Research Article
BibTex RIS Cite

Visible Digital Image Watermarking Using Single Candidate Optimizer

Year 2025, Volume: 13 Issue: 1, 506 - 521, 30.01.2025
https://doi.org/10.29130/dubited.1532300

Abstract

With the advent of internet technologies, accessing information has become remarkably facile, while concurrently precipitating copyright conundrums. This predicament can be ameliorated by embedding copyright information within digital images, a methodology termed digital image watermarking. Artificial intelligence optimization algorithms are extensively employed in myriad problem-solving scenarios, yielding efficacious outcomes. This study proposes a visible digital image watermarking method utilizing the Single Candidate Optimizer (SCO). Contrary to many prevalent metaheuristic optimization algorithms, SCO, introduced in 2024, is not population-based. The fitness function of SCO is designed to maximize the resemblance between the watermarked image and both the host and watermark images. Experiments were conducted on images commonly utilized in image processing, and the results were evaluated using eight quality metrics. Additionally, the obtained numerical results were juxtaposed with those from well-known and widely-used genetic algorithms, differential evolution algorithms, and artificial bee colony optimization algorithms. The findings demonstrate that SCO outperforms the others in visible digital image watermarking. Furthermore, due to its non-population-based nature, SCO is significantly faster compared to its counterparts.

Ethical Statement

The manuscript is original and has not been submitted elsewhere.

