Research Article
BibTex RIS Cite

Önceden Eğitilmiş Bilgi Grafik Gömme Yöntemleri Kullanılarak ALS Tedavisi için İlaç Yeniden Kullanımı Üzerine Bir Çalışma: Yöntemler ve Bulgular

Year 2025, Volume: 13 Issue: 1, 317 - 332, 30.01.2025
https://doi.org/10.29130/dubited.1507832

Abstract

Bu çalışmada, ALS hastalığının tedavisinde ilaç yeniden kullanımı amacıyla önceden eğitilmiş bilgi grafik yerleştirmesi kullanılarak bir çalışma yapılmış ve sonuçları sunulmuştur. İki ana yöntemle, yani hastalık ve ilaç ilişkisi ile genler ve ilaçlar üzerinden, ALS için ilaç yeniden kullanımı çalışmaları gerçekleştirilmiştir. DRKG (Drug Repurposing Knowledge Graph) üzerinde hastalık ve ilaç varlıkları arasındaki bağlantılar tahmin edilerek ALS için ilaç yeniden kullanımı önerileri sunulmuştur. Çalışma sonucunda elde edilen bulgular, Drugbank üzerinden elde edilen klinik deneme ilaçları listesi ile karşılaştırılarak değerlendirilmiştir. DRKG, genleri, bileşikleri, hastalıkları, biyolojik süreçleri, yan etkileri ve semptomları içeren geniş kapsamlı bir biyolojik bilgi grafiği olarak kullanılmıştır. Bu grafik, ALS hastalığı ile ilgili bilgilerin çıkarılmasında etkili bir kaynak olmuştur. İlaç yeniden kullanımı çalışmalarında, hastalık-ilaç ilişkisi üzerinden elde edilen ilaçlar, ALS ile ilişkilendirilmiş klinik deneme ilaçları listesiyle karşılaştırılmış ve önemli sonuçlar elde edilmiştir. Ayrıca, gen- ilaç ilişkisi üzerinden yapılan çalışmalarda, ALS ile ilişkilendirilmiş genler ve bu genlerle ilişkilendirilmiş ilaçlar arasındaki etkileşimler incelenmiştir. Çalışmanın elde ettiği sonuçlar, DRKG' nin ALS tedavisinde potansiyel terapötik etkilere sahip ilaçları belirlemede etkili bir kaynak olduğunu göstermektedir. Elde edilen bulgular, ilaç yeniden kullanımı çalışmalarının ALS hastalığının tedavisinde yeni ve etkili çözümler sunabileceği konusunda önemli bir adım olarak değerlendirilebilir.

