Research Article
BibTex RIS Cite

Beyin Tümörü Sınıflandırması için Görü Dönüştürücü ve Transfer Öğrenmenin Karşılaştırmalı Analizi

Year 2025, Volume: 13 Issue: 1, 558 - 572, 30.01.2025
https://doi.org/10.29130/dubited.1521340

Abstract

Beyin tümörlerinin doğru sınıflandırılması, nöro-onkolojide tedavi planlarını yönlendirmek ve hasta sonuçlarını iyileştirmek için kritik öneme sahiptir. Bu çalışmada, Manyetik Rezonans (MR) görüntüleri kullanılarak Vision Transformers (ViTs) yönteminin beyin tümörlerinin ikili sınıflandırmasındaki etkinliği araştırılmış ve VGG16, VGG19 ve ResNet50 gibi CNN tabanlı modellerle karşılaştırılmıştır. Doğruluk, kesinlik, duyarlılık ve F1-skoru gibi kapsamlı değerlendirme metrikleri, ViTs’in üstün performansını ortaya koymuştur; ViTs, %92,59 doğrulukla VGG16 (%85,19), VGG19 (%74,04) ve ResNet50'yi (%88,89) geride bırakmıştır. Bu bulgular, ViTs’in nöro-onkolojide tanısal doğruluğu artıran ve hasta bakımını iyileştiren dönüştürücü bir araç olarak klinik uygulamalara entegrasyonu için umut vadeden bir yöntem olduğunu göstermektedir.

References

  • [1] L. M. DeAngelis, "Brain tumors," New England journal of medicine, vol. 344, no. 2, pp. 114-123, 2001.
  • [2] J. H. Sampson, M. D. Gunn, P. E. Fecci, and D. M. Ashley, "Brain immunology and immunotherapy in brain tumours," Nature Reviews Cancer, vol. 20, no. 1, pp. 12-25, 2020.
  • [3] G. S. Tandel, A. Balestrieri, T. Jujaray, N. N. Khanna, L. Saba, and J. S. Suri, "Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm," Computers in Biology and Medicine, vol. 122, p. 103804, 2020.
  • [4] R. Mehrotra, M. Ansari, R. Agrawal, and R. Anand, "A transfer learning approach for AI-based classification of brain tumors," Machine Learning with Applications, vol. 2, p. 100003, 2020.
  • [5] R. Ranjbarzadeh, A. Caputo, E. B. Tirkolaee, S. J. Ghoushchi, and M. Bendechache, "Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools," Computers in biology and medicine, vol. 152, p. 106405, 2023.
  • [6] W. Ayadi, W. Elhamzi, I. Charfi, and M. Atri, "Deep CNN for brain tumor classification," Neural processing letters, vol. 53, pp. 671-700, 2021.
  • [7] Ş. Öztürk and U. Özkaya, "Skin lesion segmentation with improved convolutional neural network," Journal of digital imaging, vol. 33, pp. 958-970, 2020.
  • [8] O. Dikmen, "Deep Learning Models for the Detection and Classification of COVID-19 and Associated Lung Diseases Using X-Ray Images," Artificial Intelligence Theory and Applications, vol. 4, no. 2, pp. 121-142, 2024.
  • [9] A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929, 2020.
  • [10] S. Charfi, R. Lahmyed, and L. Rangarajan, "A novel approach for brain tumor detection using neural network," International Journal of Research in Engineering and Technology, vol. 2, no. 7, pp. 93-104, 2014.
  • [11] M. Nazir, F. Wahid, and S. Ali Khan, "A simple and intelligent approach for brain MRI classification," Journal of Intelligent & Fuzzy Systems, vol. 28, no. 3, pp. 1127-1135, 2015.
  • [12] N. Vani, A. Sowmya, and N. Jayamma, "Brain tumor classification using support vector machine," International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 7, pp. 792-796, 2017.
  • [13] T. Gupta, T. K. Gandhi, R. Gupta, and B. K. Panigrahi, "Classification of patients with tumor using MR FLAIR images," Pattern Recognition Letters, vol. 139, pp. 112-117, 2020.
  • [14] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251-1258.
  • [15] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning transferable architectures for scalable image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8697-8710.
  • [16] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700-4708.
  • [17] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, "Inception-v4, inception-resnet and the impact of residual connections on learning," in Thirty-First AAAI Conference on Artificial Intelligence, 2017.
  • [18] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
  • [19] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv preprint arXiv:1609.04747, 2016.
  • [20] S. Asif, W. Yi, Q. U. Ain, J. Hou, T. Yi, and J. Si, "Improving effectiveness of different deep transfer learning-based models for detecting brain tumors from MR images," IEEE Access, vol. 10, pp. 34716-34730, 2022.
  • [21] S. Shilaskar, T. Mahajan, S. Bhatlawande, S. Chaudhari, R. Mahajan, and K. Junnare, "Machine Learning Based Brain Tumor Detection and Classification using HOG Feature Descriptor," in 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), 2023, pp. 67-75: IEEE.
  • [22] P. Pilaoon, N. Maneerat, A. Nakthewan, R. Varakulsiripunth, and K. Hamamoto, "Brain Tumor Classification using Pretrained Deep Convolutional Neural Network," in 2023 9th International Conference on Engineering, Applied Sciences, and Technology (ICEAST), 2023, pp. 84-88: IEEE.
  • [23] R. Dhaniya and K. Umamaheswari, "CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification," Intelligent Automation & Soft Computing, vol. 37, no. 1, 2023.
  • [24] N. Chakrabarty. (2019). Brain MRI Images Dataset for Brain Tumor Detection [Online]. Available: https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
  • [25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition, 2009, pp. 248-255: Ieee.
  • [26] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
  • [27] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
  • [28] I. Loshchilov and F. Hutter, "Decoupled weight decay regularization," arXiv preprint arXiv:1711.05101, 2017.

