Gas Metal Arc Weldability of Ramor 500 Ballistic Armor Steels
Year 2025,
Volume: 13 Issue: 3, 1200 - 1213, 31.07.2025
Hayriye Ertek Emre
,
Serkan Keçe
,
Ramazan Kaçar
Abstract
Ramor 500 armor steel is classified as high strength ballistic protection steel produced in the hardness range 490-506 HB. They are preferred and used in armored vehicle manufacturing due to their high hardness, resistance to ballistic explosions and abrasion. Armored military vehicles are frequently subjected to impact and dynamics loads. Therefore, mechanical properties of armor steel and their weldment must be determined. In this study, Ramor 500 armor steels were joined by gas metal arc welding, (GMAW), method. The weldments were subjected to a radiographic examination by X-ray radiographic inspection method. Tensile, Charpy V notch-impact and bending tests were carried out for determining the mechanical properties of the weldment. The fractures of tensile test sample were analyzed by scanning electron microscopy. The microstructural examinations of the weldments were also carried out and hardness distributions were determined. Results confirm that the Ramor 500 armor steels have been successfully joined by the automated GMAW method. The strength and ductility of the joints are found within the acceptable range. The weld metal impact notch absorption energy of the GMAW joint was found to be higher than the base metal. However, the weld metal strength was found to be lower than the base metal. The lowest hardness of the weldment is determined in the HAZ next to the base metal due to softening.
References
-
[1] Military Specification: Armor Plate, Steel, Wrought, Homogeneous (For Use In Combat-Vehicles And For Ammunition Testing), MIL-A-12560H, US Military: Watertown, MA, USA, 2007.
-
[2] Armor Plate, Steel, Wrought, High-Hardness, MIL-A-46100E, U.S. Military Specification, 2008.
-
[3] E. R. S. Souza, R. P. Weber, S. N. Monteiro and S. D. S. Oliveira, “Microstructure effect of heat input on ballistic performance of welded high strength armor steel,” Materials, vol. 14, 2021, Art. no. 5789.
-
[4] S. J. Manganello and A. D. Wilson, “Direct quenching and its effects on high-strength armor plate,” in International symposium on low-carbon steels for the 90's, R. Asfahani and G. Tither, Eds. The Minerals, Metals & Materials Society, Pittsburgh, USA, 1993, pp. 235-241.
-
[5] F. Ade, “Ballistic qualification of armor steel weldments,” Welding Journal, vol. 70, pp. 53-58, 1991.
-
[6] A. Günen, S. Bayar and M. S. Karakaş, “Effect of different arc welding processes on the metallurgical and mechanical properties of Ramor 500 armor steel,” Journal of Engineering Materials and Technology, vol. 142, no. 2, 2019, Art. no. 021007.
-
[7] M. Balakrishnan, V. Balasubramanian and G. M. Reddy, “Effect of hardfaced interlayer thickness on ballistic performance of armour steel welds,” Materials and Design, vol. 44, pp. 59–68, 2013.
-
[8] T. Özdemir, “Mechanical & microstructural analysis of armor steel welded joints,” International Journal of Engineering Research and Development UMAGD, vol. 12, no. 1, pp. 166-175, 2020.
-
[9] J. Prifti, M. Castro, R. Squillacioti and R. Cellitti, “Improved rolled homogeneous armor (IRHA) steel through higher hardness,” U.S. Army Research Laboratory, Aberdeen Proving Ground, USA, ARL-TR-1347, 1997.
-
[10] P. V. Ramana, G. M. Reddy and T. Mohandas, “Stress distribution in high strength low alloy steel weldments,” Journal of Non Destructive Testing and Evaluation (JNDE), vol. 6, pp. 33–40, 2007.
-
[11] G. Magudeeswaran et al., “Influences of flux-cored arc welding consumables on dynamic fracture toughness of armour grade Q&T steel joints,” Fatigue Fracture Engineering Materials and Structures, vol. 32, pp. 587–600, 2009.
