Review
BibTex RIS Cite

Gelişmekte Olan Ülkelerin Hayvan Beslenmesinde Tuza Toleranslı Yem Bezelyesi Yetiştirmede Karşılaştıkları Zorluklar

Year 2025, Volume: 13 Issue: 1, 456 - 470, 30.01.2025
https://doi.org/10.29130/dubited.1524615

Abstract

Dünya nüfusunun hızla artması sonucu dengeli ve yeterli beslenme sorunu ortaya çıkmış ve bu noktada hayvansal üretimin önemi daha da artmıştır. Bu açıdan mevcut hayvanların yeterli ve dengeli beslenmeleri için meraların doğru yönetimi ve ıslah çalışmalarının yanında yem bitkileri ekim alanlarının artırılmasına da ihtiyaç vardır. Bu nedenle beslenme değeri yüksek ve hayvanlar tarafından tüketimi tercih edilen yem bezelyesi (Pisum sativum L.) bu ihtiyacı gidermek için önemli bir yem bitkisidir. Yem bezelyesi, yüksek düzeyde karbonhidrat ve sindirilebilir maddeler içermesi nedeniyle hayvan yemi olarak tüketime uygundur. Fakat yem bezelyesi için abiyotik stres faktörlerinden tuzluluk, önemli bir problemdir. Tuzluluk, bitkinin gelişimini önemli ölçüde sınırlamakta ve verim kayıplarına yol açmaktadır. İklim değişikliğinin ortaya çıkaracağı sonuçlar dünyanın birçok yerinde farklılık göstermekle birlikte, gelişmekte olan ülkelerde de, iklim değişikliği ile birlikte, yağışların azalacağı, sıcaklıkların artacağı, sel, kuraklık, tuzlu alanların artışı gibi durumların sıklığının ve şiddetinin artacağı tahmin edilmektedir. Ayrıca tuz stresi bitkilerde fotosentetik mekanizmayı da etkileyerek klorofil, karotenoid, fenolik ve antioksidan konsantrasyonunda da değişikliğe sebep olmaktadır. Tuzlu tarım arazilerinin ıslahı pahalı ve zor olduğu için tuzluluğa dayanıklı bitkilerin yetiştirilmesi daha uygundur. Bu nedenle, son yıllarda bitkilerin tuzluluk
toleranslarını geliştirmeye yönelik gen çalışmaları hız kazanmıştır. Bu derlemede, son 20 yıldır yapılan çalışmalar ele alınmıştır. Gen aktarılmış bezelyeler ve aktarılmamış bezelyelerin tuz toleransı, bitkilerin tuzlu ortamda gelişimleri prolin, klorofil, toplam fenolik ve antioksidan madde içeriği kıyaslanarak değerlendirilmiştir. Özet olarak, özellikle iklim değişikliği ile birlikte artacağı öngörülen kuraklık, çoraklık ve tuzluluk problemlerini ortaya koyulması amaçlanmaktadır. Böylece, yem bezelyesinin yetiştirilme alanlarının artırılması ve kaba yem ihtiyacı giderilmesi ve marjinal alanların üretimine kazandırılması konusuna ışık tutacaktır.