A Comparative Analysis of Vision Transformers and Transfer Learning for Brain Tumor Classification

Year 2025, Volume: 13 Issue: 1, 558 - 572, 30.01.2025
https://doi.org/10.29130/dubited.1521340

Abstract

Accurate brain tumor classification is crucial in neuro-oncology for guiding treatment plans and improving patient outcomes. Leveraging the potential of Vision Transformers (ViTs), this study investigates their efficacy in binary classification of brain tumors using magnetic resonance (MR) images, comparing them to CNN-based models such as VGG16, VGG19, and ResNet50. Comprehensive evaluation using accuracy, precision, recall, and F1-score reveals ViTs’ superior performance, achieving 92.59% accuracy, surpassing VGG16 (85.19%), VGG19 (74.04%), and ResNet50 (88.89%). These findings highlight ViTs as a transformative tool for clinical adoption, enhancing diagnostic accuracy and patient care in neuro-oncology.

References

  • [1] L. M. DeAngelis, "Brain tumors," New England journal of medicine, vol. 344, no. 2, pp. 114-123, 2001.
  • [2] J. H. Sampson, M. D. Gunn, P. E. Fecci, and D. M. Ashley, "Brain immunology and immunotherapy in brain tumours," Nature Reviews Cancer, vol. 20, no. 1, pp. 12-25, 2020.
  • [3] G. S. Tandel, A. Balestrieri, T. Jujaray, N. N. Khanna, L. Saba, and J. S. Suri, "Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm," Computers in Biology and Medicine, vol. 122, p. 103804, 2020.
  • [4] R. Mehrotra, M. Ansari, R. Agrawal, and R. Anand, "A transfer learning approach for AI-based classification of brain tumors," Machine Learning with Applications, vol. 2, p. 100003, 2020.
  • [5] R. Ranjbarzadeh, A. Caputo, E. B. Tirkolaee, S. J. Ghoushchi, and M. Bendechache, "Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools," Computers in biology and medicine, vol. 152, p. 106405, 2023.
  • [6] W. Ayadi, W. Elhamzi, I. Charfi, and M. Atri, "Deep CNN for brain tumor classification," Neural processing letters, vol. 53, pp. 671-700, 2021.
  • [7] Ş. Öztürk and U. Özkaya, "Skin lesion segmentation with improved convolutional neural network," Journal of digital imaging, vol. 33, pp. 958-970, 2020.
  • [8] O. Dikmen, "Deep Learning Models for the Detection and Classification of COVID-19 and Associated Lung Diseases Using X-Ray Images," Artificial Intelligence Theory and Applications, vol. 4, no. 2, pp. 121-142, 2024.
  • [9] A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929, 2020.
  • [10] S. Charfi, R. Lahmyed, and L. Rangarajan, "A novel approach for brain tumor detection using neural network," International Journal of Research in Engineering and Technology, vol. 2, no. 7, pp. 93-104, 2014.
  • [11] M. Nazir, F. Wahid, and S. Ali Khan, "A simple and intelligent approach for brain MRI classification," Journal of Intelligent & Fuzzy Systems, vol. 28, no. 3, pp. 1127-1135, 2015.
  • [12] N. Vani, A. Sowmya, and N. Jayamma, "Brain tumor classification using support vector machine," International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 7, pp. 792-796, 2017.
  • [13] T. Gupta, T. K. Gandhi, R. Gupta, and B. K. Panigrahi, "Classification of patients with tumor using MR FLAIR images," Pattern Recognition Letters, vol. 139, pp. 112-117, 2020.
  • [14] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251-1258.
  • [15] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning transferable architectures for scalable image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8697-8710.
  • [16] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700-4708.
  • [17] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, "Inception-v4, inception-resnet and the impact of residual connections on learning," in Thirty-First AAAI Conference on Artificial Intelligence, 2017.