-
[12] H. R. Ghazvinlo, A. Honarbakhsh and N. Shadfar, “Effect of arc voltage, welding current and welding speed on fatigue life, impact energy and bead penetration of AA6061 joints produced by robotic MIG welding,” Indian Journal of Science and Technology , vol. 3, no. 2, pp. 156-162, 2010.
-
[13] I. A. Ibrahim, S. A. Mohamat, A. Amir and A. Ghalib, “The effect of gas metal arc welding (GMAW) processes on different welding parameters,” Procedia Engineering, vol. 41, pp. 1502 – 1506, 2012.
-
[14] M. Balakrishnan, V. Balasubramanian, R. G. Madhusuhan and K. Sivakumar, “Effect of buttering and hardfacing on ballistic performance of shielded metal,” Materials & Design, vol. 32, no. 2, pp. 469-479, 2011.
-
[15] U. Soy, O. Iyibilgin, F. Findik, C. Oz and Y. Kıyan, “Determination of welding parameters for shielded metal arc welding,” Scientific Research and Essays, vol. 6, no. 15, pp. 3153-3160, 2011.
-
[16] S. Kara and M. H. Korkut, “Zırh çeliklerinde kaynak ağzı tasarımının metalurjik ve mekanik özelliklere etkisinin araştırılması,” Makine Teknolojileri Elektronik Dergisi, vol. 9, no. 1, pp. 35-45, 2012.
-
[17] D. M. Robledo, J. A. A. Gómez and J. E. G. Barrada, “Development of a welding procedure for MIl A 46100 armor steel joints using gas metal arc welding,” National University of Colombia, vol. 168, pp. 65-71, 2010.
-
[18] G. Magudeeswaran, V. Balasubramanian and G. M. Reddy, “Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments,” International Journal of Hydrogen Energy, vol. 33, pp. 1897–1908, 2008.
-
[19] M. Vural, F. Piroğlu, Ö. B. Çağlayan and E. Uzgider, “Yapı çeliklerinin kaynaklanabilirliği,” TMH - Türkiye Mühendislik Haberleri, vol. 4, no. 426, pp. 47-51, 2003.
-
[20] Ramor 500 Armor Steel Data sheet 2033 Ramor 500 2017-04-19, SSAB. [Online] Available. https://www.ssab.com/en/brands-and-products/armox/product-offer/ramor-500.
-
[21] M. L. Bekci, B. H. Canpolat, E. Usta, M. S. Güler and Ö. N. Cor, “Ballistic performances of Ramor 500 and Ramor 550 armor steels at mono and bilayered plate configurations,” Engineering Science and Technology, an International Journal, vol. 24, no. 4, pp. 990-995, 2021.
-
[22] F. Falkenreck, A. Kromm and T. Böllinghaus, “Investigation of physically simulated weld HAZ and CCT diagram of HSLA armour steel,” Welding World, vol. 62, pp. 47-54, 2018.
-
[23] F. Hochhauser, W. Ernst, R. Rauch, R. Vallant and N. Enzinger, “Influence of the soft zone on the strength of welded modern HSLA steels,” Welding World, vol. 85, pp. 77-85, 2012.
-
[24] B. Hanhold, S. S. Babu and G. Cola, “Investigation of heat affected zone softening in armour steels Part 1—Phase transformation kinetics,” Science and Technology of Welding & Joining, vol. 18, pp. 247-252, 2013.
-
[25] H. Alipooramirabad, A. Paradowska, M. Reid and R. Ghomashchi, “Effects of PWHT on the residual stress and microstructure of Bisalloy 80 steel welds,” Metals, vol. 12, no. 10, 2022, pp. 1569.
-
[26] S. Taşkaya and A. K. Gür, “Investigation of the equilibrium of permeate in the welding speed of the wire feeding speed in joining Ramor 500 armor steel with submerged arc welding method,” Gümüşhane University Journal of Science and Technology, vol. 9, no. 3, pp. 444-453, 2019.