References

  • [1] W. Wang, Y. Liang, Z. Ru, H. Guo, and B. Zhao, " World forage import market: competitive structure and market forces," Agriculture, vol. 13, no. 9, pp. 1-18, 2023.
  • [2] Anonim. (2024, February 22). Morgor Intelligence. Forage Feed Market Trends: https://www.mordorintelligence.com/industry-reports/forage-feed-market/market-trends adresinden alındı.
  • [3] M. Tan, and H. Yolcu, "Current status of forage crops cultivation and strategies for the future in Turkey: a review," Journal of Agricultural Sciences, vol. 27, no. 2, pp. 114 - 121, 2021.
  • [4] Ö. Canbolat, K. C. Akbay, and A. Kamalak, " Possibilities of use of molasses as carbohydrate source in pea silages," KSU Journal Of Agriculture and Nature, vol. 22, no. 1, pp. 122-130, 2019.
  • [5] A. K. Verma, R. Singh, and P. Kumar, "Review on the role of animal husbandry in rural development," Journal of Rural Advancement, vol. 1, no. 1, pp. 62-69, 2012.
  • [6] Y. D. Saygı, and Ö. F. Alarslan, " Effects of roughage support practices on dairy cattle breeding in Yozgat region ," Journal of Veterinary Medicine, vol. 83, no. 2, ss. 25-35, 2012.
  • [7] E. Ateş, and A. S. Tekeli, " The effect of different based fertilizer applications on herbage yield and quality of fodder pea (pisum arvense L.), " KSU Journal Nature Science, vol. 20, pp. 13-16, 2017.
  • [8] O. Öztürk, C. Şen, and B. Aydın, " Comparative analysis of forage crops cultivation and pasture utilization habits of livestock enterprises," Journal of Field Crops Central Research Institute, vol. 28, no. 1, pp. 29-38, 2019.
  • [9] U. Özkan, " Comparative overview and evaluation of forage crops agriculture in Turkey," Turkish Journal of Agricultural Engineering Research, vol. 1, no. 1, pp. 29-43, 2020.
  • [10] K. Fuglie, M. Peters, and S. Burkart, "The extent and economic significance of cultivated forage crops in developing countries," Frontiers in Sustainable Food Systems, vol. 5, no. 712136, pp. 1-8, 2021.
  • [11] R. M. Simeao, D. D. Silva, F. C. Santos, L. Vilela, M. T. Silveira, A. C. Resende, and P. P. Albuquerque, "Adaptation and indication of forage crops for agricultural production in sandy soils in Western Bakia State, Brazil," Acta Scientiarum Agronomy, vol. 45, no. e56144, pp. 1-11, 2021.
  • [12] TÜİK. (2023, 05 20). Crop production statistics. Data Portal for Türkiye Statistics: https://biruni.tuik.gov.tr/medas/?locale=tr adresinden alındı [13] E. Koçak, "A review of the current status of forage crops cultivation and evaluation in Türkiye," Turkish Journal of Range and Forage Science, vol. 4, no. 2, pp. 59-65, 2023.
  • [14] G. Demirkol, N. Yılmaz, and Ö. Önal Aşcı, "Effects of salt stress on germination and seedling development in selected genotypes of fodder pea (pisum sativum ssp. arvense L.)," KSU Journal Of Agriculture and Nature, vol. 22, no. 3, pp. 354-359, 2019.
  • [15] D. T. Wu, W. X. Li, J. W. Wan, Y. C. Hu, R. Y. Gan, and L. Zou, "A comprehensive review of pea (pisum sativum L.) : chemical composition, processing, health benefits, and food applications," Foods, vol. 12, no. 2527, pp. 1-40, 2023.
  • [16] A. A. Mohamed, and A. A. Aly, "Alterations of some secondary metabolites and enzymes activity by using exogenus antioxidant compound in onion plants grown under sea water stress," American- Eurasion Journal of Scientific Research, vol. 3, no. 2, pp. 139-146, 2008.
  • [17] G. Aydın, "Effect of Osmyb4 gene expression on salinity tolerance of potato transformed with oryza sativa Osmyb4 gene," Anadolu Journal of Agricultural Sciences, vol. 35, pp. 115-123, 2020.
  • [18] T. Hirayama, and K. Shinozaki, "Research on plant abiotic stress responses in the past genome era: past, present and future", The Plant Journal, vol. 61, pp. 1041-1052, 2010.
  • [19] M. Arslan, S. Çetin, and C. Erdurmuş, " Negative effects of salt stress on plant growth and salinity tolerance of some forage crops," Journal of Agricultural Engineering, vol. 360, pp. 32-39, 2013.
  • [20] R. Kopecka, M. Kameniarova, M. Cerny, B. Brzobohaty, and J. Novak, "Abiotic stress in crop production," International Journal of Molecular Sciences, vol. 24, no. 6603, pp. 1-47, 2023.
  • [21] J. Kang, W. Xie, Y. Sun, Q. Yang, and M. Wu, "Identification of genes induced by salt stress from medicago truncatula L. seedlings," African Journal of Biotechnology, vol. 9, no. 45, pp. 7589-7594, 2010.
  • [22] Y. Bu, J. Kou, B. Sun, T. Takano, and S. Liu, "Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana," FEBS Letters, vol. 589, pp. 1308-1313, 2015.
  • [23] H. Korkmaz, and A. Durmaz, "Responses of plants to abiotic stress factors ", Gümüşhane University Journal of Science and Technology, vol. 7, no. 2, pp. 192-207, 2017.
  • [24] D. Rhodes, and P. J. Rich, "Preliminary genetic studies of the phenotype of betaine deficieny in Lea mays L.," Plant Physiology, vol. 88, pp. 102-108, 1988.
  • [25] M. H. Izadi, J. Rabbani, Y. Emam, A. Tahmasebi, and M. Pessarakli, "Effect of salinity stress on physiological performance of various wheat and barley cultivars," Journal of Plant Nutrition, vol. 37, pp. 520-531, 2014.
  • [26] İ. Tiryaki, "Adaptation mechanisms of some field crops to salt stress, " KSU Journal Of Agriculture and Nature, vol. 21, no. 5, pp. 800-808, 2018.
  • [27] K. M. Singh, R. P. Singh, A. K. Jha, and A. Kumar, “Understanding the fodder markets for sustainable development of livestock sector in bihar-a rapid appraisal approach.” New Delhi, 2012.
  • [28] S. Mizanbekova, A. Umbetaliev, A. Aitzhanova, and R. Aklybaev, "Priorities of mixed fodder production development in emerging countries: the case of Kazakhstan," Revista ESPACIOS 38 vol. 42, pp. 1-13, 2017.
  • [29] F. J. Carvalho, R. B. Elias, A. A. Silva, and T. S. Campos, "Sources and dosages of nitrogen applied with urea coated with polymers in marandu palisade grass", Revista Agrogeoambiental, vol. 10, no. 3, pp. 135-143, 2018.
  • [30] FAO. (2024, 04 01). Food and Agriculture Organization of the United Nations. Plant Genetic Resources of Forage Crops Pasture and Rangelands: , https://www.fao.org/agriculture/crops/thematic sitemap/theme/seeds-pgr/sow/sow2/tbs/en/ adresinden alındı.
  • [31] S. Amritkar, J. Chavan, A. Kakad, and M. Shaikh, "Phytochemical and pharmacological review of cynodon dactylon grass with its potential effects," Journal of Pharmaceutical and Biological Sciences, vol. 11, no. 2, pp. 112-116, 2023.
  • [32] E. Açıkgöz, “Forage Crops,” 3rd ed., vol. 182, Bursa: Uludag University Foundation Publishing House, 2001, pp. 584.
  • [33] M. A. Carmona, M. M. Oliveira, J. C. Martins, M. L. Cabral, J. A. Passarinho, M. L. Fernandes, . . . D. Crespo, "Avalıaçao da tolerancıa a salınıdade de especıes forrageıras,” Pastagens e Forragens, vol. 24, no. 25, pp. 85-96, 2003.
  • [34] S. Rehman, S. Nizam, S. Rubab, S. Bahadur, and X. Wei, "Evaluation of protein content in some fodder crops," Hamdard Medicus, vol. 66, no. 1, pp. 1-14, 2023.
  • [35] M. A. Lee, "A global comparison of the nutritive values of forage plants grown in contrasting environments," Journal of Plant Research, vol. 131, pp. 641-654, 2018.
  • [36] E. Çaçan, and K. Kökten, " Comparison of some alfalfa genotypes (medicago sativa L.) in terms of straw yiled and straw quality," Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences International Indexed & Refereed, vol. 8, no. 9, pp. 266-272, 2020.
  • [37] E. Çaçan, and S. İpekeşen, "Variation of some quality characteristics in silage corn according to different sowing times," International Journal of Food, Agriculture and Animal Sciences, vol. 1, no. 1, pp. 37-45, 2021.
  • [38] I. Inal, C. Yücel, D. Yücel, and R. Hatipoğlu, "Nutritive value and fodder potential of different sweet sorghum genotypes under mediterranean conditions," Turkish Journal of Field Crops, vol. 26, no. 1, pp. 1-7, 2021.
  • [39] S. Walter, J. Zehring, K. Mink, U. Quendt, K. Zocher, and S. Rohn, "Protein content of peas (pisum sativum) and beans (vicia faba)-influence of cultivation conditions," Journal of Food Composition and Analysis, vol. 105, no. 104257, pp. 1-9, 2022.
  • [40] R. Karayel, and H. Bozoğlu, "Tryptophane and raw protein contents of local pea (pisum sativum L.) lines for different sowing dates," Journal of Agricultural Science, vol. 21, pp. 337-345, 2015.
  • [41] S. Temel, B. Keskin, R. Tosun, and S. Çakmakçı, " Determination of herbage yield and quality performances in forage pea varieties sown as spring," Turkish Journal of Agricultural and Natural Sciences, vol. 8, c.2, pp. 411–419, 2021.