Supporting Institution

-

Thanks

-

References

  • [1] H. Akbulut, V. Aslantas, and H. Ulutaş, “Visible Image Watermarking Based on Image Fusion with Shearlet Transform Using Genetic Algorithm,” Electronic Letters on Science and Engineering, vol. 13, no. 3, pp. 1-9, 2017.
  • [2] Singh, R. et al. “From classical to soft computing based watermarking techniques: A comprehensive review”, Future Generation Computer Systems, vol. 141, pp. 738–754, 2023.
  • [3] A. Anand and A. K. Singh, “Dual Watermarking for Security of COVID-19 Patient Record,” IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1, pp. 859–866, Jan. 2023
  • [4] S. Roy and A. K. Pal, “An indirect watermark hiding in discrete cosine transform–singular value decomposition domain for copyright protection,” Royal Society Open Science, vol. 4, no. 6, p. 170326, Jun. 2017
  • [5] A. K. Abdulrahman and S. Ozturk, “A novel hybrid DCT and DWT based robust watermarking algorithm for color images,” Multimedia Tools and Applications, vol. 78, no. 12, pp. 17027–17049, Jan. 2019
  • [6] S. M. Darwish and L. D. S. Al-Khafaji, “Dual Watermarking for Color Images: A New Image Copyright Protection Model based on the Fusion of Successive and Segmented Watermarking,” Multimedia Tools and Applications, vol. 79, no. 9–10, pp. 6503–6530, Dec. 2019
  • [7] H. Mittal and M. Saraswat, “An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm,” Engineering Applications of Artificial Intelligence, vol. 71, pp. 226–235, May 2018
  • [8] Y. Wang, Y. Yu, S. Gao, H. Pan, and G. Yang, “A hierarchical gravitational search algorithm with an effective gravitational constant,” Swarm and evolutionary computation, vol. 46, pp. 118–139, May 2019
  • [9] P. Rawal, H. Sharma, and N. Sharma, “Fast Convergent Gravitational Search Algorithm,” in Algorithms for intelligent systems, 2020, pp. 1–12
  • [10] H. Mittal and M. Saraswat, “An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering,” Swarm and Evolutionary Computation, vol. 45, pp. 15–32, Mar. 2019
  • [11] V. Aslantas, S. Ozer and S. Ozturk, "A novel image watermarking method based on Discrete Cosine Transform using Genetic Algorithm," 2009 IEEE 17th Signal Processing and Communications Applications Conference, Antalya, Turkey, 2009, pp. 285-288
  • [12] C. Zhang and M. Hu, "Curvelet Image Watermarking Using Genetic Algorithms," 2008 Congress on Image and Signal Processing, Sanya, China, 2008, pp. 486-490
  • [13] B. Jagadeesh, S. S. Kumar and K. R. Rajeswari, "Image Watermarking Scheme Using Singular Value Decomposition, Quantization and Genetic Algorithm," 2010 International Conference on Signal Acquisition and Processing, Bangalore, India, 2010, pp. 120-124
  • [14] R. Çolak, T. Yiğit, “Üniversite Ders Çizelgeleme Probleminin Genetik Algoritma ile Optimizasyonu”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 9, s. 6, ss. 150-166, 2021
  • [15] T. Timuçin, S. Biroğul, “Hibrit Genetik Algoritma Kullanarak Ameliyat Odası Çizelgeleme”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 10, s. 1, ss. 255-274, 2022
  • [16] M. N. Demir, Y. Altun, “Otonom Araçla Genetik Algoritma Kullanılarak Haritalama ve Lokasyon”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 8, s. 1, ss. 654-666, 2020
  • [17] R. Özdemir, M. Taşyürek, and V. Aslantaş, “Improved Marine Predators Algorithm and Extreme Gradient Boosting (XGBoost) for shipment status time prediction,” Knowledge-Based Systems, vol. 294, p. 111775, Apr. 2024
  • [18] T. M. Shami, D. Grace, A. Burr, and P. D. Mitchell, “Single candidate optimizer: a novel optimization algorithm,” Evolutionary Intelligence, Aug. 2022
  • [19] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. Ann Arbor, Mich, 1975.
  • [20] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, Jan. 1997
  • [21] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, Apr. 2007
  • [22] V. Aslantas and R. Kurban, “A comparison of criterion functions for fusion of multi-focus noisy images,” Optics Communications, vol. 282, no. 16, pp. 3231–3242, Aug. 2009
  • [23] K. Ma, Kai Zeng, and Zhou Wang, “Perceptual Quality Assessment for Multi-Exposure Image Fusion,” IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3345–3356, Nov. 2015
  • [24] A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Transactions on Communications, vol. 43, no. 12, pp. 2959–2965, 1995
  • [25] Y. Liu, S. Liu, and Z. Wang, “A general framework for image fusion based on multi-scale transform and sparse representation,” Information Fusion, vol. 24, pp. 147–164, Jul. 2015
  • [26] C. S. Xydeas and PetrovićV., “Objective image fusion performance measure,” Electronics Letters, vol. 36, no. 4, p. 308, 2000
  • [27] Y. Chen and R. S. Blum, “A new automated quality assessment algorithm for image fusion,” Image and Vision Computing, vol. 27, no. 10, pp. 1421–1432, Sep. 2009
  • [28] H. Wang and X. Yao, “Objective reduction based on nonlinear correlation information entropy,” Soft Computing, vol. 20, no. 6, pp. 2393–2407, Mar. 2015
  • [29] V. Aslantas and E. Bendes, “A new image quality metric for image fusion: The sum of the correlations of differences,” AEU - International Journal of Electronics and Communications, vol. 69, no. 12, pp. 1890–1896, Dec. 2015

Tek Aday Optimizasyon Algoritması Kullanarak Görünür Dijital Resim Damgalama

Year 2025, Volume: 13 Issue: 1, 506 - 521, 30.01.2025
https://doi.org/10.29130/dubited.1532300

Abstract

İnternet teknolojilerinin gelişmesiyle birlikte bilgiye erişim çok kolay hale gelirken diğer taraftan telif hakkı problemini ortaya çıkarmıştır. Bu problem dijital resimlerin içerisine telif hakkı ile ilgili bilgi gömerek çözülebilmektedir. Bu yöntemlere dijital resim damgalama denir. Yapay zeka optimizasyon algoritmaları bir çok problem çözümünde kullanılmakta ve etkili sonuçlar vermektedir. Bu çalışmada Single candidate optimizer (SCO) kullanarak görünür dijital görüntü damgalama yöntemi önerilir. 2024 yılında önerilen SCO, bir çok yaygın meta-sezgisel optimizasyon algoritmasının aksine popülasyon tabanlı değildir. SCO'nun amaç fonksiyonu olarak damgalanmış görüntünün hem barındırıcı hem de damga görüntüsü ile benzerliğini maksimize eden fonksiyon kullanılır. Deneyler görüntü işlemede yaygın kullanılan görüntülere uygulanmış ve sekiz adet kalite metriği kullanılarak sonuçlar değerlendirilmiştir. Ayrıca elde edilen sayısal sonuçlar iyi bilinen ve yaygın kullanılan genetik algoritma, diferansiyel gelişim algoritması ve yapay arı kolonisi optimizasyon algoritmaları ile karşılaştırılmıştır. Elde edilen bulgular SCO'nun görünür dijital görüntü damgalama için diğerlerinden daha iyi sonuç verdiğini göstermiştir. Ayrıca SCO'nun popülasyon tabanlı olmadığı için diğerlerine göre çok daha hızlı sonuç verdiği görülmüştür.