-
[27] G. Magudeeswaran, V. Balasubramanian and G. M. Reddy, “Metallurgical characteristics of armour steel welded joints used for combat vehicle construction,” Defense Technology, vol. 14, pp. 590–606, 2018.
-
[28] Z. Fei, D. Pan, H. Cuiuri Li and A. A. Gazder, “A combination of keyhole GTAW with a trapezoidal interlayer: a new insight into armour steel welding,” Materials, vol. 12, 2019, Art. no. 3571.
-
[29] D. Tomerlin, D. Mari, D. Kozak and I. Samardži´, “Post-weld heat treatment of S690QL1 steel welded joints: influence on microstructure, mechanical properties and residual stress,” Metals, vol. 13, no. 5, 2023, Art. no. 999.
-
[30] S. Bakhshi and A. Mirak, “Textural development, martensite lath formation and mechanical properties variation of a super strength AISI4340 steel due to austenitization and tempering temperature changes,” Materials Characterization, vol. 188, 2022, Art. no. 111923.
-
[31] A. Cabrilo and K. Geric, “Fracture mechanic and charpy impact properties of a crack in weld metal, HAZ and base metal of welded armor steel,” Procedia Structural Integrity, vol. 13, pp. 2059-2064, 2018.
-
[32] M. S. Khan, M. Soleimani, A. R. H. Midawi, I. Aderibigbe, Y. N. Zhou and E. Biro, “A review on heat affected zone softening of dual-phase steels during laser welding,” Journal of Manufacturing Processes, vol. 102, pp. 663–684, 2023.
-
[33] L. Morsdorf, E. Emelina, B. Gault, M. Herbig and C. C. Tasan, “Carbon redistribution in quenched and tempered lath martensite,” Acta Materialia, vol. 205, 2020, Art. no. 116521.
-
[34] H. Ertek Emre, S. Keçe and R. Kaçar, “The effect of PWHT on the mechanical properties of HHA 500 armor steel welds,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, early access, Feb 11, 2025, doi:10.1177/09544089251318111.
-
[35] H. J. Son, Y. C. Jeong, B. W. Seo, S. T. Hong, Y.-C. Kim and Y. T. Cho, “Weld quality analysis of high-hardness armored steel in pulsed gas metal arc welding,” Metals, vol. 13, 2023, Art. no. 303, 2023.
-
[36] B. Skowrońska, J. Szulc, M. Bober, M. Baranowski and T. Chmielewski, “Selected properties of Ramor 500 steel welded joints by hybrid PTA-MAG,” Journal of Advanced Joining Processes, vol. 5, 2022, Art. no. 100111.
-
[37] Z. Fei et al., “Investigation into the viability of K-TIG for joining armour grade quenched and tempered steel,” Journal of Manufacturing Processes, vol. 32, pp. 482-493, 2018.
-
[38] G. Magudeeswaran, V. Balasubramanian, T. S. Balasubramanian and G. M. Reddy, “Effect of welding consumables on tensile and impact properties of shielded metal arc welded high strength, quenched and tempered steel joints,” Science and Technology of Welding and Joining, vol. 13, pp. 97-105, 2008.
-
[39] A. Saxena, A. Kumaraswamy, G. M. Reddy and V. Madhu, “Influence of welding consumables on tensile and impact properties of multi-pass SMAW Armox 500T steel joints vis-a-vis base metal,” Defence Technology, vol. 14, pp. 188-195, 2018.