  • [42] F. Alatürk, Ç. Çınar, and A. Gökkuş, " Effects of different row spacings on yield and quality of some field pea cultivars," Turkish Journal of Agricultural and Natural Sciences, vol. 8, no. 1, pp. 53-57, 2021.
  • [43] H. Okkaoğlu, E. Ay, C. Büyükkileci, M. Akça Pelen, and H. Özpınar, " Effects of cutting times on dry matter yield and quality of field pea (pisum sativum spp. arvense L.), " ANADOLU Journal of Aegean Agricultural Research Institute, vol. 32, no. 2, pp. 253-263, 2022.
  • [44] E. Çaçan, M. Kaplan, K. Kökten and H. Tutar, "Evaluation of some forage pea (pisum sativum ssp. arvense L.) lines and cultivars in term of seed yield and straw quality", Journal of the Institute of Science and Technology, vol. 8, no. 2, pp. 275-284, 2018.
  • [45] A. Bakoğlu, K. Kökten, and Ö. Kılıç, "Yield and nutritive value of common vetch (vicia sativa L.) lines and varieties," Turkish Journal of Agricultural and Natural Sciences, vol. 3, no. 1, pp. 33-37, 2016.
  • [46] V. Mihailovic, and A. Mikic, "Ideotypes of forage pea (pisum sativum) cultivars," Quantitative Traits Breeding for Multifunctional Grasslands and Turf, pp. 183-186, 2014.
  • [47] A. Kotlarz, A. Sujak, W. Strobel, and W. Grzesiak, "Chemical composition and nutritive value of protein of the pea seeds effect of harvesting year and variety," Vegetable Crops Research Bulletin, vol. 75, pp. 57-69, 2011.
  • [48] P. Hara, M. Piekutowska, and G. Niedbala, "Prediction of protein content in pea (pisum sativum L.) seeds using artificial neural networks," Agriculture, vol. 13, no. 29, pp. 1-21, 2022.
  • [49] D. Janusauskaite, "Productivity of three pea (pisum sativum L.) varieties as influenced by nutrient supply and meteorological conditions in boreal environmental zone," Plants, vol. 12, no. 1938, pp. 1-14, 2023.
  • [50] L. Ouafi, F. Alane, H. Rahal Bouziane, and A. Abdelguerfi, "Agro-morphological diversity within field pea (pisum sativum L.) genotypes," African Journal of Agricultural Research, vol. 11, no. 40, pp. 4039-4047, 2016.
  • [51] B. Yazıcılar, M. Şimşek, İ. Bezirganoğlu, and D. İlhan, "DNA and protein content variations of Turkish pea (pisum sativum L.) genotypes," Journal of Agriculture, Food, Environment and Animal Sciences, vol. 2, no. 2, pp. 77-89, 2021.
  • [52] A. S. Tekeli, and E. Ateş, "Yield and its components in field pea (pisum arvense L.) lines", Journal of Central European Agriculture, vol. 4, no. 4, pp. 313-317, 2003.
  • [53] T. Yavuz, " The effects of different cutting stages on forage yield and quality in pea (pisum sativum L.) and oat (avena sativa L.) mixtures," Journal of Field Crops Central Research Institute, vol. 26, no. 1, pp. 67-74, 2017.
  • [54] A. Uzun, E. Açıkgöz, and H. Gün, "Yield and quality characteristics of some pea (pisum sativum L.) varieties harvested at different growing stages," Journal of Agricultural Faculty of Uludag University, vol. 26, no. 1, pp. 27-38, 2012.
  • [55] A. Doğru, and S. Canavar, " Physiological and biochemical components of salt tolerance in plants," Academic Platform Journal of Engineering and Science, vol. 8, no. 1, pp. 155-174, 2020.
  • [56] S. J. Roy, S. Negrao, and M. Tester, "Salt resistant crop plants," Current Opinion in Biotechnology, vol. 26, pp. 115-124, 2014.
  • [57] H. Zambi, and Ö. Önal Aşcı, " Effect of NaCl stress on chlorophyll and mineral content of forage pea," International Journal of Agriculture and Wildlife Science, vol. 6, no. 3, pp. 562-569, 2020.
  • [58] H. Upadhyay, A. Juneja, H. Turabieh, S. Malik, A. Gupta, Z. K. Bitsue and C. Upadhyay, "Exploration of crucial factors involved in plants development using the fuzzy AHP method," Hindawi, pp. 1-9, 2022.
  • [59] M. Y. Orcan, and P. Orcan, "Effect of Na, Mg, Ca chloride salts on mineral element, proline and total protein content in rice (oryza sativa L.) grown in vitro," International Journal of Secondary Metabolite, vol. 11, no. 1, pp. 144-156, 2024.
  • [60] B. Nedjimi, Z. E. Souissi, B. Guit, and Y. Daoud, “Differential effects of soluble salts on seed germination of Marrubium vulgare L.” Journal of Applied Research on Medicinal and Aromatic Plants, vol. 17, no. 100250, pp. 1-6, 2020.
  • [61] O. Borsani, V. Valpuesta, and M. A. Botella, "Developing salt tolerant plants in a new century: a molecular biology approach," Plant Cell Tissue and Organ Culture, pp. 101-115, 2003.
  • [62] H. Kuduğ, " DNA applications in agricultural biotechnology, " Journal of Gaziosmanpasa Scientific Research, c. 8, s. 2, ss. 1-10, 2019.
  • [63] J. Krasensky, and C. Jonak, "Drought, salt and temperature stres induced metabolic rearrangements and regulatory networks", Journal of Experimental Botany, vol. 63, no. 4, pp. 1593-1608, 2012.
  • [64] M. Liu, T. Z. Wang, and W. H. Zhang, "Sodium extrusion associated with enhanced expression of SOS1 underlines different salt tolerance between Medicago falcata and Medicago truncatula seedlings," Environmental and Experimental Botany, pp. 46-55, 2015.
  • [65] S. Yokoi, R. A. Bressan, and P. M. Hasegawa, "Salt stress tolerance of plants", JIRCAS Working Report, pp. 25-33, 2002.
  • [66] E. Yılmaz, A. L. Tuna, and B. Bürün, "Tolerance strategies developed by plants to the effects of salt stress," C.B.U. Journal of Science, vol. 7, no. 1, pp. 47-66, 2011.
  • [67] S. Romo, E. Labrador, and B. Dopico, "Water stress regulated gene expression in Cicer arietinum seedlings and plants," Plant Physiology and Biochemistry, pp. 1017-1026, 2001.
  • [68] G. Aydın, M. Yücel, M. T. Chan, and H. A. Öktem, "Evaluation of abiotic stress tolerance and physiological characteristics of potato (solanum tuberosum L. cv. Kennebec) that heterologously expresses the rice Osmyb4 gene," Plant Biotechnology Reports, pp. 295-304, 2014.
  • [69] C. Vannini, M. Iriti, M. Bracale, F. Locatelli, F. Faoro, P. Croce, . . . A. Genga, The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses,” Physiological and Molecular Plant Pathology, vol. 69, no. 1-3, pp. 26-42, 2006.
  • [70] A. Sakamoto, and N. Murata, "The role of glycine betaine in the protection of plants from stress: clues from transgenic plants," Plant, Cell and Environment vol. 25, pp. 163–171, 2002.
  • [71] Ö. Çelik, and S. G. Ünsal, "Expression analysis of proline metabolism-related genes in salt tolerant soybean mutant plants," Plant Omics Journal vol. 6, no. 5, pp. 364-370, 2013.
  • [72] A. Loudari, C. Benadis, R. Naciri, A. Soulaimani, Y. Zeroual, M. E. Gharous, . . . A. Oukarroum, "Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture," Journal of Plant Interactions, vol. 15, no. 1, pp. 398–405, 2020.
  • [73] V. D. Taffouo, A. H. Nouck, S. D. Dibong, and A. Amougou, "Effects of salinity stress on seedlings growth, mineral nutrients and total chlorophyll of some tomato (lycopersicum esculentum L.) cultivars", African Journal of Biotechnology, vol. 9, no. 33, pp. 5366-5372, 2010.
  • [74] M. A. Shahid, M. A. Pervez, R. M. Ballal, C. M. Ayyub, M. Ghazanfar, T. , Abbas, . . . A. Akram, "Effect of salt stress on growth, gas exchange attributes and chlorophyll contents of pea (pisum sativum)," African Journal of Agricultural Research, vol. 6, no. 27, pp.5808-5816, 2011.
  • [75] K. Taïbi, F. Taïbi, L. A. Abderrahim, A. Ennajah, M. Belkhodja, and J. M. Mulet, "Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in phaseolus vulgaris L.," South African Journal of Botany, vol. 105, pp. 306–312, 2016.
  • [76] G. Kaymak, and Z. Acar, "Determination of salinity tolerance levels of tedera (bituminaria bituminosa L.) genotypes," Anadolu Journal of Agricultural Sciences, vol. 35, pp. 51-58, 2020.
  • [77] F. Boughalleb, R. Abdellaout, M. Mahmoudi, and E. Backhshandeh, "Changes in phenolic profile, soluble sugar, proline, and antioxidant enzyme activities of polygonum equisetiforme in response to salinity," Turkish Journal of Botany, vol. 44, pp. 25-35, 2020.
  • [78] J. M. Ruiz, R. M. Rivero, I. Lo´pez-Cantarero, and L. Romero, "Role of Ca in the metabolism of phenolic compounds in tobacco leaves (nicotiana tabacum L.)," Plant Growth Regulation, vol. 41, pp. 173-177, 2003.
  • [79] S. Kıpçak, A. Ekincialp, Ç. Erdinç, E. Kabay, and S. Şensoy, " Effects of salt stress on some nutrient content and total antioxidant and total phenol content in different bean genotypes," Yuzuncu Yıl University Journal of Agricultural Sciences, vol. 29, no.1, pp. 136-144, 2019.
  • [80] M. R. Amirjani, "Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean," American Journal of Plant Physiology vol. 5, no. 6, pp. 350-360, 2020.

