Review Article
BibTex RIS Cite

Mono ve İkili Nanoyalayıcı (TiO2-B) Kullanılan Buhar Sıkıştırmalı Soğutma Sisteminin Termodinamik, Ekonomik ve Çevresel Değerlendirmesi

Year 2025, Volume: 13 Issue: 1, 599 - 615, 30.01.2025
https://doi.org/10.29130/dubited.1601461

Abstract

Enerji her geçen gün önemli bir hal almaktadır. Ancak, gelişmiş ülkelerdeki enerji tüketimi oldukça fazladır. Bu enerji tüketiminin neredeyse %40 binalardaki ısıtma, soğutma ve iklimlendirme sistemlerinden kaynaklıdır. Bu nedenle, bu sistemlerde yapılacak olan küçük bir iyileştirme bile küresel boyutta enerji tasarrufuna yol açacaktır. Bu durum için birçok çalışma yapılmaktadır. Bunlardan bir tanesi de soğutucu akışkanlara ve yağlayıcılara nanoparçacık ilave edilmesidir. Bu çalışmada, buhar sıkıştırmalı soğutma sisteminde farklı konsantrasyonlarda (3,5 g/L ve 7 g/L) kullanılan farklı nanoparçacıklardan (TiO2 ve Boron) elde edilen mono ve ikili nanoyağlayıcıların sistem üzerindeki etkileri enerji, ekserji, çevresel ve ekonomik açıdan değerlendirilmiştir. Sonuç olarak, COP değerinde saf POE’ye göre 7 g/L TiO2-B ikili nanoyağlayıcıda %16,47’lik artış elde edilmiştir. Sistemdeki kompresörün enerji tüketiminde saf POE’ye göre 7 g/L TiO2-B ikili nanoyağlayıcıda %13,06’lık azalma meydana gelmiştir. Toplam ekserji yıkımında saf POE’ye göre 7 g/L TiO2-B ikili nanoyağlayıcıda %35,20’lik azalma tespit edilmiştir. Sisteminde ekserji veriminde saf POE’ye göre 7 g/L TiO2-B ikili nanoyağlayıcıda %43,44’lük artış meydana gelmiştir. Sistem ekonomik açıdan incelendiğinde saf POE’ye göre 7 g/L TiO2 ikili nanoyağlayıcıda %35,84’lük iyileşme gözlenmiştir. Sistem çevresel olarak incelendiğinde saf POE’ye göre 7 g/L TiO2-B ikili nanoyağlayıcıda %11,90’lık azalma gerçekleşmiştir. Sonuç olarak, saf POE’ye göre mono ve ikili nanoyağlayıcılar kullanıldığında konsantrasyon arttıkça sistem üzerinde önemli iyileşmeler meydana geldiği görülmektedir.

