Review Article
BibTex RIS Cite

Makine Öğrenimi ile MSCI Endekslerinin Zaman Serisi Tahmini

Year 2025, Volume: 13 Issue: 4, 1732 - 1744, 30.10.2025
https://doi.org/10.29130/dubited.1567866

Abstract

Bu çalışmada, MSCI Türkiye ve MSCI Almanya Endekslerinin 29.03.2009 - 28.03.2024 tarihleri arasındaki 15 yıllık günlük verileri kullanılarak ARIMA, XGBoost, LSTM ve Prophet yöntemleriyle yapılan tahminler aracılığıyla en başarılı modelin belirlenmesi amaçlanmaktadır. En başarılı modeli belirlemede ölçüt olarak elde edilen Root Mean Square Error (RMSE) değerleri alınmıştır. Python JupyterNotebook programı kullanılarak yapılan analizlerde, diğer tüm değişkenlerin sabit kaldığı varsayıldığında, XGBoost yön-temi MSCI Türkiye Endeksi için en başarılı model olarak belirlenirken, LSTM Modeli MSCI Almanya Endeksi için en iyi sonuçları vermiştir. Bu nedenle, sonuçlar göz önüne alındığında, makine öğrenmesi yöntemlerinin klasik yöntemlere göre daha iyi performans gösterdiği söylenebilmektedir.