Developing Countries' Challenges in Cultivating Salt-Tolerant Fodder Peas for Animal Feed

Year 2025, Volume: 13 Issue: 1, 456 - 470, 30.01.2025
https://doi.org/10.29130/dubited.1524615

Abstract

As a result of the rapid increase in the world population, the problem of balanced and adequate nutrition has emerged, and the importance of animal production has increased even more. In this respect, to ensure sufficient and balanced nutrition of existing animals, there is a need to increase the cultivation areas of fodder crops and proper management of pastures and breeding studies. For this reason, fodder pea (Pisum sativum L.), which has high nutritional value and is preferred for animal consumption, is a vital fodder plant to meet this need. Fodder peas are suitable for consumption as animal feed because they contain high levels of carbohydrates and digestible substances. However, salinity, one of the abiotic stress factors, is an essential problem for fodder peas. Salinity significantly limits the development of the plant and leads to yield losses. Although the consequences of climate change vary in many parts of the world, it is predicted that the frequency and severity of conditions such as decreased precipitation, increased temperatures, floods, droughts, and increased saline areas will increase with climate change in developing countries. In addition, salt stress also affects the photosynthetic mechanism in plants and causes changes in chlorophyll, carotenoid, phenolic, and antioxidant concentrations. Since the reclamation of saline farmland is expensive and complex, it is more appropriate to grow salinity-resistant plants. Therefore, gene studies to improve the salinity tolerance of plants have gained momentum in recent years. In this review, studies conducted in the last 20 years are discussed. Salt tolerance in gene-transferred and non-transferred peas, as well as plant growth in a saline environment, were assessed by comparing proline, chlorophyll, total phenolic, and antioxidant levels. In summary, this study seeks to highlight the issues of drought, aridity, and salinity, all of which are expected to worsen as climate change progresses.