Ethical Statement

The manuscript is original and has not been submitted elsewhere.

Supporting Institution

-

Thanks

-

References

  • [1] H. Akbulut, V. Aslantas, and H. Ulutaş, “Visible Image Watermarking Based on Image Fusion with Shearlet Transform Using Genetic Algorithm,” Electronic Letters on Science and Engineering, vol. 13, no. 3, pp. 1-9, 2017.
  • [2] Singh, R. et al. “From classical to soft computing based watermarking techniques: A comprehensive review”, Future Generation Computer Systems, vol. 141, pp. 738–754, 2023.
  • [3] A. Anand and A. K. Singh, “Dual Watermarking for Security of COVID-19 Patient Record,” IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1, pp. 859–866, Jan. 2023
  • [4] S. Roy and A. K. Pal, “An indirect watermark hiding in discrete cosine transform–singular value decomposition domain for copyright protection,” Royal Society Open Science, vol. 4, no. 6, p. 170326, Jun. 2017
  • [5] A. K. Abdulrahman and S. Ozturk, “A novel hybrid DCT and DWT based robust watermarking algorithm for color images,” Multimedia Tools and Applications, vol. 78, no. 12, pp. 17027–17049, Jan. 2019
  • [6] S. M. Darwish and L. D. S. Al-Khafaji, “Dual Watermarking for Color Images: A New Image Copyright Protection Model based on the Fusion of Successive and Segmented Watermarking,” Multimedia Tools and Applications, vol. 79, no. 9–10, pp. 6503–6530, Dec. 2019
  • [7] H. Mittal and M. Saraswat, “An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm,” Engineering Applications of Artificial Intelligence, vol. 71, pp. 226–235, May 2018
  • [8] Y. Wang, Y. Yu, S. Gao, H. Pan, and G. Yang, “A hierarchical gravitational search algorithm with an effective gravitational constant,” Swarm and evolutionary computation, vol. 46, pp. 118–139, May 2019
  • [9] P. Rawal, H. Sharma, and N. Sharma, “Fast Convergent Gravitational Search Algorithm,” in Algorithms for intelligent systems, 2020, pp. 1–12
  • [10] H. Mittal and M. Saraswat, “An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering,” Swarm and Evolutionary Computation, vol. 45, pp. 15–32, Mar. 2019
  • [11] V. Aslantas, S. Ozer and S. Ozturk, "A novel image watermarking method based on Discrete Cosine Transform using Genetic Algorithm," 2009 IEEE 17th Signal Processing and Communications Applications Conference, Antalya, Turkey, 2009, pp. 285-288
  • [12] C. Zhang and M. Hu, "Curvelet Image Watermarking Using Genetic Algorithms," 2008 Congress on Image and Signal Processing, Sanya, China, 2008, pp. 486-490
  • [13] B. Jagadeesh, S. S. Kumar and K. R. Rajeswari, "Image Watermarking Scheme Using Singular Value Decomposition, Quantization and Genetic Algorithm," 2010 International Conference on Signal Acquisition and Processing, Bangalore, India, 2010, pp. 120-124
  • [14] R. Çolak, T. Yiğit, “Üniversite Ders Çizelgeleme Probleminin Genetik Algoritma ile Optimizasyonu”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 9, s. 6, ss. 150-166, 2021
  • [15] T. Timuçin, S. Biroğul, “Hibrit Genetik Algoritma Kullanarak Ameliyat Odası Çizelgeleme”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 10, s. 1, ss. 255-274, 2022
  • [16] M. N. Demir, Y. Altun, “Otonom Araçla Genetik Algoritma Kullanılarak Haritalama ve Lokasyon”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 8, s. 1, ss. 654-666, 2020
  • [17] R. Özdemir, M. Taşyürek, and V. Aslantaş, “Improved Marine Predators Algorithm and Extreme Gradient Boosting (XGBoost) for shipment status time prediction,” Knowledge-Based Systems, vol. 294, p. 111775, Apr. 2024
  • [18] T. M. Shami, D. Grace, A. Burr, and P. D. Mitchell, “Single candidate optimizer: a novel optimization algorithm,” Evolutionary Intelligence, Aug. 2022
  • [19] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. Ann Arbor, Mich, 1975.
  • [20] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, Jan. 1997
  • [21] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, Apr. 2007
  • [22] V. Aslantas and R. Kurban, “A comparison of criterion functions for fusion of multi-focus noisy images,” Optics Communications, vol. 282, no. 16, pp. 3231–3242, Aug. 2009
  • [23] K. Ma, Kai Zeng, and Zhou Wang, “Perceptual Quality Assessment for Multi-Exposure Image Fusion,” IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3345–3356, Nov. 2015
  • [24] A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Transactions on Communications, vol. 43, no. 12, pp. 2959–2965, 1995
  • [25] Y. Liu, S. Liu, and Z. Wang, “A general framework for image fusion based on multi-scale transform and sparse representation,” Information Fusion, vol. 24, pp. 147–164, Jul. 2015
  • [26] C. S. Xydeas and PetrovićV., “Objective image fusion performance measure,” Electronics Letters, vol. 36, no. 4, p. 308, 2000
  • [27] Y. Chen and R. S. Blum, “A new automated quality assessment algorithm for image fusion,” Image and Vision Computing, vol. 27, no. 10, pp. 1421–1432, Sep. 2009
  • [28] H. Wang and X. Yao, “Objective reduction based on nonlinear correlation information entropy,” Soft Computing, vol. 20, no. 6, pp. 2393–2407, Mar. 2015
  • [29] V. Aslantas and E. Bendes, “A new image quality metric for image fusion: The sum of the correlations of differences,” AEU - International Journal of Electronics and Communications, vol. 69, no. 12, pp. 1890–1896, Dec. 2015
There are 29 citations in total.