References

  • [1] D. C. Savitha, P. K. Ranjith, B. Talawar, and N. Rana Pratap Reddy, “Refrigerants for sustainable environment–a literature review,” International Journal of Sustainable Energy, vol. 41, no. 3, pp. 235-256, 2022.
  • [2] X. Cao, X. Dai, and J. Liu, “Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade,” Energy and Buildings, vol. 128, pp. 198-213, 2016.
  • [3] B. Citarella, L. Viscito, K. Mochizuki, and A. W. Mauro, “Multi-criteria (thermo-economic) optimization and environmental analysis of a food refrigeration system working with low environmental impact refrigerants,” Energy Conversion and Management, vol. 253, pp. 115152, 2022.
  • [4] A. Zendehboudi, A. Mota-Babiloni, P. Makhnatch, R. Saidur, and S. M. Sait, “Modeling and multi-objective optimization of an R450A vapor compression refrigeration system,” International Journal of Refrigeration, vol. 100, ss. 141-155, 2019.
  • [5] Á. R. Gardenghi, J. F. Lacerda, C. B. Tibiriçá, and L. Cabezas-Gomez, “Numerical and experimental study of the transient behavior of a domestic vapor compression refrigeration system–Influence of refrigerant charge and ambient temperature,” Applied Thermal Engineering, vol. 190, pp. 116728, 2021.
  • [6] M. W. Bhat, G. Vyas, A. J: Jaffri, and R. S. Dondapati, “Investigation on the thermophysical properties of Al2O3, Cu and SiC based Nano-refrigerants,” Materials Today: Proceedings, vol. 5, no. 14, pp. 27820-27827, 2018.
  • [7] M. Ghazvini, H. Maddah, R. Peymanfar, M. H. Ahmadi, and R. Kumar, “Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles,” Physica A: Statistical Mechanics and its Applications, vol. 551, pp. 124127, 2020.
  • [8] A. Manoj Babu, S. Nallusamy, and K. Rajan, “Experimental analysis on vapour compression refrigeration system using nanolubricant with HFC-134a refrigerant,” Nano Hybrids, vol. 9, pp. 33-43, 2016.
  • [9] K. Martin, A. Sözen, E. Çiftçi, and H. M. Ali, “An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe,” International Journal of Thermophysics, vol. 41, pp. 1-21, 2020.
  • [10] M. N. M. Zawawi, W. H. Azmi, and M. F. Ghazali, “Performance of Al2O3-SiO2/PAG composite nanolubricants in automotive air-conditioning system,” Applied Thermal Engineering, vol. 204, pp. 117998, 2022.
  • [11] S. S. Chauhan, “Performance evaluation of ice plant operating on R134a blended with varied concentration of Al2O3-SiO2/PAG composite nanolubricant by experimental approach,” International Journal of Refrigeration, vol. 113, pp. 196-205, 2020.
  • [12] V. V. Wanatasanappan, M. Z. Abdullah, and P. Gunnasegaran, “Thermophysical properties of Al2O3-CuO hybrid nanofluid at different nanoparticle mixture ratio: An experimental approach,” Journal of Molecular Liquids, vol. 313, pp. 113458, 2020.
  • [13] N. N. M. Zawawi, W. H. Azmi, A. A. M. Redhwan, M. Z. Sharif, and K. V. Sharma, “Thermo-physical properties of Al2O3-SiO2/PAG composite nanolubricant for refrigeration system,” International Journal of Refrigeration, vol. 80, pp. 1-10, 2017.
  • [14] N. Asokan, P. Gunnasegaran, and V. V. Wanatasanappan, “Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles,” Thermal Science and Engineering Progress, vol. 20, pp. 100727, 2020.
  • [15] A. Senthilkumar, E. P. Abhijith, and C. A. A. Jawhar, “Experimental investigation of Al2O3/SiO2 hybrid nanolubriant in R600a vapour compression refrigeration system,” Materials Today: Proceedings, vol. 45, pp. 5921-5924, 2021.
  • [16] A. Senthilkumar, P. V. Abhishek, M. Adithyan, and A. Arjun, “Experimental investigation of CuO/SiO2 hybrid nano-lubricant in R600a vapour compression refrigeration system,” Materials Today: Proceedings, vol. 45, pp. 6083-6086, 2021.
  • [17] A. Kumar and S. P. S. Rajput, “Energetic and exergetic analysis of a Vapour compression refrigeration test rig in varying concentrations of (TiO2-SiO2/MO) hybrid nano-lubricants and R600a refrigerant charges,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 45, no. 3, pp. 9118-9132, 2023.
  • [18] M. J. Akhtar and S. P. S. Rajput, “Energy and exergy analysis of vapour compression test rig using R134a blended with GN-MWCNT/POE hybrid nano-lubricants,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 46, no. 1, pp. 188-208, 2024.
  • [19] S. Govindasamy, M. Kaliyannan, S. Sadhasivam, and R. Kadasari, “Experimental analysis of domestic refrigeration system using nanorefrigerant [CeO2+ ZnO+ R134a],” Thermal Science, vol. 26, no. (2 Part A), pp. 969-974, 2022.
  • [20] R. Tripathi, G. N. Tiwari, and V. K. Dwivedi, “Overall energy, exergy and carbon credit analysis of N partially covered photovoltaic thermal (PVT) concentrating collector connected in series,” Solar Energy, vol. 136, pp. 260-267, 2016.
  • [21] Y. Su, Y. Zhang, and L. Shu, “Experimental study of using phase change material cooling in a solar tracking concentrated photovoltaic-thermal system,” Solar Energy, vol. 159, pp. 777-785, 2018.
  • [22] A. D. Tuncer, A. Khanlari, A. Sözen, E. Y. Gürbüz, C. Şirin, and A. Gungor, “Energy-exergy and enviro-economic survey of solar air heaters with various air channel modifications,” Renewable Energy, vol. 160, pp. 67-85, 2020.
  • [23] A. Kumar and A. Layek, “Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate,” Journal of Cleaner Production, vol. 232, pp. 617-628, 2019.
  • [24] H. Hassan, M. S. Yousef, and S. Abo-Elfadl, “Energy, exergy, economic and environmental assessment of double pass V-corrugated-perforated finned solar air heater at different air mass ratios,” Sustainable Energy Technologies and Assessments, vol. 43, pp. 100936, 2021.
  • [25] A. R. Abd Elbar, M. S. Yousef, and H. Hassan, “Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel,” Journal of Cleaner Production, vol. 233, pp. 665-680, 2019.
  • [26] P. T. Saravanakumar, D. Somasundaram, and M. M. Matheswaran, “Exergetic investigation and optimization of arc shaped rib roughened solar air heater integrated with fins and baffles,” Applied Thermal Engineering, vol. 175, pp. 115316, 2020.
  • [27] S. S. Sanukrishna, M. Shafi, M. Murukan, and M. J. Prakash, “Effect of SiO2 nanoparticles on the heat transfer characteristics of refrigerant and tribological behaviour of lubricant,” Powder Technology, vol. 356, pp. 39-49, 2019.
  • [28] S. S. Rawat, A. P. Harsha, and A. P. Deepak, “Tribological performance of paraffin grease with silica nanoparticles as an additive,” Applied Nanoscience, vol. 9, pp. 305-315, 2019.
  • [29] A. Singh, P. Chauhan, and T. G. Mamatha, “A review on tribological performance of lubricants with nanoparticles additives,” Materials Today: Proceedings, vol. 25, pp. 586-591, 2020.