References

  • [1] W. Wang, Y. Liang, Z. Ru, H. Guo, and B. Zhao, " World forage import market: competitive structure and market forces," Agriculture, vol. 13, no. 9, pp. 1-18, 2023.
  • [2] Anonim. (2024, February 22). Morgor Intelligence. Forage Feed Market Trends: https://www.mordorintelligence.com/industry-reports/forage-feed-market/market-trends adresinden alındı.
  • [3] M. Tan, and H. Yolcu, "Current status of forage crops cultivation and strategies for the future in Turkey: a review," Journal of Agricultural Sciences, vol. 27, no. 2, pp. 114 - 121, 2021.
  • [4] Ö. Canbolat, K. C. Akbay, and A. Kamalak, " Possibilities of use of molasses as carbohydrate source in pea silages," KSU Journal Of Agriculture and Nature, vol. 22, no. 1, pp. 122-130, 2019.
  • [5] A. K. Verma, R. Singh, and P. Kumar, "Review on the role of animal husbandry in rural development," Journal of Rural Advancement, vol. 1, no. 1, pp. 62-69, 2012.
  • [6] Y. D. Saygı, and Ö. F. Alarslan, " Effects of roughage support practices on dairy cattle breeding in Yozgat region ," Journal of Veterinary Medicine, vol. 83, no. 2, ss. 25-35, 2012.
  • [7] E. Ateş, and A. S. Tekeli, " The effect of different based fertilizer applications on herbage yield and quality of fodder pea (pisum arvense L.), " KSU Journal Nature Science, vol. 20, pp. 13-16, 2017.
  • [8] O. Öztürk, C. Şen, and B. Aydın, " Comparative analysis of forage crops cultivation and pasture utilization habits of livestock enterprises," Journal of Field Crops Central Research Institute, vol. 28, no. 1, pp. 29-38, 2019.
  • [9] U. Özkan, " Comparative overview and evaluation of forage crops agriculture in Turkey," Turkish Journal of Agricultural Engineering Research, vol. 1, no. 1, pp. 29-43, 2020.
  • [10] K. Fuglie, M. Peters, and S. Burkart, "The extent and economic significance of cultivated forage crops in developing countries," Frontiers in Sustainable Food Systems, vol. 5, no. 712136, pp. 1-8, 2021.
  • [11] R. M. Simeao, D. D. Silva, F. C. Santos, L. Vilela, M. T. Silveira, A. C. Resende, and P. P. Albuquerque, "Adaptation and indication of forage crops for agricultural production in sandy soils in Western Bakia State, Brazil," Acta Scientiarum Agronomy, vol. 45, no. e56144, pp. 1-11, 2021.
  • [12] TÜİK. (2023, 05 20). Crop production statistics. Data Portal for Türkiye Statistics: https://biruni.tuik.gov.tr/medas/?locale=tr adresinden alındı [13] E. Koçak, "A review of the current status of forage crops cultivation and evaluation in Türkiye," Turkish Journal of Range and Forage Science, vol. 4, no. 2, pp. 59-65, 2023.
  • [14] G. Demirkol, N. Yılmaz, and Ö. Önal Aşcı, "Effects of salt stress on germination and seedling development in selected genotypes of fodder pea (pisum sativum ssp. arvense L.)," KSU Journal Of Agriculture and Nature, vol. 22, no. 3, pp. 354-359, 2019.
  • [15] D. T. Wu, W. X. Li, J. W. Wan, Y. C. Hu, R. Y. Gan, and L. Zou, "A comprehensive review of pea (pisum sativum L.) : chemical composition, processing, health benefits, and food applications," Foods, vol. 12, no. 2527, pp. 1-40, 2023.
  • [16] A. A. Mohamed, and A. A. Aly, "Alterations of some secondary metabolites and enzymes activity by using exogenus antioxidant compound in onion plants grown under sea water stress," American- Eurasion Journal of Scientific Research, vol. 3, no. 2, pp. 139-146, 2008.
  • [17] G. Aydın, "Effect of Osmyb4 gene expression on salinity tolerance of potato transformed with oryza sativa Osmyb4 gene," Anadolu Journal of Agricultural Sciences, vol. 35, pp. 115-123, 2020.
  • [18] T. Hirayama, and K. Shinozaki, "Research on plant abiotic stress responses in the past genome era: past, present and future", The Plant Journal, vol. 61, pp. 1041-1052, 2010.
  • [19] M. Arslan, S. Çetin, and C. Erdurmuş, " Negative effects of salt stress on plant growth and salinity tolerance of some forage crops," Journal of Agricultural Engineering, vol. 360, pp. 32-39, 2013.
  • [20] R. Kopecka, M. Kameniarova, M. Cerny, B. Brzobohaty, and J. Novak, "Abiotic stress in crop production," International Journal of Molecular Sciences, vol. 24, no. 6603, pp. 1-47, 2023.
  • [21] J. Kang, W. Xie, Y. Sun, Q. Yang, and M. Wu, "Identification of genes induced by salt stress from medicago truncatula L. seedlings," African Journal of Biotechnology, vol. 9, no. 45, pp. 7589-7594, 2010.
  • [22] Y. Bu, J. Kou, B. Sun, T. Takano, and S. Liu, "Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana," FEBS Letters, vol. 589, pp. 1308-1313, 2015.
  • [23] H. Korkmaz, and A. Durmaz, "Responses of plants to abiotic stress factors ", Gümüşhane University Journal of Science and Technology, vol. 7, no. 2, pp. 192-207, 2017.
  • [24] D. Rhodes, and P. J. Rich, "Preliminary genetic studies of the phenotype of betaine deficieny in Lea mays L.," Plant Physiology, vol. 88, pp. 102-108, 1988.
  • [25] M. H. Izadi, J. Rabbani, Y. Emam, A. Tahmasebi, and M. Pessarakli, "Effect of salinity stress on physiological performance of various wheat and barley cultivars," Journal of Plant Nutrition, vol. 37, pp. 520-531, 2014.
  • [26] İ. Tiryaki, "Adaptation mechanisms of some field crops to salt stress, " KSU Journal Of Agriculture and Nature, vol. 21, no. 5, pp. 800-808, 2018.
  • [27] K. M. Singh, R. P. Singh, A. K. Jha, and A. Kumar, “Understanding the fodder markets for sustainable development of livestock sector in bihar-a rapid appraisal approach.” New Delhi, 2012.
  • [28] S. Mizanbekova, A. Umbetaliev, A. Aitzhanova, and R. Aklybaev, "Priorities of mixed fodder production development in emerging countries: the case of Kazakhstan," Revista ESPACIOS 38 vol. 42, pp. 1-13, 2017.