Details

Primary Language English
Subjects Machine Learning Algorithms
Journal Section Articles
Authors

Harun Akbulut 0000-0002-9117-8407

Publication Date January 30, 2025
Submission Date August 12, 2024
Acceptance Date November 20, 2024
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Akbulut, H. (2025). Visible Digital Image Watermarking Using Single Candidate Optimizer. Duzce University Journal of Science and Technology, 13(1), 506-521. https://doi.org/10.29130/dubited.1532300
AMA Akbulut H. Visible Digital Image Watermarking Using Single Candidate Optimizer. DUBİTED. January 2025;13(1):506-521. doi:10.29130/dubited.1532300
Chicago Akbulut, Harun. “Visible Digital Image Watermarking Using Single Candidate Optimizer”. Duzce University Journal of Science and Technology 13, no. 1 (January 2025): 506-21. https://doi.org/10.29130/dubited.1532300.
EndNote Akbulut H (January 1, 2025) Visible Digital Image Watermarking Using Single Candidate Optimizer. Duzce University Journal of Science and Technology 13 1 506–521.
IEEE H. Akbulut, “Visible Digital Image Watermarking Using Single Candidate Optimizer”, DUBİTED, vol. 13, no. 1, pp. 506–521, 2025, doi: 10.29130/dubited.1532300.
ISNAD Akbulut, Harun. “Visible Digital Image Watermarking Using Single Candidate Optimizer”. Duzce University Journal of Science and Technology 13/1 (January 2025), 506-521. https://doi.org/10.29130/dubited.1532300.
JAMA Akbulut H. Visible Digital Image Watermarking Using Single Candidate Optimizer. DUBİTED. 2025;13:506–521.
MLA Akbulut, Harun. “Visible Digital Image Watermarking Using Single Candidate Optimizer”. Duzce University Journal of Science and Technology, vol. 13, no. 1, 2025, pp. 506-21, doi:10.29130/dubited.1532300.
Vancouver Akbulut H. Visible Digital Image Watermarking Using Single Candidate Optimizer. DUBİTED. 2025;13(1):506-21.