  • [18] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
  • [19] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv preprint arXiv:1609.04747, 2016.
  • [20] S. Asif, W. Yi, Q. U. Ain, J. Hou, T. Yi, and J. Si, "Improving effectiveness of different deep transfer learning-based models for detecting brain tumors from MR images," IEEE Access, vol. 10, pp. 34716-34730, 2022.
  • [21] S. Shilaskar, T. Mahajan, S. Bhatlawande, S. Chaudhari, R. Mahajan, and K. Junnare, "Machine Learning Based Brain Tumor Detection and Classification using HOG Feature Descriptor," in 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), 2023, pp. 67-75: IEEE.
  • [22] P. Pilaoon, N. Maneerat, A. Nakthewan, R. Varakulsiripunth, and K. Hamamoto, "Brain Tumor Classification using Pretrained Deep Convolutional Neural Network," in 2023 9th International Conference on Engineering, Applied Sciences, and Technology (ICEAST), 2023, pp. 84-88: IEEE.
  • [23] R. Dhaniya and K. Umamaheswari, "CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification," Intelligent Automation & Soft Computing, vol. 37, no. 1, 2023.
  • [24] N. Chakrabarty. (2019). Brain MRI Images Dataset for Brain Tumor Detection [Online]. Available: https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
  • [25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition, 2009, pp. 248-255: Ieee.
  • [26] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
  • [27] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
  • [28] I. Loshchilov and F. Hutter, "Decoupled weight decay regularization," arXiv preprint arXiv:1711.05101, 2017.
There are 28 citations in total.

Details

Primary Language English
Subjects Deep Learning, Classification Algorithms
Journal Section Articles
Authors

Ahmet Solak 0000-0002-5494-1987

Publication Date January 30, 2025
Submission Date July 24, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Solak, A. (2025). A Comparative Analysis of Vision Transformers and Transfer Learning for Brain Tumor Classification. Duzce University Journal of Science and Technology, 13(1), 558-572. https://doi.org/10.29130/dubited.1521340
AMA Solak A. A Comparative Analysis of Vision Transformers and Transfer Learning for Brain Tumor Classification. DUBİTED. January 2025;13(1):558-572. doi:10.29130/dubited.1521340
Chicago Solak, Ahmet. “A Comparative Analysis of Vision Transformers and Transfer Learning for Brain Tumor Classification”. Duzce University Journal of Science and Technology 13, no. 1 (January 2025): 558-72. https://doi.org/10.29130/dubited.1521340.
EndNote Solak A (January 1, 2025) A Comparative Analysis of Vision Transformers and Transfer Learning for Brain Tumor Classification. Duzce University Journal of Science and Technology 13 1 558–572.
IEEE A. Solak, “A Comparative Analysis of Vision Transformers and Transfer Learning for Brain Tumor Classification”, DUBİTED, vol. 13, no. 1, pp. 558–572, 2025, doi: 10.29130/dubited.1521340.
ISNAD Solak, Ahmet. “A Comparative Analysis of Vision Transformers and Transfer Learning for Brain Tumor Classification”. Duzce University Journal of Science and Technology 13/1 (January 2025), 558-572. https://doi.org/10.29130/dubited.1521340.
JAMA Solak A. A Comparative Analysis of Vision Transformers and Transfer Learning for Brain Tumor Classification. DUBİTED. 2025;13:558–572.
MLA Solak, Ahmet. “A Comparative Analysis of Vision Transformers and Transfer Learning for Brain Tumor Classification”. Duzce University Journal of Science and Technology, vol. 13, no. 1, 2025, pp. 558-72, doi:10.29130/dubited.1521340.
Vancouver Solak A. A Comparative Analysis of Vision Transformers and Transfer Learning for Brain Tumor Classification. DUBİTED. 2025;13(1):558-72.