Research Article
BibTex RIS Cite

Geleneksel ev yapımı sirkelerin kalitesi üzerine dielektrik, UV-vis ve FTIR spektroskopisi çalışmaları

Year 2025, Volume: 13 Issue: 4, 1476 - 1493, 30.10.2025
https://doi.org/10.29130/dubited.1607245

Abstract

Bu çalışmada geleneksel ev yapımı yöntemle üretilen elma, harmanlanmış elma, üzüm, harmanlanmış üzüm, alıç ve harmanlanmış alıç sirkelerinin kalite farklılıklarının belirlenmesi amaçlanmıştır. Bu sirkeler dielektrik spektroskopisi, UV-vis spektroskopisi, Fourier dönüşümlü kızılötesi spektroskopisi ve reoloji tekniklerinin kombinasyonu kullanılarak analiz edilmiştir. Dielektrik özellikler frekansa bağlı olarak analiz edilerek sonuçlarda Maxwell-Wagner teorisiyle uyumlu davranışlar gösterilmiştir. Sirke için eşdeğer direnç-kapasitör (RC) devresi olan Smith abağındaki empedans devresine karşılık gelen karmaşık empedans düzlemi çizimlerinin Cole-Cole durulma modeliyle uyumlu olduğu bulunmuştur. Sirkelerin UV-vis spektrumlarının numunelerin içeriklerindeki organik asit ve fenolik bileşik konsantrasyonuna bağlı olarak farklılık gösterdiği belirlenmiştir. Tüm numuneler için optik bant aralıklarını (Eg) elde ederek çoğu harmanlanmış sirkenin saf olanlardan daha düşük Eg değerlerine sahip olduğunu gözlemledik. Kalite özelliklerini analiz ettiğimiz tüm sirkelerin akış davranışlarına göre Newton tipi olmayan kıvamlaştırıcı akışkan davranışına sahip olduğunu tespit ettik.