Ramor 500 Balistik Zırh Çeliklerinin Gaz Metal Ark Kaynağı ile Birleştirilebilirliği
Year 2025,
Volume: 13 Issue: 3, 1200 - 1213, 31.07.2025
Hayriye Ertek Emre
,
Serkan Keçe
,
Ramazan Kaçar
Abstract
Ramor 500 zırh çeliği 490-506 HB sertlik aralığında üretilen yüksek mukavemetli balistik koruma çeliği olarak sınıflandırılır. Yüksek sertlikleri, balistik patlamalara ve aşınmaya karşı dirençleri nedeniyle zırhlı araç imalatında tercih edilir ve kullanılırlar. Zırhlı askeri araçlar sıklıkla darbeye ve dinamik yüklere maruz kalmaktadır. Bu nedenle zırh çeliğinin ve kaynaklı birleştirmelerinin mekanik özelliklerinin belirlenmesi gerekmektedir. Bu çalışmada, Ramor 500 zırh çelikleri gaz altı ark kaynak (GMAK) yöntemi ile birleştirilmiştir. Kaynaklı birleştirmeler X-ışını radyografik muayene yöntemi ile radyografik incelemeye tabi tutulmuştur. Birleştirmelerin mekanik özelliklerini belirlemek için çekme, Charpy-V çentik darbe ve eğme testleri yapılmıştır. Çekme testi numunelerinin kırılma yüzeyleri taramalı elektron mikroskobu (SEM) ile incelenmiştir. Birleştirmelerin mikroyapı incelemeleri de gerçekleştirilerek, sertlik dağılımları belirlenmiştir. Sonuçlar, Ramor 500 zırh çeliklerinin GMAK yöntemiyle başarılı bir şekilde birleştirilebildiğini doğrulamaktadır. Birleştirmelerin dayanım ve sünekliği kabul edilebilir aralıkta bulunmuştur. GMAK birleştirmesinin kaynak metali çentik darbe emme enerjisi ana metalden daha yüksek bulunmuştur. Fakat kaynak metali mukavemeti ana metalden daha düşük olduğu tespit edilmiştir. Birleştirmelerde en düşük sertlik değerlerinin, ITAB yumuşaması nedeniyle ana metale yakın ITAB bölgesinde oluştuğu tespit edilmiştir.
References
-
[1] Military Specification: Armor Plate, Steel, Wrought, Homogeneous (For Use In Combat-Vehicles And For Ammunition Testing), MIL-A-12560H, US Military: Watertown, MA, USA, 2007.
-
[2] Armor Plate, Steel, Wrought, High-Hardness, MIL-A-46100E, U.S. Military Specification, 2008.
-
[3] E. R. S. Souza, R. P. Weber, S. N. Monteiro and S. D. S. Oliveira, “Microstructure effect of heat input on ballistic performance of welded high strength armor steel,” Materials, vol. 14, 2021, Art. no. 5789.
-
[4] S. J. Manganello and A. D. Wilson, “Direct quenching and its effects on high-strength armor plate,” in International symposium on low-carbon steels for the 90's, R. Asfahani and G. Tither, Eds. The Minerals, Metals & Materials Society, Pittsburgh, USA, 1993, pp. 235-241.
-
[5] F. Ade, “Ballistic qualification of armor steel weldments,” Welding Journal, vol. 70, pp. 53-58, 1991.
-
[6] A. Günen, S. Bayar and M. S. Karakaş, “Effect of different arc welding processes on the metallurgical and mechanical properties of Ramor 500 armor steel,” Journal of Engineering Materials and Technology, vol. 142, no. 2, 2019, Art. no. 021007.
-
[7] M. Balakrishnan, V. Balasubramanian and G. M. Reddy, “Effect of hardfaced interlayer thickness on ballistic performance of armour steel welds,” Materials and Design, vol. 44, pp. 59–68, 2013.
-
[8] T. Özdemir, “Mechanical & microstructural analysis of armor steel welded joints,” International Journal of Engineering Research and Development UMAGD, vol. 12, no. 1, pp. 166-175, 2020.
-
[9] J. Prifti, M. Castro, R. Squillacioti and R. Cellitti, “Improved rolled homogeneous armor (IRHA) steel through higher hardness,” U.S. Army Research Laboratory, Aberdeen Proving Ground, USA, ARL-TR-1347, 1997.