References

  • Abdullah, M., Sulong, Z., & Chowdhury, M. A. F. (2024). Explainable deep learning model for stock price forecasting using textual analysis. Expert Systems with Applications, 249, Article 123740. https://doi.org/10.1016/j.eswa.2024.123740
  • Alim, M., Ye, G. H., Guan, P., Huang, D. S., Zhou, B. S., & Wu, W. (2020). Comparison of ARIMA model and XGBoost model for prediction of human brucellosis in mainland China: A time-series study. BMJ Open, 10(12), Article e039676. https://doi.org/10.1136/bmjopen-2020-039676
  • Bathla, G. (2020). Stock price prediction using LSTM and SVR. In 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 211–214). IEEE. https://doi.org/10.1109/PDGC50313.2020.9315800
  • Beniwal, M., Singh, A., & Kumar, N. (2024). Forecasting multistep daily stock prices for long-term investment decisions: A study of deep learning models on global indices. Engineering Applications of Artificial Intelligence, 129, Article 107617. https://doi.org/10.1016/j.engappai.2023.107617
  • Chen, P., Yuan, H., & Shu, X. (2008). Forecasting crime using the ARIMA model. In 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery (pp. 627–630). IEEE. https://doi.org/10.1109/FSKD.2008.222
  • Gajamannage, K., Park, Y., & Jayathilake, D. I. (2023). Real-time forecasting of time series in financial markets using sequentially trained dual-LSTMs. Expert Systems with Applications, 223, Article 119879. https://doi.org/10.1016/j.eswa.2023.119879
  • Gifty, A., & Li, Y. (2024). A comparative analysis of LSTM, ARIMA, XGBoost algorithms in predicting stock price direction. Engineering and Technology Journal, 9(8), 4978–4986. https://doi.org/10.47191/etj/v9i08.50
  • Goodrich, R. L. (2000). The forecast pro methodology. International Journal of Forecasting. 16(4), 533-535. https://doi.org/10.1016/S0169-2070(00)00086-8
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • İlkçar, M. (2023). İşlem hacmi ve mevsimsel değerler dikkate alınarak derin yapay sinir ağı ile Türk Hava Yolları BIST hisse fiyatı tahmin. International Journal of Informatics Technologies, 16(1), 43–53. https://doi.org/10.17671/gazibtd.1180350
  • Jabed, M. I. K. (2024). Stock market price prediction using machine learning techniques. American International Journal of Sciences and Engineering Research, 7(1), 1–6. https://doi.org/10.46545/aijser.v7i1.308
  • Lawrence, R. (1997). Using neural networks to forecast stock market prices (Master’s thesis, University of Manitoba).
  • Li, W. (2025, February). The study on the application of machine learning algorithms for stock prices prediction during special periods. In International Workshop on Navigating the Digital Business Frontier for Sustainable Financial Innovation (ICDEBA 2024) (pp. 656–663). Atlantis Press. https://doi.org/10.2991/978-94-6463-652-9_68
  • Li, W., Yin, Y., Quan, X., & Zhang, H. (2019). Gene expression value prediction based on XGBoost algorithm. Frontiers in Genetics, 10, Article 1077. https://doi.org/10.3389/fgene.2019.01077
  • Masini, R., Medeiros, M., & Mendes, E. (2023). Machine learning advances for time series forecasting. Journal of Economic Surveys, 37(1), 76–111. https://doi.org/10.1111/joes.12429
  • Oukhouya, H., Kadiri, H., El Himdi, K., & Guerbaz, R. (2024). Forecasting international stock market trends: XGBoost, LSTM, LSTM-XGBoost, and backtesting XGBoost models. Statistics, Optimization & Information Computing, 12(1), 200–209. https://doi.org/10.19139/soic-2310-5070-1822
  • Paliari, I., Karanikola, A., & Kotsiantis, S. (2021, July). A comparison of the optimized LSTM, XGBOOST and ARIMA in time series forecasting. In 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 1–7). IEEE. https://doi.org/10.1109/IISA52424.2021.9555520
  • Satrio, C., Darmawan, W., Nadia, B., & Hanafiah, N. (2021). Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. Procedia Computer Science, 179, 524–532. https://doi.org/10.1016/j.procs.2021.01.036
  • Schluchter, M. D. (2005). Mean square error. In P. Armitage & T. Colton (Eds.), Encyclopedia of biostatistics (Vol. 5). John Wiley & Sons. https://doi.org/10.1002/0470011815.b2a15087
  • Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V., & Soman, K. (2017). Stock price prediction using LSTM, RNN and CNN-sliding window model. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1643–1647). IEEE. https://doi.org/10.1109/ICACCI.2017.8126078
  • Shaban, W. M., Ashraf, E., & Slama, A. E. (2024). SMP-DL: A novel stock market prediction approach based on deep learning for effective trend forecasting. Neural Computing and Applications, 36(4), 1849–1873. https://doi.org/10.1007/s00521-023-09179-4
  • Sharma, P., & Jain, M. (2023). Stock market trends analysis using extreme gradient boosting (XGBoost). In International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) (pp. 317–322). IEEE. https://doi.org/10.1109/ICCCIS60361.2023.10425722
  • Singh, S. K., & Praveen, S. (2025). Benchmarking of regression algorithms on major evaluation criteria for stock price prediction. In Challenges and Opportunities for Innovation in India (pp. 312–316). CRC Press. https://doi.org/10.1201/9781003606260-57
  • Taylor, S., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45. https://doi.org/10.1080/00031305.2017.1380080
  • Ustalı Koç, N., Tosun, N., & Tosun, Ö. (2021). Makine öğrenmesi teknikleri ile hisse senedi fiyat tahmini. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 16(1), 1–16. https://doi.org/10.17153/oguiibf.636017
  • Yadav, A., Jha, C. K., & Sharan, A. (2020). Optimizing LSTM for time series prediction in Indian stock market. Procedia Computer Science, 167, 2091–2100. https://doi.org/10.1016/j.procs.2020.03.257
  • Yenidoğan, I., Çayir, A., Kozan, O., Dağ, T., & Arslan, Ç. (2018, September). Bitcoin forecasting using ARIMA and Prophet. In 2018 3rd International Conference on Computer Science and Engineering (UBMK) (pp. 621–624). IEEE. https://doi.org/10.1109/UBMK.2018.8566476
  • Yoo, P. D., Kim, M. H., & Jan, T. (2005, December). Financial forecasting: Advanced machine learning techniques in stock market analysis. In 2005 Pakistan Section Multitopic Conference (pp. 1–7). IEEE. https://doi.org/10.1109/INMIC.2005.334420
  • Yurttabir, A., & Sen, I. K. (2021). Prophet model in financial performance forecast: Implementation in manufacturing sector. Journal of Economics, Finance and Accounting (JEFA), 8(4), 160–166. https://doi.org/10.17261/Pressacademia.2021.1470
  • Zhang, G. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0

Time Series Forecasting of MSCI Indices With Machine Learning

Year 2025, Volume: 13 Issue: 4, 1732 - 1744, 30.10.2025
https://doi.org/10.29130/dubited.1567866

Abstract

Machine learning has become an increasingly important tool for understanding the dynamic nature of financial markets and predicting future price movements. The aim of this study is to determine the most successful forecasting model by comparing the forecasts made by ARIMA, XGBoost, LSTM and Prophet methods using the 15-year daily data of MSCI Turkey and MSCI Germany Indices between 29.03.2009 and 28.03.2024. Root Mean Square Error (RMSE) value is taken as a benchmark to evaluate the model's success. The analyses were conducted using the Python JupyterNotebook program and assumed that all other variables are constant. According to the results, the XGBoost method was found to be the most successful model for the MSCI Turkey Index, while the LSTM model gave the best results for the MSCI Germany Index. These findings suggest that machine learning methods outperform classical forecasting techniques. This study reveals that machine learning is a powerful tool for making more accurate forecasts in financial markets, and that these methods provide more efficient results compared to classical models.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