References

  • [1] Z. Yildirim, D. N. Toktaş, Ö. Demir, G. Zülfiye, and B. Ş. Utsukarçi, "Amyotrofik Lateral Skleroz Patofizyolojisi ve Tedavi Yaklaşımları," Hacettepe University Journal of the Faculty of Pharmacy, vol. 43, no. 1, pp. 50-69, 2023.
  • [2] F. Kamel, D. M. Umbach, L. Stallone, M. Richards, H. Hu, and D. P. Sandler, "Association of lead exposure with survival in amyotrophic lateral sclerosis," Environmental Health Perspectives, vol. 116, no. 7, pp. 943-947, 2008.
  • [3] F. Özcan, A. Kaya, and M. E. Yayla, "Amyotrofik lateral skleroz hastalığı ve aile hekiminin rolü," Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, vol. 3, no. 3, pp. 431-435, 2016.
  • [4] A. D. Marangoz and Ç. Erdoğan, "Amyotrofik lateral skleroz (ALS) hastalığının patogenezi," Pamukkale Medical Journal, vol. 13, no. 2, pp. 477-484, 2020.
  • [5] S. Byrne et al., "Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis," Journal of Neurology, Neurosurgery & Psychiatry, 2010.
  • [6] V. N. Ioannidis et al., "Drkg-drug repurposing knowledge graph for covid-19," arXiv preprint arXiv:2010.09600, 2020. [Online]. Available: https://github.com/gnn4dr/DRKG/tree/master?tab=readme-ov-file#drkg-dataset.
  • [7] İ. N. Çelik, F. K. Arslan, R. Tunç, and İ. Yıldız, "İlaç Keşfi ve Geliştirilmesinde Yapay Zekâ," Journal of Faculty of Pharmacy of Ankara University, vol. 45, no. 2, pp. 400-427, 2021.
  • [8] H. S. Chan, H. Shan, T. Dahoun, H. Vogel, and S. Yuan, "Advancing drug discovery via artificial intelligence," Trends in pharmacological sciences, vol. 40, no. 8, pp. 592-604, 2019.
  • [9] B. M. Kuenzi et al., "Predicting drug response and synergy using a deep learning model of human cancer cells," Cancer cell, vol. 38, no. 5, pp. 672-684. e6, 2020.
  • [10] H. Kanberiz, "Derin öğrenme ile ilaç moleküllerinin aktivitelerinin sınıflandırılması," Sağlık Bilimleri Enstitüsü.
  • [11] DrugBank. "DrugBank Online." https://go.drugbank.com (accessed 27 January 2024, 2024).
  • [12] H. Zhu, "Big data and artificial intelligence modeling for drug discovery," Annual review of pharmacology and toxicology, vol. 60, pp. 573-589, 2020.
  • [13] R. Gramatica, T. Di Matteo, S. Giorgetti, M. Barbiani, D. Bevec, and T. Aste, "Graph theory enables drug repurposing–how a mathematical model can drive the discovery of hidden mechanisms of action," PloS one, vol. 9, no. 1, p. e84912, 2014.
  • [14] L. Udrescu et al., "Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing," Scientific reports, vol. 6, no. 1, p. 32745, 2016.
  • [15] Y. Zhou, Y. Hou, J. Shen, Y. Huang, W. Martin, and F. Cheng, "Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2," Cell discovery, vol. 6, no. 1, p. 14, 2020.
  • [16] V. N. Ioannidis, D. Zheng, and G. Karypis, "Few-shot link prediction via graph neural networks for covid-19 drug-repurposing," arXiv preprint arXiv:2007.10261, 2020.
  • [17] X. Zeng et al., "Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework," Nature Machine Intelligence, vol. 4, no. 11, pp. 1004-1016, 2022/11/01 2022, doi: 10.1038/s42256-022-00557-6.
  • [18] Z. Wang et al., "Advanced graph and sequence neural networks for molecular property prediction and drug discovery," Bioinformatics, vol. 38, no. 9, pp. 2579-2586, 2022, doi: 10.1093/bioinformatics/btac112.
  • [19] K.-L. Hsieh, G. Plascencia-Villa, K.-H. Lin, G. Perry, X. Jiang, and Y. Kim, "Synthesize heterogeneous biological knowledge via representation learning for Alzheimer’s disease drug repurposing," Iscience, vol. 26, no. 1, 2023. [20] Y. Qiu and F. Cheng, "Artificial intelligence for drug discovery and development in Alzheimer's disease," Current Opinion in Structural Biology, vol. 85, p. 102776, 2024.
  • [21] V. N. a. S. Ioannidis, Xiang and Manchanda, Saurav and Li, Mufei and Pan, Xiaoqin and Zheng, Da and Ning, Xia and Zeng, Xiangxiang and Karypis, George. "DRKG - Drug Repurposing Knowledge Graph for Covid-19." https://github.com/gnn4dr/DRKG/ (accessed 15 January 2024, 2024).
  • [22] H. T. Gümüş and C. Eyüpoğlu, "Grafik Sinir Ağlarına Genel Bir Bakış," EMO Bilimsel Dergi, vol. 13, no. 2, pp. 39-56, 2023.
  • [23] J. Zhou et al., "Graph neural networks: A review of methods and applications," AI open, vol. 1, pp. 57-81, 2020.

Study on Drug Repurposing for ALS Treatment Using Pre-trained Knowledge Graph Embeddings: Methods and Findings

Year 2025, Volume: 13 Issue: 1, 317 - 332, 30.01.2025
https://doi.org/10.29130/dubited.1507832

Abstract

In this study, research has been conducted using pre-trained knowledge graph embedding for drug repurposing in treating ALS (Amyotrophic Lateral Sclerosis), and its results have been presented. Drug repurposing studies for ALS have been carried out through two main methods: disease-drug relationship and genes-drugs relationship. Drug repurposing recommendations for ALS have been provided by predicting connections between disease and drug entities on the DRKG (Drug Repurposing Knowledge Graph). The findings obtained from the study have been evaluated by comparing them with the list of clinical trial drugs obtained from Drugbank. DRKG has been utilized as a comprehensive biological knowledge graph containing genes, compounds, diseases, biological processes, side effects, and symptoms. This graph has proven to be an effective resource for extracting information related to ALS disease. In drug repurposing studies, drugs obtained through disease-drug relationships have been compared with the list of clinical trial drugs associated with ALS, yielding significant results. Additionally, interactions between genes associated with ALS and drugs related to these genes have been examined in studies conducted through gene-drug relationships. The results obtained from the study demonstrate that DRKG is an effective resource for identifying drugs with potential therapeutic effects in the treatment of ALS. The findings suggest that drug repurposing studies could offer new and effective solutions for the treatment of ALS, marking a significant step forward in this regard.