Thermodynamic, Economic and Environmental Assessment of Vapor Compression Refrigeration System Using Mono and Binary Nanolubricants (TiO2-B)

Year 2025, Volume: 13 Issue: 1, 599 - 615, 30.01.2025
https://doi.org/10.29130/dubited.1601461

Abstract

Nowadays, the need for energy is gaining significant importance. However, energy consumption in developed countries is quite high. Almost 40% of this energy consumption comes from heating, refrigeration, and air conditioning systems in buildings. Hence, even a minor enhancement in refrigeration systems will lead to energy savings on a global scale. Many studies are being conducted for this circumstance. One of these is the addition of nanoparticles to refrigerants and lubricants. In this study, the effects of mono and binary nanolubricants obtained from different nanoparticles (TiO2 and Boron) used at different concentrations (3.5 g/L and 7 g/L) in the vapor compression refrigeration system were evaluated in terms of energy, exergy, environment, and economy. As a result, a 16.47% increase in COP value was obtained in 7 g/L TiO2-B binary nanolubricant compared to pure POE. The energy consumption of the compressor in the system reduced by 13.06% in the 7 g/L TiO2-B binary nanolubricant compared to POE. A 35.20% decrease in total exergy destruction was detected in 7 g/L TiO2-B binary nanolubricant compared to POE. 43.44% increase in exergy efficiency occurred in 7 g/L TiO2-B binary nanolubricant compared to POE in the system. When the system was examined from an economic perspective, a 35.84% improvement was observed in the 7 g/L TiO2 binary nanolubricant compared to POE. When the system was examined environmentally, an 11.90% reduction was achieved in 7 g/L TiO2-B binary nanolubricant compared to POE. As a result, it is seen that significant improvements occur in the system as the concentration increases when mono and binary nanolubricants are used compared to POE.