References

  • Abdullah, M., Sulong, Z., & Chowdhury, M. A. F. (2024). Explainable deep learning model for stock price forecasting using textual analysis. Expert Systems with Applications, 249, Article 123740. https://doi.org/10.1016/j.eswa.2024.123740
  • Alim, M., Ye, G. H., Guan, P., Huang, D. S., Zhou, B. S., & Wu, W. (2020). Comparison of ARIMA model and XGBoost model for prediction of human brucellosis in mainland China: A time-series study. BMJ Open, 10(12), Article e039676. https://doi.org/10.1136/bmjopen-2020-039676
  • Bathla, G. (2020). Stock price prediction using LSTM and SVR. In 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 211–214). IEEE. https://doi.org/10.1109/PDGC50313.2020.9315800
  • Beniwal, M., Singh, A., & Kumar, N. (2024). Forecasting multistep daily stock prices for long-term investment decisions: A study of deep learning models on global indices. Engineering Applications of Artificial Intelligence, 129, Article 107617. https://doi.org/10.1016/j.engappai.2023.107617
  • Chen, P., Yuan, H., & Shu, X. (2008). Forecasting crime using the ARIMA model. In 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery (pp. 627–630). IEEE. https://doi.org/10.1109/FSKD.2008.222
  • Gajamannage, K., Park, Y., & Jayathilake, D. I. (2023). Real-time forecasting of time series in financial markets using sequentially trained dual-LSTMs. Expert Systems with Applications, 223, Article 119879. https://doi.org/10.1016/j.eswa.2023.119879
  • Gifty, A., & Li, Y. (2024). A comparative analysis of LSTM, ARIMA, XGBoost algorithms in predicting stock price direction. Engineering and Technology Journal, 9(8), 4978–4986. https://doi.org/10.47191/etj/v9i08.50
  • Goodrich, R. L. (2000). The forecast pro methodology. International Journal of Forecasting. 16(4), 533-535. https://doi.org/10.1016/S0169-2070(00)00086-8
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • İlkçar, M. (2023). İşlem hacmi ve mevsimsel değerler dikkate alınarak derin yapay sinir ağı ile Türk Hava Yolları BIST hisse fiyatı tahmin. International Journal of Informatics Technologies, 16(1), 43–53. https://doi.org/10.17671/gazibtd.1180350
  • Jabed, M. I. K. (2024). Stock market price prediction using machine learning techniques. American International Journal of Sciences and Engineering Research, 7(1), 1–6. https://doi.org/10.46545/aijser.v7i1.308
  • Lawrence, R. (1997). Using neural networks to forecast stock market prices (Master’s thesis, University of Manitoba).
  • Li, W. (2025, February). The study on the application of machine learning algorithms for stock prices prediction during special periods. In International Workshop on Navigating the Digital Business Frontier for Sustainable Financial Innovation (ICDEBA 2024) (pp. 656–663). Atlantis Press. https://doi.org/10.2991/978-94-6463-652-9_68
  • Li, W., Yin, Y., Quan, X., & Zhang, H. (2019). Gene expression value prediction based on XGBoost algorithm. Frontiers in Genetics, 10, Article 1077. https://doi.org/10.3389/fgene.2019.01077
  • Masini, R., Medeiros, M., & Mendes, E. (2023). Machine learning advances for time series forecasting. Journal of Economic Surveys, 37(1), 76–111. https://doi.org/10.1111/joes.12429
  • Oukhouya, H., Kadiri, H., El Himdi, K., & Guerbaz, R. (2024). Forecasting international stock market trends: XGBoost, LSTM, LSTM-XGBoost, and backtesting XGBoost models. Statistics, Optimization & Information Computing, 12(1), 200–209. https://doi.org/10.19139/soic-2310-5070-1822
  • Paliari, I., Karanikola, A., & Kotsiantis, S. (2021, July). A comparison of the optimized LSTM, XGBOOST and ARIMA in time series forecasting. In 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 1–7). IEEE. https://doi.org/10.1109/IISA52424.2021.9555520
  • Satrio, C., Darmawan, W., Nadia, B., & Hanafiah, N. (2021). Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. Procedia Computer Science, 179, 524–532. https://doi.org/10.1016/j.procs.2021.01.036
  • Schluchter, M. D. (2005). Mean square error. In P. Armitage & T. Colton (Eds.), Encyclopedia of biostatistics (Vol. 5). John Wiley & Sons. https://doi.org/10.1002/0470011815.b2a15087
  • Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V., & Soman, K. (2017). Stock price prediction using LSTM, RNN and CNN-sliding window model. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1643–1647). IEEE. https://doi.org/10.1109/ICACCI.2017.8126078
  • Shaban, W. M., Ashraf, E., & Slama, A. E. (2024). SMP-DL: A novel stock market prediction approach based on deep learning for effective trend forecasting. Neural Computing and Applications, 36(4), 1849–1873. https://doi.org/10.1007/s00521-023-09179-4
  • Sharma, P., & Jain, M. (2023). Stock market trends analysis using extreme gradient boosting (XGBoost). In International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) (pp. 317–322). IEEE. https://doi.org/10.1109/ICCCIS60361.2023.10425722
  • Singh, S. K., & Praveen, S. (2025). Benchmarking of regression algorithms on major evaluation criteria for stock price prediction. In Challenges and Opportunities for Innovation in India (pp. 312–316). CRC Press. https://doi.org/10.1201/9781003606260-57
  • Taylor, S., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45. https://doi.org/10.1080/00031305.2017.1380080
  • Ustalı Koç, N., Tosun, N., & Tosun, Ö. (2021). Makine öğrenmesi teknikleri ile hisse senedi fiyat tahmini. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 16(1), 1–16. https://doi.org/10.17153/oguiibf.636017
  • Yadav, A., Jha, C. K., & Sharan, A. (2020). Optimizing LSTM for time series prediction in Indian stock market. Procedia Computer Science, 167, 2091–2100. https://doi.org/10.1016/j.procs.2020.03.257
  • Yenidoğan, I., Çayir, A., Kozan, O., Dağ, T., & Arslan, Ç. (2018, September). Bitcoin forecasting using ARIMA and Prophet. In 2018 3rd International Conference on Computer Science and Engineering (UBMK) (pp. 621–624). IEEE. https://doi.org/10.1109/UBMK.2018.8566476
  • Yoo, P. D., Kim, M. H., & Jan, T. (2005, December). Financial forecasting: Advanced machine learning techniques in stock market analysis. In 2005 Pakistan Section Multitopic Conference (pp. 1–7). IEEE. https://doi.org/10.1109/INMIC.2005.334420
  • Yurttabir, A., & Sen, I. K. (2021). Prophet model in financial performance forecast: Implementation in manufacturing sector. Journal of Economics, Finance and Accounting (JEFA), 8(4), 160–166. https://doi.org/10.17261/Pressacademia.2021.1470
  • Zhang, G. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0
There are 30 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other)
Journal Section Articles
Authors

