining SEM and AFM images, histogram curves and their associated Gaussian fits were obtained. In SEM images, it was observed that there were clusters of different sizes on the film surface, and by examining the histogram graph, it was determined that these clusters were homogeneously distributed. The average surface roughness was 4.94 nm from the AFM images. When the histogram graphics obtained from AFM images were examined, it was determined that the structures causing the roughness were homogeneously distributed on the surface. XRD measurements of the produced films were taken in the 20˚-60˚ 2θ range, and it was determined that the films had tetragonal Cu(In0.5Ga0.5)Se2 structure and (112), (204/220) and (312/116) orientations. The pole figures obtained as a result of the texture analysis were gained and the experimental pole figures were compared with the recalculated theoretical pole figures. In addition, Hall effect measurements of the films were taken at 3 µA level at room temperature. As a result of the study, it was tried to determine the suitability of CIGS thin films produced by the thermal co-evaporation method for the production of high-efficiency CIGS solar cells.

References

  • [1] S. H. Kang, Y. K. Kim, D. S. Choi, and Y. E. Sung, “Characterization of electrodeposited CuInSe2 (CIS) film,” Electrochimica Acta, vol. 51, no. 21, pp. 4433–4438, 2006.
  • [2] M. Al-Hattab, L. Moudou, M. Khenfouch, O. Bajjou, Y. Chrafih, and K. Rahmani, “Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software,” Solar Energy, vol. 227, Elsevier Ltd, pp. 13–22, 2021.
  • [3] H. H. Sheu, Y. T. Hsu, S.Y. Jian, and S.C. Liang, “The effect of Cu concentration in the photovoltaic efficiency of CIGS solar cells prepared by co-evaporation technique,” Vacuum, vol. 131, pp. 278–284, 2016.
  • [4] W. Liu, H. Li, B. Qiao, S. Zhao, Z. Xu, and D. Song, “Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation,” Solar Energy, vol. 233, pp. 337–344, 2022.
  • [5] M. P. Suryawanshi, G. L. Agawane, S. M. Bhosale, S. W. Shin, P. S. Patil, J. H. Kim, and A. V. Moholkar, “CZTS based thin film solar cells: a status review,” Materials Technology, vol. 28, no. 1–2, pp. 98–109, 2013.
  • [6] W. Daranfed, M. S. Aida, N. Attaf, J. Bougdira, and H. Rinnert, “Cu 2ZnSnS 4 thin films deposition by ultrasonic spray pyrolysis,” J Alloys Compd, vol. 542, pp. 22–27, 2012.
  • [7] Y. Atasoy, B. M. Başol, I. Polat, M. Tomakin, M. Parlak, and E. Bacaksiz, “Cu(In,Ga)(Se,Te)2 pentenary thin films formed by reaction of precursor layers,” Thin Solid Films, vol. 592, no. 2, pp. 189–194, 2015.
  • [8] Y. Atasoy, “Düşük tellür katkılı CuInGaSe2 ince filmlerin yapısal özelliklerinin incelenmesi”, Journal of the Institute of Science and Technology, vol. 9, no. 4, pp. 2088–2096, 2019.
  • [9] U. Rau, D. Braunger, R. Herberholz, and W. Schock, “Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices,” J Appl Phys, vol. 86, no. 1, pp. 497–505, 1999.
  • [10] M. Katerski, A. Mere, V. Kazlauskiene, J. Miskinis, A. Saar, L. Matisen, A. Kikas, M. Krunks, “Surface analysis of spray deposited copper indium disulfide films,” Thin Solid Films, vol. 516, no. 20, pp. 7110–7115, 2008.
  • [11] D. Lee, S. Park, and J. Kim, “Structural analysis of CIGS fi lm prepared by chemical spray deposition,” Current Applied Physics, vol. 11, no. 1, pp. S88–S92, 2011.
  • [12] F. Long, W. Wang, J. Du, and Z. Zou, “CIS(CIGS) thin films prepared for solar cells by one-step electrodeposition in alcohol solution,” Journal of Physics: Conference Series, vol. 152, p. 012074, 2009.