References

  • [1] D. C. Savitha, P. K. Ranjith, B. Talawar, and N. Rana Pratap Reddy, “Refrigerants for sustainable environment–a literature review,” International Journal of Sustainable Energy, vol. 41, no. 3, pp. 235-256, 2022.
  • [2] X. Cao, X. Dai, and J. Liu, “Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade,” Energy and Buildings, vol. 128, pp. 198-213, 2016.
  • [3] B. Citarella, L. Viscito, K. Mochizuki, and A. W. Mauro, “Multi-criteria (thermo-economic) optimization and environmental analysis of a food refrigeration system working with low environmental impact refrigerants,” Energy Conversion and Management, vol. 253, pp. 115152, 2022.
  • [4] A. Zendehboudi, A. Mota-Babiloni, P. Makhnatch, R. Saidur, and S. M. Sait, “Modeling and multi-objective optimization of an R450A vapor compression refrigeration system,” International Journal of Refrigeration, vol. 100, ss. 141-155, 2019.
  • [5] Á. R. Gardenghi, J. F. Lacerda, C. B. Tibiriçá, and L. Cabezas-Gomez, “Numerical and experimental study of the transient behavior of a domestic vapor compression refrigeration system–Influence of refrigerant charge and ambient temperature,” Applied Thermal Engineering, vol. 190, pp. 116728, 2021.
  • [6] M. W. Bhat, G. Vyas, A. J: Jaffri, and R. S. Dondapati, “Investigation on the thermophysical properties of Al2O3, Cu and SiC based Nano-refrigerants,” Materials Today: Proceedings, vol. 5, no. 14, pp. 27820-27827, 2018.
  • [7] M. Ghazvini, H. Maddah, R. Peymanfar, M. H. Ahmadi, and R. Kumar, “Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles,” Physica A: Statistical Mechanics and its Applications, vol. 551, pp. 124127, 2020.
  • [8] A. Manoj Babu, S. Nallusamy, and K. Rajan, “Experimental analysis on vapour compression refrigeration system using nanolubricant with HFC-134a refrigerant,” Nano Hybrids, vol. 9, pp. 33-43, 2016.
  • [9] K. Martin, A. Sözen, E. Çiftçi, and H. M. Ali, “An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe,” International Journal of Thermophysics, vol. 41, pp. 1-21, 2020.
  • [10] M. N. M. Zawawi, W. H. Azmi, and M. F. Ghazali, “Performance of Al2O3-SiO2/PAG composite nanolubricants in automotive air-conditioning system,” Applied Thermal Engineering, vol. 204, pp. 117998, 2022.
  • [11] S. S. Chauhan, “Performance evaluation of ice plant operating on R134a blended with varied concentration of Al2O3-SiO2/PAG composite nanolubricant by experimental approach,” International Journal of Refrigeration, vol. 113, pp. 196-205, 2020.
  • [12] V. V. Wanatasanappan, M. Z. Abdullah, and P. Gunnasegaran, “Thermophysical properties of Al2O3-CuO hybrid nanofluid at different nanoparticle mixture ratio: An experimental approach,” Journal of Molecular Liquids, vol. 313, pp. 113458, 2020.
  • [13] N. N. M. Zawawi, W. H. Azmi, A. A. M. Redhwan, M. Z. Sharif, and K. V. Sharma, “Thermo-physical properties of Al2O3-SiO2/PAG composite nanolubricant for refrigeration system,” International Journal of Refrigeration, vol. 80, pp. 1-10, 2017.
  • [14] N. Asokan, P. Gunnasegaran, and V. V. Wanatasanappan, “Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles,” Thermal Science and Engineering Progress, vol. 20, pp. 100727, 2020.
  • [15] A. Senthilkumar, E. P. Abhijith, and C. A. A. Jawhar, “Experimental investigation of Al2O3/SiO2 hybrid nanolubriant in R600a vapour compression refrigeration system,” Materials Today: Proceedings, vol. 45, pp. 5921-5924, 2021.
  • [16] A. Senthilkumar, P. V. Abhishek, M. Adithyan, and A. Arjun, “Experimental investigation of CuO/SiO2 hybrid nano-lubricant in R600a vapour compression refrigeration system,” Materials Today: Proceedings, vol. 45, pp. 6083-6086, 2021.
  • [17] A. Kumar and S. P. S. Rajput, “Energetic and exergetic analysis of a Vapour compression refrigeration test rig in varying concentrations of (TiO2-SiO2/MO) hybrid nano-lubricants and R600a refrigerant charges,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 45, no. 3, pp. 9118-9132, 2023.
  • [18] M. J. Akhtar and S. P. S. Rajput, “Energy and exergy analysis of vapour compression test rig using R134a blended with GN-MWCNT/POE hybrid nano-lubricants,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 46, no. 1, pp. 188-208, 2024.
  • [19] S. Govindasamy, M. Kaliyannan, S. Sadhasivam, and R. Kadasari, “Experimental analysis of domestic refrigeration system using nanorefrigerant [CeO2+ ZnO+ R134a],” Thermal Science, vol. 26, no. (2 Part A), pp. 969-974, 2022.
  • [20] R. Tripathi, G. N. Tiwari, and V. K. Dwivedi, “Overall energy, exergy and carbon credit analysis of N partially covered photovoltaic thermal (PVT) concentrating collector connected in series,” Solar Energy, vol. 136, pp. 260-267, 2016.
  • [21] Y. Su, Y. Zhang, and L. Shu, “Experimental study of using phase change material cooling in a solar tracking concentrated photovoltaic-thermal system,” Solar Energy, vol. 159, pp. 777-785, 2018.
  • [22] A. D. Tuncer, A. Khanlari, A. Sözen, E. Y. Gürbüz, C. Şirin, and A. Gungor, “Energy-exergy and enviro-economic survey of solar air heaters with various air channel modifications,” Renewable Energy, vol. 160, pp. 67-85, 2020.
  • [23] A. Kumar and A. Layek, “Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate,” Journal of Cleaner Production, vol. 232, pp. 617-628, 2019.
  • [24] H. Hassan, M. S. Yousef, and S. Abo-Elfadl, “Energy, exergy, economic and environmental assessment of double pass V-corrugated-perforated finned solar air heater at different air mass ratios,” Sustainable Energy Technologies and Assessments, vol. 43, pp. 100936, 2021.
  • [25] A. R. Abd Elbar, M. S. Yousef, and H. Hassan, “Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel,” Journal of Cleaner Production, vol. 233, pp. 665-680, 2019.
  • [26] P. T. Saravanakumar, D. Somasundaram, and M. M. Matheswaran, “Exergetic investigation and optimization of arc shaped rib roughened solar air heater integrated with fins and baffles,” Applied Thermal Engineering, vol. 175, pp. 115316, 2020.
  • [27] S. S. Sanukrishna, M. Shafi, M. Murukan, and M. J. Prakash, “Effect of SiO2 nanoparticles on the heat transfer characteristics of refrigerant and tribological behaviour of lubricant,” Powder Technology, vol. 356, pp. 39-49, 2019.
  • [28] S. S. Rawat, A. P. Harsha, and A. P. Deepak, “Tribological performance of paraffin grease with silica nanoparticles as an additive,” Applied Nanoscience, vol. 9, pp. 305-315, 2019.
  • [29] A. Singh, P. Chauhan, and T. G. Mamatha, “A review on tribological performance of lubricants with nanoparticles additives,” Materials Today: Proceedings, vol. 25, pp. 586-591, 2020.
There are 29 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Gökhan Yıldız 0000-0001-6039-9226