  • [29] F. J. Carvalho, R. B. Elias, A. A. Silva, and T. S. Campos, "Sources and dosages of nitrogen applied with urea coated with polymers in marandu palisade grass", Revista Agrogeoambiental, vol. 10, no. 3, pp. 135-143, 2018.
  • [30] FAO. (2024, 04 01). Food and Agriculture Organization of the United Nations. Plant Genetic Resources of Forage Crops Pasture and Rangelands: , https://www.fao.org/agriculture/crops/thematic sitemap/theme/seeds-pgr/sow/sow2/tbs/en/ adresinden alındı.
  • [31] S. Amritkar, J. Chavan, A. Kakad, and M. Shaikh, "Phytochemical and pharmacological review of cynodon dactylon grass with its potential effects," Journal of Pharmaceutical and Biological Sciences, vol. 11, no. 2, pp. 112-116, 2023.
  • [32] E. Açıkgöz, “Forage Crops,” 3rd ed., vol. 182, Bursa: Uludag University Foundation Publishing House, 2001, pp. 584.
  • [33] M. A. Carmona, M. M. Oliveira, J. C. Martins, M. L. Cabral, J. A. Passarinho, M. L. Fernandes, . . . D. Crespo, "Avalıaçao da tolerancıa a salınıdade de especıes forrageıras,” Pastagens e Forragens, vol. 24, no. 25, pp. 85-96, 2003.
  • [34] S. Rehman, S. Nizam, S. Rubab, S. Bahadur, and X. Wei, "Evaluation of protein content in some fodder crops," Hamdard Medicus, vol. 66, no. 1, pp. 1-14, 2023.
  • [35] M. A. Lee, "A global comparison of the nutritive values of forage plants grown in contrasting environments," Journal of Plant Research, vol. 131, pp. 641-654, 2018.
  • [36] E. Çaçan, and K. Kökten, " Comparison of some alfalfa genotypes (medicago sativa L.) in terms of straw yiled and straw quality," Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences International Indexed & Refereed, vol. 8, no. 9, pp. 266-272, 2020.
  • [37] E. Çaçan, and S. İpekeşen, "Variation of some quality characteristics in silage corn according to different sowing times," International Journal of Food, Agriculture and Animal Sciences, vol. 1, no. 1, pp. 37-45, 2021.
  • [38] I. Inal, C. Yücel, D. Yücel, and R. Hatipoğlu, "Nutritive value and fodder potential of different sweet sorghum genotypes under mediterranean conditions," Turkish Journal of Field Crops, vol. 26, no. 1, pp. 1-7, 2021.
  • [39] S. Walter, J. Zehring, K. Mink, U. Quendt, K. Zocher, and S. Rohn, "Protein content of peas (pisum sativum) and beans (vicia faba)-influence of cultivation conditions," Journal of Food Composition and Analysis, vol. 105, no. 104257, pp. 1-9, 2022.
  • [40] R. Karayel, and H. Bozoğlu, "Tryptophane and raw protein contents of local pea (pisum sativum L.) lines for different sowing dates," Journal of Agricultural Science, vol. 21, pp. 337-345, 2015.
  • [41] S. Temel, B. Keskin, R. Tosun, and S. Çakmakçı, " Determination of herbage yield and quality performances in forage pea varieties sown as spring," Turkish Journal of Agricultural and Natural Sciences, vol. 8, c.2, pp. 411–419, 2021.
  • [42] F. Alatürk, Ç. Çınar, and A. Gökkuş, " Effects of different row spacings on yield and quality of some field pea cultivars," Turkish Journal of Agricultural and Natural Sciences, vol. 8, no. 1, pp. 53-57, 2021.
  • [43] H. Okkaoğlu, E. Ay, C. Büyükkileci, M. Akça Pelen, and H. Özpınar, " Effects of cutting times on dry matter yield and quality of field pea (pisum sativum spp. arvense L.), " ANADOLU Journal of Aegean Agricultural Research Institute, vol. 32, no. 2, pp. 253-263, 2022.
  • [44] E. Çaçan, M. Kaplan, K. Kökten and H. Tutar, "Evaluation of some forage pea (pisum sativum ssp. arvense L.) lines and cultivars in term of seed yield and straw quality", Journal of the Institute of Science and Technology, vol. 8, no. 2, pp. 275-284, 2018.
  • [45] A. Bakoğlu, K. Kökten, and Ö. Kılıç, "Yield and nutritive value of common vetch (vicia sativa L.) lines and varieties," Turkish Journal of Agricultural and Natural Sciences, vol. 3, no. 1, pp. 33-37, 2016.
  • [46] V. Mihailovic, and A. Mikic, "Ideotypes of forage pea (pisum sativum) cultivars," Quantitative Traits Breeding for Multifunctional Grasslands and Turf, pp. 183-186, 2014.
  • [47] A. Kotlarz, A. Sujak, W. Strobel, and W. Grzesiak, "Chemical composition and nutritive value of protein of the pea seeds effect of harvesting year and variety," Vegetable Crops Research Bulletin, vol. 75, pp. 57-69, 2011.
  • [48] P. Hara, M. Piekutowska, and G. Niedbala, "Prediction of protein content in pea (pisum sativum L.) seeds using artificial neural networks," Agriculture, vol. 13, no. 29, pp. 1-21, 2022.
  • [49] D. Janusauskaite, "Productivity of three pea (pisum sativum L.) varieties as influenced by nutrient supply and meteorological conditions in boreal environmental zone," Plants, vol. 12, no. 1938, pp. 1-14, 2023.
  • [50] L. Ouafi, F. Alane, H. Rahal Bouziane, and A. Abdelguerfi, "Agro-morphological diversity within field pea (pisum sativum L.) genotypes," African Journal of Agricultural Research, vol. 11, no. 40, pp. 4039-4047, 2016.
  • [51] B. Yazıcılar, M. Şimşek, İ. Bezirganoğlu, and D. İlhan, "DNA and protein content variations of Turkish pea (pisum sativum L.) genotypes," Journal of Agriculture, Food, Environment and Animal Sciences, vol. 2, no. 2, pp. 77-89, 2021.
  • [52] A. S. Tekeli, and E. Ateş, "Yield and its components in field pea (pisum arvense L.) lines", Journal of Central European Agriculture, vol. 4, no. 4, pp. 313-317, 2003.
  • [53] T. Yavuz, " The effects of different cutting stages on forage yield and quality in pea (pisum sativum L.) and oat (avena sativa L.) mixtures," Journal of Field Crops Central Research Institute, vol. 26, no. 1, pp. 67-74, 2017.
  • [54] A. Uzun, E. Açıkgöz, and H. Gün, "Yield and quality characteristics of some pea (pisum sativum L.) varieties harvested at different growing stages," Journal of Agricultural Faculty of Uludag University, vol. 26, no. 1, pp. 27-38, 2012.