  • [13] I. L. Repins, D. Fisher, W. K. Batchelor, L. Woods, and M. E. Beck, “A non-contact low-cost sensor for improved repeatability in co-evaporated CIGS,” Progress in Photovoltaics: Research and Applications, vol. 13, no. 4, pp. 311–323, 2005.
  • [14] M. Kaleli and C. Alp Yavru, “Depth profile crystal orientation determination of Cu(In1−xGax)Se2 thin films by GIXRD method applying skin depth theory,” Journal of Materials Science: Materials in Electronics, vol. 30, no. 22, pp. 20154–20159, 2019.
  • [15] J. Piekoszewski, J. J. Loferski, R. Beaulieu, J. Beall, B. Roessler and J. Shewchun, “RF-Sputtered CulnSe2 thin films”, Solar Energy Materials, vol. 2, no. 3, pp. 363–372, 1980.
  • [16] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, “Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%,” IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1863–1867, 2019.
  • [17] A. Guchhait, H. A. Dewi, S. W. Leow, H. Wang, G. Han, F. B. Suhaimi, S. Mhaisalkar, H. L. Wong, and N. Mathews, “Over 20% Efficient CIGS-Perovskite Tandem Solar Cells,” ACS Energy Lett, vol. 2, no. 4, pp. 807–812, 2017.
  • [18] T. J. Jacobsson, A. Hultqvist, S. Svanstrom, L. Riekehr, U. B. Cappel, E. Unger, H. Rensmo, E. M. J. Johansson, M. Edoff, G. Boschloo, “2-Terminal CIGS-perovskite tandem cells: A layer by layer exploration,” Solar Energy, vol. 207, vol. 207 no. 1, pp. 270–288, 2020.
  • [19] C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Gratzel, R. Noufi, T. Buonassisi, A. Salleo, and M. D. McGehee, “Semi-transparent perovskite solar cells for tandems with silicon and CIGS,” Energy Environ Sci, vol. 8, no. 3, pp. 956–963, 2015.
  • [20] S. U. Nanayakkara, K. Horowitz, A. Kanevce, M. Woodhouse, and P. Basore, “Evaluating the economic viability of CdTe / CIS and CIGS / CIS tandem photovoltaic modules,” Progress in Photovoltaics, vol. 25, no.4, 2017.
  • [21] S. Gharibzadeh, I. M. Hossain, P. Fassl, B. A. Nejand, T. Abzieher, M. Schultes, E. Ahlswede, P. Jackson, M. Powalla, S. Schafer, M. Rienacker, T. Wietler, R. Peibst, U. Lemmer, B. S. Richards, U. W. Paetzold, “2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Four-Terminal Tandems with Silicon and CIGS,” Adv Funct Mater, vol. 30, no. 19, 2020.
  • [22] D. A. Aldemir, M. Kaleli, and A. C. Yavru, “Electrical and photoelectric properties of Yb/CIGS thin film Schottky photodiode,” Sens Actuators A Phys, vol. 311, pp. 112091, 2020.
  • [23] C. A. Yavru, M. Kaleli, İ. S. Üncü, M. Koç, and D. A. Aldemir, “Solar and infrared light sensing comparison of Yb/CIGS photodiode,” Sens Actuators A Phys, pp. 113973, 2022.
  • [24] B. Theys, T. Klinkert, F. Mollica, E. Leite, F. Donsanti, M. Jubault, D. Lincot, “Revisiting Schottky barriers for CIGS solar cells: Electrical characterization of the Al/Cu(InGa)Se2 contact,” Physica Status Solidi (A) Applications and Materials Science, vol. 213, no. 9, pp. 2425–2430, 2016.
  • [25] S. Fiat, I. Polat, E. Bacaksiz, M. Kompitsas, and G. Çankaya, “The influence of annealing temperature and tellurium (Te) on electrical and dielectrical properties of Al/p-CIGSeTe/Mo Schottky diodes,” Current Applied Physics, vol. 13, no. 6, pp. 1112–1118, 2013.