References

  • Adams, M. R. (1998). Microbiology of fermented foods: Vinegar. In Microbiology of fermented foods (pp. 1–44). Springer. http://doi.org/10.1007/978-1-4613-0309-1_1
  • Aleixandre-Tudo, J. L., & du Toit, W. (2019). The role of UV-visible spectroscopy for phenolic compounds quantification in winemaking. IntechOpen. https://doi.org/10.5772/intechopen.79550
  • Ali, A., Alabbosh, K. F. S., Naveed, A., Uddin, A., Chen, Y., Aziz, T., Moradian, J. M., Imran, M., Yin, L., Hassan, M., Qureshi, W. A., Ullah, M. W., Fan, Z., & Guo, L. (2022). Evaluation of the dielectric and insulating properties of newly synthesized ethylene/1-hexene/4-vinylcyclohexene terpolymers. ACS Omega, 7(35), 31509–31519. https://doi.org/10.1021/acsomega.2c04123
  • Bao, J. Z., Davis, C. C., & Schmukler, R. E. (1992). Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition. Biophysical Journal, 61, 1427–1434. https://doi.org/10.1016/S0006-3495(92)81948-3
  • Batchelor, G. K. (1967). An Introduction to Fluid Dynamics (Cambridge Mathematical Library series). Cambridge University Press.
  • Beer, A. (1852). Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Annalen der Physik, 162, 78–88. https://doi.org/10.1002/andp.18521620505
  • Beisl, S., Binder, M., Varmuza, K., Miltner, A., & Friedl, A. (2018). UV-Vis spectroscopy and chemometrics for the monitoring of organosolv pretreatments. Chemical Engineering Transactions, 2(4), Article 45. https://doi.org/10.3390/chemengineering2040045
  • Bottéro, J. (2004). The oldest cuisine in the world: Cooking in Mesopotamia. University of Chicago Press.
  • Bouguer, P. (1760). Traité d’optique sur la gradation de la lumière. Guerin and Delatour.
  • Bourgeois, J. F., & Barja, F. (2009). The history of vinegar and of its acetification systems. Archives des sciences, 62, 147-160. http://doi.org/10.5169/seals-738455
  • Budak, N. H., Aykin, E., Seydim, A. C., Greene, A. K., & Guzel-Seydim, Z. B. (2014). Functional properties of vinegar. Journal of Food Science, 79, 757–764. https://doi.org/10.1111/1750-3841.12434
  • Caron-Decloquement, A. (2010). Extractives from sitka spruce. [Doctoral dissertation, University of Glasgow].
  • Chand, P., Vaish, S. & Kumar, P. (2017). Structural, optical and dielectric properties of transition metal (MFe2O4; M= Co, Ni and Zn) nanoferrites. Physica B, 524, 53–63. https://doi.org/10.1016/j.physb.2017.08.060
  • Chen, H., Chen, T., Giudici, P., & Chen, F. (2016). Vinegar functions on health: constituents, sources, and formation mechanisms. Comprehensive Reviews in Food Science and Food Safety, 15, 1124–1138. https://doi.org/10.1111/1541-4337.12228
  • Cheng, Z., Ran, Q., Liu, J., Deng, X., Qiu, H., Jia, Z., & Su, X. (2020). Rapid determination for benzoic acid, sorbic acid, phenyllactic acid, phenylalanine, and saccharin sodium in vinegar by high-performance liquid chromatography–UV. Food Analytical Methods, 13, 1673–1680. https://doi.org/10.1007/s12161-020-01784-6
  • Chhabra, R. P., & Richardson, J. F. (1999). Non-Newtonian flow and applied rheology: Engineering applications. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-7506-8532-0.X0001-7
  • Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9, 341–351. https://doi.org/10.1063/1.1750906
  • Coşkun, R., Okutan, M., Öztürk, M., & Yalçın, O. (2019). Experimental model to describe the dielectric response of different dye and nanoparticles doped hydrogels for biological cell membranes and biological systems. Journal of Molecular Liquids, 296, Article 112072. https://doi.org/10.1016/j.molliq.2019.112072
  • de Oliveira, S. R., & Neto, J. A. G. (2007). Evaluation of Bi as internal standard to minimize matrix effects on the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru permanent modifier with co-injection of Pd/Mg(NO3)2. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 1046–1050. https://doi.org/10.1016/j.sab.2007.06.007
  • Debye, P. (1929). Polar molecules. The Chemical Catalog Company Inc.
  • Di Capua, R., Offi, F., & Fontana, F. (2014). Check the Lambert–Beer–Bouguer law: A simple trick to boost the confidence of students toward both exponential laws and the discrete approach to experimental physics. European Journal of Physics, 35, Article 045025. https://doi.org/10.1088/0143-0807/35/4/045025
  • Dogan, M., Kayacier, A., Toker, Ö. S., Yilmaz, M. T., & Karaman, S. (2013). Steady, dynamic, creep, and recovery analysis of ice cream mixes added with different concentrations of xanthan gum. Food and Bioprocess Technology, 6, 1420–1433. https://doi.org/10.1007/s11947-012-0872-z
  • Doolittle, A. K. (1951). Studies in Newtonian flow. I. The dependence of the viscosity of liquids on temperature. Journal of Applied Physics, 22, 1031-1035. https://doi.org/10.1063/1.1700096
  • El Khaled, D., Castellano, N. N., Gázquez, J. A., Perea-Moreno, A. J., & Manzano-Agugliaro, F. (2016). Dielectric spectroscopy in biomaterials: Agrophysics. Materials, 9(5), Article 310. https://doi.org/10.3390/ma9050310
  • Elwakil, A. S., & Maundy, B. (2010). Extracting the Cole-Cole impedance model parameters without direct impedance measurement. Electronics Letters, 46(20), 1367–1368. https://doi.org/10.1049/el.2010.1924