Publication Date January 30, 2025
Submission Date December 14, 2024
Acceptance Date January 15, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Yıldız, G. (2025). Thermodynamic, Economic and Environmental Assessment of Vapor Compression Refrigeration System Using Mono and Binary Nanolubricants (TiO2-B). Duzce University Journal of Science and Technology, 13(1), 599-615. https://doi.org/10.29130/dubited.1601461
AMA Yıldız G. Thermodynamic, Economic and Environmental Assessment of Vapor Compression Refrigeration System Using Mono and Binary Nanolubricants (TiO2-B). DUBİTED. January 2025;13(1):599-615. doi:10.29130/dubited.1601461
Chicago Yıldız, Gökhan. “Thermodynamic, Economic and Environmental Assessment of Vapor Compression Refrigeration System Using Mono and Binary Nanolubricants (TiO2-B)”. Duzce University Journal of Science and Technology 13, no. 1 (January 2025): 599-615. https://doi.org/10.29130/dubited.1601461.
EndNote Yıldız G (January 1, 2025) Thermodynamic, Economic and Environmental Assessment of Vapor Compression Refrigeration System Using Mono and Binary Nanolubricants (TiO2-B). Duzce University Journal of Science and Technology 13 1 599–615.
IEEE G. Yıldız, “Thermodynamic, Economic and Environmental Assessment of Vapor Compression Refrigeration System Using Mono and Binary Nanolubricants (TiO2-B)”, DUBİTED, vol. 13, no. 1, pp. 599–615, 2025, doi: 10.29130/dubited.1601461.
ISNAD Yıldız, Gökhan. “Thermodynamic, Economic and Environmental Assessment of Vapor Compression Refrigeration System Using Mono and Binary Nanolubricants (TiO2-B)”. Duzce University Journal of Science and Technology 13/1 (January 2025), 599-615. https://doi.org/10.29130/dubited.1601461.
JAMA Yıldız G. Thermodynamic, Economic and Environmental Assessment of Vapor Compression Refrigeration System Using Mono and Binary Nanolubricants (TiO2-B). DUBİTED. 2025;13:599–615.
MLA Yıldız, Gökhan. “Thermodynamic, Economic and Environmental Assessment of Vapor Compression Refrigeration System Using Mono and Binary Nanolubricants (TiO2-B)”. Duzce University Journal of Science and Technology, vol. 13, no. 1, 2025, pp. 599-15, doi:10.29130/dubited.1601461.
Vancouver Yıldız G. Thermodynamic, Economic and Environmental Assessment of Vapor Compression Refrigeration System Using Mono and Binary Nanolubricants (TiO2-B). DUBİTED. 2025;13(1):599-615.