References

  • [1] Z. Yildirim, D. N. Toktaş, Ö. Demir, G. Zülfiye, and B. Ş. Utsukarçi, "Amyotrofik Lateral Skleroz Patofizyolojisi ve Tedavi Yaklaşımları," Hacettepe University Journal of the Faculty of Pharmacy, vol. 43, no. 1, pp. 50-69, 2023.
  • [2] F. Kamel, D. M. Umbach, L. Stallone, M. Richards, H. Hu, and D. P. Sandler, "Association of lead exposure with survival in amyotrophic lateral sclerosis," Environmental Health Perspectives, vol. 116, no. 7, pp. 943-947, 2008.
  • [3] F. Özcan, A. Kaya, and M. E. Yayla, "Amyotrofik lateral skleroz hastalığı ve aile hekiminin rolü," Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, vol. 3, no. 3, pp. 431-435, 2016.
  • [4] A. D. Marangoz and Ç. Erdoğan, "Amyotrofik lateral skleroz (ALS) hastalığının patogenezi," Pamukkale Medical Journal, vol. 13, no. 2, pp. 477-484, 2020.
  • [5] S. Byrne et al., "Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis," Journal of Neurology, Neurosurgery & Psychiatry, 2010.
  • [6] V. N. Ioannidis et al., "Drkg-drug repurposing knowledge graph for covid-19," arXiv preprint arXiv:2010.09600, 2020. [Online]. Available: https://github.com/gnn4dr/DRKG/tree/master?tab=readme-ov-file#drkg-dataset.
  • [7] İ. N. Çelik, F. K. Arslan, R. Tunç, and İ. Yıldız, "İlaç Keşfi ve Geliştirilmesinde Yapay Zekâ," Journal of Faculty of Pharmacy of Ankara University, vol. 45, no. 2, pp. 400-427, 2021.
  • [8] H. S. Chan, H. Shan, T. Dahoun, H. Vogel, and S. Yuan, "Advancing drug discovery via artificial intelligence," Trends in pharmacological sciences, vol. 40, no. 8, pp. 592-604, 2019.
  • [9] B. M. Kuenzi et al., "Predicting drug response and synergy using a deep learning model of human cancer cells," Cancer cell, vol. 38, no. 5, pp. 672-684. e6, 2020.
  • [10] H. Kanberiz, "Derin öğrenme ile ilaç moleküllerinin aktivitelerinin sınıflandırılması," Sağlık Bilimleri Enstitüsü.
  • [11] DrugBank. "DrugBank Online." https://go.drugbank.com (accessed 27 January 2024, 2024).
  • [12] H. Zhu, "Big data and artificial intelligence modeling for drug discovery," Annual review of pharmacology and toxicology, vol. 60, pp. 573-589, 2020.
  • [13] R. Gramatica, T. Di Matteo, S. Giorgetti, M. Barbiani, D. Bevec, and T. Aste, "Graph theory enables drug repurposing–how a mathematical model can drive the discovery of hidden mechanisms of action," PloS one, vol. 9, no. 1, p. e84912, 2014.
  • [14] L. Udrescu et al., "Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing," Scientific reports, vol. 6, no. 1, p. 32745, 2016.
  • [15] Y. Zhou, Y. Hou, J. Shen, Y. Huang, W. Martin, and F. Cheng, "Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2," Cell discovery, vol. 6, no. 1, p. 14, 2020.
  • [16] V. N. Ioannidis, D. Zheng, and G. Karypis, "Few-shot link prediction via graph neural networks for covid-19 drug-repurposing," arXiv preprint arXiv:2007.10261, 2020.
  • [17] X. Zeng et al., "Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework," Nature Machine Intelligence, vol. 4, no. 11, pp. 1004-1016, 2022/11/01 2022, doi: 10.1038/s42256-022-00557-6.
  • [18] Z. Wang et al., "Advanced graph and sequence neural networks for molecular property prediction and drug discovery," Bioinformatics, vol. 38, no. 9, pp. 2579-2586, 2022, doi: 10.1093/bioinformatics/btac112.
  • [19] K.-L. Hsieh, G. Plascencia-Villa, K.-H. Lin, G. Perry, X. Jiang, and Y. Kim, "Synthesize heterogeneous biological knowledge via representation learning for Alzheimer’s disease drug repurposing," Iscience, vol. 26, no. 1, 2023. [20] Y. Qiu and F. Cheng, "Artificial intelligence for drug discovery and development in Alzheimer's disease," Current Opinion in Structural Biology, vol. 85, p. 102776, 2024.
  • [21] V. N. a. S. Ioannidis, Xiang and Manchanda, Saurav and Li, Mufei and Pan, Xiaoqin and Zheng, Da and Ning, Xia and Zeng, Xiangxiang and Karypis, George. "DRKG - Drug Repurposing Knowledge Graph for Covid-19." https://github.com/gnn4dr/DRKG/ (accessed 15 January 2024, 2024).
  • [22] H. T. Gümüş and C. Eyüpoğlu, "Grafik Sinir Ağlarına Genel Bir Bakış," EMO Bilimsel Dergi, vol. 13, no. 2, pp. 39-56, 2023.
  • [23] J. Zhou et al., "Graph neural networks: A review of methods and applications," AI open, vol. 1, pp. 57-81, 2020.
There are 22 citations in total.