-
[10] P. V. Ramana, G. M. Reddy and T. Mohandas, “Stress distribution in high strength low alloy steel weldments,” Journal of Non Destructive Testing and Evaluation (JNDE), vol. 6, pp. 33–40, 2007.
-
[11] G. Magudeeswaran et al., “Influences of flux-cored arc welding consumables on dynamic fracture toughness of armour grade Q&T steel joints,” Fatigue Fracture Engineering Materials and Structures, vol. 32, pp. 587–600, 2009.
-
[12] H. R. Ghazvinlo, A. Honarbakhsh and N. Shadfar, “Effect of arc voltage, welding current and welding speed on fatigue life, impact energy and bead penetration of AA6061 joints produced by robotic MIG welding,” Indian Journal of Science and Technology , vol. 3, no. 2, pp. 156-162, 2010.
-
[13] I. A. Ibrahim, S. A. Mohamat, A. Amir and A. Ghalib, “The effect of gas metal arc welding (GMAW) processes on different welding parameters,” Procedia Engineering, vol. 41, pp. 1502 – 1506, 2012.
-
[14] M. Balakrishnan, V. Balasubramanian, R. G. Madhusuhan and K. Sivakumar, “Effect of buttering and hardfacing on ballistic performance of shielded metal,” Materials & Design, vol. 32, no. 2, pp. 469-479, 2011.
-
[15] U. Soy, O. Iyibilgin, F. Findik, C. Oz and Y. Kıyan, “Determination of welding parameters for shielded metal arc welding,” Scientific Research and Essays, vol. 6, no. 15, pp. 3153-3160, 2011.
-
[16] S. Kara and M. H. Korkut, “Zırh çeliklerinde kaynak ağzı tasarımının metalurjik ve mekanik özelliklere etkisinin araştırılması,” Makine Teknolojileri Elektronik Dergisi, vol. 9, no. 1, pp. 35-45, 2012.
-
[17] D. M. Robledo, J. A. A. Gómez and J. E. G. Barrada, “Development of a welding procedure for MIl A 46100 armor steel joints using gas metal arc welding,” National University of Colombia, vol. 168, pp. 65-71, 2010.
-
[18] G. Magudeeswaran, V. Balasubramanian and G. M. Reddy, “Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments,” International Journal of Hydrogen Energy, vol. 33, pp. 1897–1908, 2008.
-
[19] M. Vural, F. Piroğlu, Ö. B. Çağlayan and E. Uzgider, “Yapı çeliklerinin kaynaklanabilirliği,” TMH - Türkiye Mühendislik Haberleri, vol. 4, no. 426, pp. 47-51, 2003.
-
[20] Ramor 500 Armor Steel Data sheet 2033 Ramor 500 2017-04-19, SSAB. [Online] Available. https://www.ssab.com/en/brands-and-products/armox/product-offer/ramor-500.
-
[21] M. L. Bekci, B. H. Canpolat, E. Usta, M. S. Güler and Ö. N. Cor, “Ballistic performances of Ramor 500 and Ramor 550 armor steels at mono and bilayered plate configurations,” Engineering Science and Technology, an International Journal, vol. 24, no. 4, pp. 990-995, 2021.
-
[22] F. Falkenreck, A. Kromm and T. Böllinghaus, “Investigation of physically simulated weld HAZ and CCT diagram of HSLA armour steel,” Welding World, vol. 62, pp. 47-54, 2018.
-
[23] F. Hochhauser, W. Ernst, R. Rauch, R. Vallant and N. Enzinger, “Influence of the soft zone on the strength of welded modern HSLA steels,” Welding World, vol. 85, pp. 77-85, 2012.
-
[24] B. Hanhold, S. S. Babu and G. Cola, “Investigation of heat affected zone softening in armour steels Part 1—Phase transformation kinetics,” Science and Technology of Welding & Joining, vol. 18, pp. 247-252, 2013.