  • [26] M. Kaleli, C. A. Yavru, M. Koç, S. Akyürekli, A. B. Bayram, “Termal Buharlaştırma Yöntemiyle Hazırlanan Ga Katkılı CuInSe 2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 12, no. 2, pp. 19–32, 2017.
  • [27] C. A. Yavru, İ. S. Üncü, M. Kaleli, and S. Akyürekli, “CIGS İnce Film Yüzeyindeki Morfolojik Farklılıkların GLCM Görüntü İşleme Yöntemi ile İncelenmesi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 17, no. 2, pp. 460–477, 2022.
  • [28] J. H. Yoon, K. H. Yoon, J. K. Kim, J. K. Park, T. S. Lee, Y. J. Baik, T. Y. Seong, and J. H. Jeong, “Effect of the Mo back contact microstructure on the preferred orientation of CIGS thin films,” in Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 2443–2447, 2010.
  • [29] S. Rozeveld, C. Reinhardt, E. Bykov, and A. Wall, “ Measurement of Grain Boundary Properties in Cu(ln,Ga)Se 2 Thin Films ,” Micros Today, vol. 26, no. 3, pp. 32–39, 2018.
  • [30] G. Hanna, T. Glatzel, S. Sadewasser, N. Ott, H. P. Strunk, U. Rau, and J. H. Werner, “Texture and electronic activity of grain boundaries in Cu(In,Ga)Se 2 thin films,” Appl Phys A Mater Sci Process, vol. 82, no. 1, pp. 1–7, 2006.
  • [31] R. Krishnan, M. Riley, S. Lee, and T. M. Lu, “Formation of biaxially textured molybdenum thin films under the influence of recrystallization conditions,” Thin Solid Films, vol. 519, no. 16, pp. 5429–5432, 2011.
  • [32] M. L. Lobanov, S. V. Danilov, V. I. Pastukhov, S. A. Averin, Y. Y. Khrunyk, and A. A. Popov, “The crystallographic relationship of molybdenum textures after hot rolling and recrystallization,” Materials and Design, vol. 109, no. July, pp. 251–255, 2016.
  • [33] A. B. Jain, Y. R. Toda, and D. N. Gujarathi, “Structural and Electrical properties of Thermally Evaporated Nanostructured CuInSe Thin Films,” vol. 9, no. 2, pp. 19–26, 2017.
  • [34] M. A. Contreras, B. Egaas, K. Raöanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, “Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells,” Progress in Photovoltaics: Research and Applications, vol. 7, no.4, pp. 311–316, 1999.
  • [35] A. Slobodskyy, T. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1-x Gax Se2 film for solar cells, structural and optical characterization,” Applied Physics Letters, vol. 97, no. 25, Dec. 2010.
  • [36] Y. M. Xue, B. H. Yang, C. Q. Qu, L. Zhang, C. M. Xu, and Y. Sun, “Structural and electrical properties of co-evaporated In, Ga rich CIGS thin films,” Optoelectronics Letters, vol. 4, no. 6, pp. 0437–0439, Nov. 2008.
  • [37] R. Caballero, C. A. Kaufmann, T. Eisenbarth, T. Unold, S. Schorr, R. Hesse, R. Klenk, and H. W. Schock “The effect of NaF precursors on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Physica Status Solidi (A) Applications and Materials Science, vol. 206, no. 5, pp. 1049–1053, May 2009.
  • [38] D.H. Cho, Y.-D. Chung, K.-S. Lee, J.-H. Kim, S.-J. Park, and J. Kim, “Control of Na diffusion from soda-lime glass and NaF film into Cu(In,Ga)Se2 for thin-film solar cells,”, pp. 1–4, 2014.
  • [39] H. Wang, Z. Yang, X. L. Kou, Y. A. Cai, W. Liu, T. Yu, J. B. Pang, C. J. Li, and Y. Sun “Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process,” Semiconductor Science and Technology, vol. 25, no. 5, 2010.
  • [40] D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla, and A. N. Tiwari, “Microstructural and chemical studies of interfaces between Cu(In,Ga) Se 2 and In 2 S 3 layers,” J Appl Phys, vol. 97, no. 8, pp. 084908, 2005.