Details

Primary Language English
Subjects Deep Learning
Journal Section Articles
Authors

Selcan Yalkızımı 0000-0002-1827-9439

Ümit Şentürk 0000-0001-9610-9550

Publication Date January 30, 2025
Submission Date July 3, 2024
Acceptance Date October 20, 2024
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Yalkızımı, S., & Şentürk, Ü. (2025). Study on Drug Repurposing for ALS Treatment Using Pre-trained Knowledge Graph Embeddings: Methods and Findings. Duzce University Journal of Science and Technology, 13(1), 317-332. https://doi.org/10.29130/dubited.1507832
AMA Yalkızımı S, Şentürk Ü. Study on Drug Repurposing for ALS Treatment Using Pre-trained Knowledge Graph Embeddings: Methods and Findings. DUBİTED. January 2025;13(1):317-332. doi:10.29130/dubited.1507832
Chicago Yalkızımı, Selcan, and Ümit Şentürk. “Study on Drug Repurposing for ALS Treatment Using Pre-Trained Knowledge Graph Embeddings: Methods and Findings”. Duzce University Journal of Science and Technology 13, no. 1 (January 2025): 317-32. https://doi.org/10.29130/dubited.1507832.
EndNote Yalkızımı S, Şentürk Ü (January 1, 2025) Study on Drug Repurposing for ALS Treatment Using Pre-trained Knowledge Graph Embeddings: Methods and Findings. Duzce University Journal of Science and Technology 13 1 317–332.
IEEE S. Yalkızımı and Ü. Şentürk, “Study on Drug Repurposing for ALS Treatment Using Pre-trained Knowledge Graph Embeddings: Methods and Findings”, DUBİTED, vol. 13, no. 1, pp. 317–332, 2025, doi: 10.29130/dubited.1507832.
ISNAD Yalkızımı, Selcan - Şentürk, Ümit. “Study on Drug Repurposing for ALS Treatment Using Pre-Trained Knowledge Graph Embeddings: Methods and Findings”. Duzce University Journal of Science and Technology 13/1 (January 2025), 317-332. https://doi.org/10.29130/dubited.1507832.
JAMA Yalkızımı S, Şentürk Ü. Study on Drug Repurposing for ALS Treatment Using Pre-trained Knowledge Graph Embeddings: Methods and Findings. DUBİTED. 2025;13:317–332.
MLA Yalkızımı, Selcan and Ümit Şentürk. “Study on Drug Repurposing for ALS Treatment Using Pre-Trained Knowledge Graph Embeddings: Methods and Findings”. Duzce University Journal of Science and Technology, vol. 13, no. 1, 2025, pp. 317-32, doi:10.29130/dubited.1507832.
Vancouver Yalkızımı S, Şentürk Ü. Study on Drug Repurposing for ALS Treatment Using Pre-trained Knowledge Graph Embeddings: Methods and Findings. DUBİTED. 2025;13(1):317-32.