-
[25] H. Alipooramirabad, A. Paradowska, M. Reid and R. Ghomashchi, “Effects of PWHT on the residual stress and microstructure of Bisalloy 80 steel welds,” Metals, vol. 12, no. 10, 2022, pp. 1569.
-
[26] S. Taşkaya and A. K. Gür, “Investigation of the equilibrium of permeate in the welding speed of the wire feeding speed in joining Ramor 500 armor steel with submerged arc welding method,” Gümüşhane University Journal of Science and Technology, vol. 9, no. 3, pp. 444-453, 2019.
-
[27] G. Magudeeswaran, V. Balasubramanian and G. M. Reddy, “Metallurgical characteristics of armour steel welded joints used for combat vehicle construction,” Defense Technology, vol. 14, pp. 590–606, 2018.
-
[28] Z. Fei, D. Pan, H. Cuiuri Li and A. A. Gazder, “A combination of keyhole GTAW with a trapezoidal interlayer: a new insight into armour steel welding,” Materials, vol. 12, 2019, Art. no. 3571.
-
[29] D. Tomerlin, D. Mari, D. Kozak and I. Samardži´, “Post-weld heat treatment of S690QL1 steel welded joints: influence on microstructure, mechanical properties and residual stress,” Metals, vol. 13, no. 5, 2023, Art. no. 999.
-
[30] S. Bakhshi and A. Mirak, “Textural development, martensite lath formation and mechanical properties variation of a super strength AISI4340 steel due to austenitization and tempering temperature changes,” Materials Characterization, vol. 188, 2022, Art. no. 111923.
-
[31] A. Cabrilo and K. Geric, “Fracture mechanic and charpy impact properties of a crack in weld metal, HAZ and base metal of welded armor steel,” Procedia Structural Integrity, vol. 13, pp. 2059-2064, 2018.
-
[32] M. S. Khan, M. Soleimani, A. R. H. Midawi, I. Aderibigbe, Y. N. Zhou and E. Biro, “A review on heat affected zone softening of dual-phase steels during laser welding,” Journal of Manufacturing Processes, vol. 102, pp. 663–684, 2023.
-
[33] L. Morsdorf, E. Emelina, B. Gault, M. Herbig and C. C. Tasan, “Carbon redistribution in quenched and tempered lath martensite,” Acta Materialia, vol. 205, 2020, Art. no. 116521.
-
[34] H. Ertek Emre, S. Keçe and R. Kaçar, “The effect of PWHT on the mechanical properties of HHA 500 armor steel welds,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, early access, Feb 11, 2025, doi:10.1177/09544089251318111.
-
[35] H. J. Son, Y. C. Jeong, B. W. Seo, S. T. Hong, Y.-C. Kim and Y. T. Cho, “Weld quality analysis of high-hardness armored steel in pulsed gas metal arc welding,” Metals, vol. 13, 2023, Art. no. 303, 2023.
-
[36] B. Skowrońska, J. Szulc, M. Bober, M. Baranowski and T. Chmielewski, “Selected properties of Ramor 500 steel welded joints by hybrid PTA-MAG,” Journal of Advanced Joining Processes, vol. 5, 2022, Art. no. 100111.
-
[37] Z. Fei et al., “Investigation into the viability of K-TIG for joining armour grade quenched and tempered steel,” Journal of Manufacturing Processes, vol. 32, pp. 482-493, 2018.
-
[38] G. Magudeeswaran, V. Balasubramanian, T. S. Balasubramanian and G. M. Reddy, “Effect of welding consumables on tensile and impact properties of shielded metal arc welded high strength, quenched and tempered steel joints,” Science and Technology of Welding and Joining, vol. 13, pp. 97-105, 2008.
-
[39] A. Saxena, A. Kumaraswamy, G. M. Reddy and V. Madhu, “Influence of welding consumables on tensile and impact properties of multi-pass SMAW Armox 500T steel joints vis-a-vis base metal,” Defence Technology, vol. 14, pp. 188-195, 2018.