  • [55] A. Doğru, and S. Canavar, " Physiological and biochemical components of salt tolerance in plants," Academic Platform Journal of Engineering and Science, vol. 8, no. 1, pp. 155-174, 2020.
  • [56] S. J. Roy, S. Negrao, and M. Tester, "Salt resistant crop plants," Current Opinion in Biotechnology, vol. 26, pp. 115-124, 2014.
  • [57] H. Zambi, and Ö. Önal Aşcı, " Effect of NaCl stress on chlorophyll and mineral content of forage pea," International Journal of Agriculture and Wildlife Science, vol. 6, no. 3, pp. 562-569, 2020.
  • [58] H. Upadhyay, A. Juneja, H. Turabieh, S. Malik, A. Gupta, Z. K. Bitsue and C. Upadhyay, "Exploration of crucial factors involved in plants development using the fuzzy AHP method," Hindawi, pp. 1-9, 2022.
  • [59] M. Y. Orcan, and P. Orcan, "Effect of Na, Mg, Ca chloride salts on mineral element, proline and total protein content in rice (oryza sativa L.) grown in vitro," International Journal of Secondary Metabolite, vol. 11, no. 1, pp. 144-156, 2024.
  • [60] B. Nedjimi, Z. E. Souissi, B. Guit, and Y. Daoud, “Differential effects of soluble salts on seed germination of Marrubium vulgare L.” Journal of Applied Research on Medicinal and Aromatic Plants, vol. 17, no. 100250, pp. 1-6, 2020.
  • [61] O. Borsani, V. Valpuesta, and M. A. Botella, "Developing salt tolerant plants in a new century: a molecular biology approach," Plant Cell Tissue and Organ Culture, pp. 101-115, 2003.
  • [62] H. Kuduğ, " DNA applications in agricultural biotechnology, " Journal of Gaziosmanpasa Scientific Research, c. 8, s. 2, ss. 1-10, 2019.
  • [63] J. Krasensky, and C. Jonak, "Drought, salt and temperature stres induced metabolic rearrangements and regulatory networks", Journal of Experimental Botany, vol. 63, no. 4, pp. 1593-1608, 2012.
  • [64] M. Liu, T. Z. Wang, and W. H. Zhang, "Sodium extrusion associated with enhanced expression of SOS1 underlines different salt tolerance between Medicago falcata and Medicago truncatula seedlings," Environmental and Experimental Botany, pp. 46-55, 2015.
  • [65] S. Yokoi, R. A. Bressan, and P. M. Hasegawa, "Salt stress tolerance of plants", JIRCAS Working Report, pp. 25-33, 2002.
  • [66] E. Yılmaz, A. L. Tuna, and B. Bürün, "Tolerance strategies developed by plants to the effects of salt stress," C.B.U. Journal of Science, vol. 7, no. 1, pp. 47-66, 2011.
  • [67] S. Romo, E. Labrador, and B. Dopico, "Water stress regulated gene expression in Cicer arietinum seedlings and plants," Plant Physiology and Biochemistry, pp. 1017-1026, 2001.
  • [68] G. Aydın, M. Yücel, M. T. Chan, and H. A. Öktem, "Evaluation of abiotic stress tolerance and physiological characteristics of potato (solanum tuberosum L. cv. Kennebec) that heterologously expresses the rice Osmyb4 gene," Plant Biotechnology Reports, pp. 295-304, 2014.
  • [69] C. Vannini, M. Iriti, M. Bracale, F. Locatelli, F. Faoro, P. Croce, . . . A. Genga, The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses,” Physiological and Molecular Plant Pathology, vol. 69, no. 1-3, pp. 26-42, 2006.
  • [70] A. Sakamoto, and N. Murata, "The role of glycine betaine in the protection of plants from stress: clues from transgenic plants," Plant, Cell and Environment vol. 25, pp. 163–171, 2002.
  • [71] Ö. Çelik, and S. G. Ünsal, "Expression analysis of proline metabolism-related genes in salt tolerant soybean mutant plants," Plant Omics Journal vol. 6, no. 5, pp. 364-370, 2013.
  • [72] A. Loudari, C. Benadis, R. Naciri, A. Soulaimani, Y. Zeroual, M. E. Gharous, . . . A. Oukarroum, "Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture," Journal of Plant Interactions, vol. 15, no. 1, pp. 398–405, 2020.
  • [73] V. D. Taffouo, A. H. Nouck, S. D. Dibong, and A. Amougou, "Effects of salinity stress on seedlings growth, mineral nutrients and total chlorophyll of some tomato (lycopersicum esculentum L.) cultivars", African Journal of Biotechnology, vol. 9, no. 33, pp. 5366-5372, 2010.
  • [74] M. A. Shahid, M. A. Pervez, R. M. Ballal, C. M. Ayyub, M. Ghazanfar, T. , Abbas, . . . A. Akram, "Effect of salt stress on growth, gas exchange attributes and chlorophyll contents of pea (pisum sativum)," African Journal of Agricultural Research, vol. 6, no. 27, pp.5808-5816, 2011.
  • [75] K. Taïbi, F. Taïbi, L. A. Abderrahim, A. Ennajah, M. Belkhodja, and J. M. Mulet, "Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in phaseolus vulgaris L.," South African Journal of Botany, vol. 105, pp. 306–312, 2016.
  • [76] G. Kaymak, and Z. Acar, "Determination of salinity tolerance levels of tedera (bituminaria bituminosa L.) genotypes," Anadolu Journal of Agricultural Sciences, vol. 35, pp. 51-58, 2020.
  • [77] F. Boughalleb, R. Abdellaout, M. Mahmoudi, and E. Backhshandeh, "Changes in phenolic profile, soluble sugar, proline, and antioxidant enzyme activities of polygonum equisetiforme in response to salinity," Turkish Journal of Botany, vol. 44, pp. 25-35, 2020.
  • [78] J. M. Ruiz, R. M. Rivero, I. Lo´pez-Cantarero, and L. Romero, "Role of Ca in the metabolism of phenolic compounds in tobacco leaves (nicotiana tabacum L.)," Plant Growth Regulation, vol. 41, pp. 173-177, 2003.
  • [79] S. Kıpçak, A. Ekincialp, Ç. Erdinç, E. Kabay, and S. Şensoy, " Effects of salt stress on some nutrient content and total antioxidant and total phenol content in different bean genotypes," Yuzuncu Yıl University Journal of Agricultural Sciences, vol. 29, no.1, pp. 136-144, 2019.
  • [80] M. R. Amirjani, "Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean," American Journal of Plant Physiology vol. 5, no. 6, pp. 350-360, 2020.
There are 79 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Articles
Authors