  • [41] B. K. H. Al-Maiyaly, I. H. Khudayer, A. H. A. Alrazak, “Effect of Thickness on the Electrical Conductivity and Hall Effect Measurements of (CIGS) Films” Ibn Al- Haitham jour. For pure and Appl. Science, vol.27, no.3, pp. 300-308, 2014.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Celal Alp Yavru 0000-0003-4932-0382

Murat Kaleli 0000-0002-3290-2020

İsmail Serkan Üncü 0000-0003-4345-761X

Publication Date January 30, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Yavru, C. A., Kaleli, M., & Üncü, İ. S. (2025). Aynı Anda Buharlaştırma Yöntemiyle Üretilen CIGS İnce Filmlerin Yapısal Özelliklerinin İncelenmesi ve Kutup Figürlerinin Belirlenmesi. Duzce University Journal of Science and Technology, 13(1), 1-12. https://doi.org/10.29130/dubited.1121646
AMA Yavru CA, Kaleli M, Üncü İS. Aynı Anda Buharlaştırma Yöntemiyle Üretilen CIGS İnce Filmlerin Yapısal Özelliklerinin İncelenmesi ve Kutup Figürlerinin Belirlenmesi. DUBİTED. January 2025;13(1):1-12. doi:10.29130/dubited.1121646
Chicago Yavru, Celal Alp, Murat Kaleli, and İsmail Serkan Üncü. “Aynı Anda Buharlaştırma Yöntemiyle Üretilen CIGS İnce Filmlerin Yapısal Özelliklerinin İncelenmesi Ve Kutup Figürlerinin Belirlenmesi”. Duzce University Journal of Science and Technology 13, no. 1 (January 2025): 1-12. https://doi.org/10.29130/dubited.1121646.
EndNote Yavru CA, Kaleli M, Üncü İS (January 1, 2025) Aynı Anda Buharlaştırma Yöntemiyle Üretilen CIGS İnce Filmlerin Yapısal Özelliklerinin İncelenmesi ve Kutup Figürlerinin Belirlenmesi. Duzce University Journal of Science and Technology 13 1 1–12.
IEEE C. A. Yavru, M. Kaleli, and İ. S. Üncü, “Aynı Anda Buharlaştırma Yöntemiyle Üretilen CIGS İnce Filmlerin Yapısal Özelliklerinin İncelenmesi ve Kutup Figürlerinin Belirlenmesi”, DUBİTED, vol. 13, no. 1, pp. 1–12, 2025, doi: 10.29130/dubited.1121646.
ISNAD Yavru, Celal Alp et al. “Aynı Anda Buharlaştırma Yöntemiyle Üretilen CIGS İnce Filmlerin Yapısal Özelliklerinin İncelenmesi Ve Kutup Figürlerinin Belirlenmesi”. Duzce University Journal of Science and Technology 13/1 (January 2025), 1-12. https://doi.org/10.29130/dubited.1121646.
JAMA Yavru CA, Kaleli M, Üncü İS. Aynı Anda Buharlaştırma Yöntemiyle Üretilen CIGS İnce Filmlerin Yapısal Özelliklerinin İncelenmesi ve Kutup Figürlerinin Belirlenmesi. DUBİTED. 2025;13:1–12.
MLA Yavru, Celal Alp et al. “Aynı Anda Buharlaştırma Yöntemiyle Üretilen CIGS İnce Filmlerin Yapısal Özelliklerinin İncelenmesi Ve Kutup Figürlerinin Belirlenmesi”. Duzce University Journal of Science and Technology, vol. 13, no. 1, 2025, pp. 1-12, doi:10.29130/dubited.1121646.
Vancouver Yavru CA, Kaleli M, Üncü İS. Aynı Anda Buharlaştırma Yöntemiyle Üretilen CIGS İnce Filmlerin Yapısal Özelliklerinin İncelenmesi ve Kutup Figürlerinin Belirlenmesi. DUBİTED. 2025;13(1):1-12.