Diler Türkoğlu 0000-0001-5247-1590

Mehmet Ali Cengiz 0000-0002-1271-2588

Publication Date October 30, 2025
Submission Date October 15, 2024
Acceptance Date September 25, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Türkoğlu, D., & Cengiz, M. A. (2025). Time Series Forecasting of MSCI Indices With Machine Learning. Duzce University Journal of Science and Technology, 13(4), 1732-1744. https://doi.org/10.29130/dubited.1567866
AMA Türkoğlu D, Cengiz MA. Time Series Forecasting of MSCI Indices With Machine Learning. DUBİTED. October 2025;13(4):1732-1744. doi:10.29130/dubited.1567866
Chicago Türkoğlu, Diler, and Mehmet Ali Cengiz. “Time Series Forecasting of MSCI Indices With Machine Learning”. Duzce University Journal of Science and Technology 13, no. 4 (October 2025): 1732-44. https://doi.org/10.29130/dubited.1567866.
EndNote Türkoğlu D, Cengiz MA (October 1, 2025) Time Series Forecasting of MSCI Indices With Machine Learning. Duzce University Journal of Science and Technology 13 4 1732–1744.
IEEE D. Türkoğlu and M. A. Cengiz, “Time Series Forecasting of MSCI Indices With Machine Learning”, DUBİTED, vol. 13, no. 4, pp. 1732–1744, 2025, doi: 10.29130/dubited.1567866.
ISNAD Türkoğlu, Diler - Cengiz, Mehmet Ali. “Time Series Forecasting of MSCI Indices With Machine Learning”. Duzce University Journal of Science and Technology 13/4 (October2025), 1732-1744. https://doi.org/10.29130/dubited.1567866.
JAMA Türkoğlu D, Cengiz MA. Time Series Forecasting of MSCI Indices With Machine Learning. DUBİTED. 2025;13:1732–1744.
MLA Türkoğlu, Diler and Mehmet Ali Cengiz. “Time Series Forecasting of MSCI Indices With Machine Learning”. Duzce University Journal of Science and Technology, vol. 13, no. 4, 2025, pp. 1732-44, doi:10.29130/dubited.1567866.
Vancouver Türkoğlu D, Cengiz MA. Time Series Forecasting of MSCI Indices With Machine Learning. DUBİTED. 2025;13(4):1732-44.