Nilay Kayın 0000-0002-5530-9705

Alev Akpinar Borazan 0000-0002-3815-2101

Ferzat Turan 0000-0001-5960-6478

Publication Date January 30, 2025
Submission Date July 30, 2024
Acceptance Date November 12, 2024
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Kayın, N., Akpinar Borazan, A., & Turan, F. (2025). Developing Countries’ Challenges in Cultivating Salt-Tolerant Fodder Peas for Animal Feed. Duzce University Journal of Science and Technology, 13(1), 456-470. https://doi.org/10.29130/dubited.1524615
AMA Kayın N, Akpinar Borazan A, Turan F. Developing Countries’ Challenges in Cultivating Salt-Tolerant Fodder Peas for Animal Feed. DUBİTED. January 2025;13(1):456-470. doi:10.29130/dubited.1524615
Chicago Kayın, Nilay, Alev Akpinar Borazan, and Ferzat Turan. “Developing Countries’ Challenges in Cultivating Salt-Tolerant Fodder Peas for Animal Feed”. Duzce University Journal of Science and Technology 13, no. 1 (January 2025): 456-70. https://doi.org/10.29130/dubited.1524615.
EndNote Kayın N, Akpinar Borazan A, Turan F (January 1, 2025) Developing Countries’ Challenges in Cultivating Salt-Tolerant Fodder Peas for Animal Feed. Duzce University Journal of Science and Technology 13 1 456–470.
IEEE N. Kayın, A. Akpinar Borazan, and F. Turan, “Developing Countries’ Challenges in Cultivating Salt-Tolerant Fodder Peas for Animal Feed”, DUBİTED, vol. 13, no. 1, pp. 456–470, 2025, doi: 10.29130/dubited.1524615.
ISNAD Kayın, Nilay et al. “Developing Countries’ Challenges in Cultivating Salt-Tolerant Fodder Peas for Animal Feed”. Duzce University Journal of Science and Technology 13/1 (January 2025), 456-470. https://doi.org/10.29130/dubited.1524615.
JAMA Kayın N, Akpinar Borazan A, Turan F. Developing Countries’ Challenges in Cultivating Salt-Tolerant Fodder Peas for Animal Feed. DUBİTED. 2025;13:456–470.
MLA Kayın, Nilay et al. “Developing Countries’ Challenges in Cultivating Salt-Tolerant Fodder Peas for Animal Feed”. Duzce University Journal of Science and Technology, vol. 13, no. 1, 2025, pp. 456-70, doi:10.29130/dubited.1524615.
Vancouver Kayın N, Akpinar Borazan A, Turan F. Developing Countries’ Challenges in Cultivating Salt-Tolerant Fodder Peas for Animal Feed. DUBİTED. 2025;13(1):456-70.