  • Entani, E., Asai, M., Tsujihata, S., Tsukamoto, Y., & Ohta, M. (1998). Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli 0157:H7. Journal of Food Protection, 61(8), 953–959. https://doi.org/10.11150/kansenshogakuzasshi1970.71.451
  • Falcone, P. M., Chillo, S., Giudici, P. A., & Del Nobile, M. (2007). Measuring rheological properties for applications in quality assessment of traditional balsamic vinegar: Description and preliminary evaluation of a model. Journal of Food Engineering, 80(1), 234–240. https://doi.org/10.1016/j.jfoodeng.2006.05.023
  • Feng, S., Yuan, Z., Leitch, M., Shui, H., & Xu, C. C. (2016). Effects of bark extraction before liquefaction and liquid oil fractionation after liquefaction on bark-based phenol formaldehyde resoles. Industrial Crops and Products, 84, 330–336. https://doi.org/10.1016/j.indcrop.2016.02.022
  • Fernandes, P. R. G., da Silva, K. A., Mukai, H., & Muniz, E. C. (2017). Optical, morphological and dielectric characterization of MBBA liquid crystal-doped hydrogels. Journal of Molecular Liquids, 229, 319–329. https://doi.org/10.1016/j.molliq.2016.12.080
  • García-Parrilla, M. C., Camacho, M. L., Heredia, F. J., & Troncoso, A. M. (1994). Separation and identification of phenolic acids in wine vinegars by HPLC. Food Chemistry, 50, 313–315. https://doi.org/10.1016/0308-8146(94)90140-6
  • Görgülüer, Ö., Coşkun, R., Yalçın, O., Okutan, M., Uslu, H., & Doğanay, B. Ş. (2024). Structural, morphological and dielectrical properties of acorn cupule extract doped hydrogels. Journal of Molecular Structure, 1309, 138120. https://doi.org/10.1016/j.molstruc.2024.138120
  • Guerrero, E. D., Mejías, R. C., Marín, R. N., Lovillo, M. P., & Barroso, C. G. (2010). A new FT-IR method combined with multivariate analysis for the classification of vinegars from different raw materials and production processes. Journal of the Science of Food and Agriculture, 90, 712–718. https://doi.org/10.1002/jsfa.3873
  • Gunasekaran, S., & Ak, M. M. (2000). Dynamic oscillatory shear testing of foods—selected applications. Trends in Food Science & Technology, 11, 115–127. https://doi.org/10.1016/S0924-2244(00)00058-3
  • Ho, C. W., Lazim, A. M., Fazry, S., Zaki, U. K. H. H., & Lim, S. J. (2017). Varieties, production, composition and health benefits of vinegars: A review. Food Chemistry, 221, 1621–1630. https://doi.org/10.1016/j.foodchem.2016.10.128
  • Jana, P. K., Sarkar, S., & Chaudhuri, B. K. (2007). Maxwell–Wagner polarization mechanism in potassium and titanium doped nickel oxide showing giant dielectric permittivity. Journal of Physics D: Applied Physics, 40, 556–560. https://doi.org/10.1088/0022-3727/40/2/033
  • Jeans, J. H. (1905). On the partition of energy between matter and Æther. Philosophical Magazine, Series 6, 6(10), 91–98. https://doi.org/10.1080/14786440509463348
  • Kadiroğlu, P. (2018). FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. Journal of the Science of Food and Agriculture, 98(11), 4121–4127. https://doi.org/10.1002/jsfa.8929
  • Kassim, M. S., & Sarow, S. A. (2020). Flows of viscous fluids in food processing industries: A review. Materials Science and Engineering, 870, Article 012032. https://doi.org/10.1088/1757-899X/870/1/012032
  • Lambert, J. H. (1760). Photometria, sive de mensura et gradibus luminis, colorum et umbrae. Leipzig: Engelmann.
  • Laun, M., Auhl, D., Brummer, R., Dijkstra, D. J., Gabriel, C., Mangnus, M. A., Rüllmann, M., Zoetelief, W., & Handge, U. A. (2014). Guidelines for checking performance and verifying accuracy of rotational rheometers: Viscosity measurements in steady and oscillatory shear. Pure and Applied Chemistry, 86(12), 1945–1968. https://doi.org/10.1515/pac-2013-0601
  • Liu, Q., Tang, G. Y., Zhao, C. N., Gan, R. Y., & Li, H. B. (2019). Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants, 8, Article 78. https://doi.org/10.3390/antiox8040078
  • Liu, Q., Zhong, Z., Wang, S., & Luo, Z. (2011). Interactions of biomass components during pyrolysis: A TG-FTIR study. Journal of Analytical and Applied Pyrolysis, 90, 213–218. https://doi.org/10.1016/j.jaap.2010.12.009
  • Londonio, A., Morzán, E., & Smichowski, P. (2019). Determination of toxic and potentially toxic elements in rice and rice-based products by inductively coupled plasma-mass spectrometry. Food Chemistry, 284, 149–154. https://doi.org/10.1016/j.foodchem.2019.01.104
  • Lynch, K. M., Zannini, E., Wilkinson, S., Daenen, L., & Arendt, E. K. (2019). Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. Comprehensive Reviews in Food Science and Food Safety, 18, 587–625. https://doi.org/10.1111/1541-4337.12440
  • Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20, 289–305. https://doi.org/10.1007/BF02368532
  • Mach, E. (2003). The principles of physical optics: An historical and philosophical treatment (Original work published 1926). Dover Publications.
  • Malisuwan, S., & Sivaraks, J. (2013). Frequency-dependent smith-chart model as applied to integrated circuit package antenna design. International Journal of Computer and Communication Engineering, 2, Article 625. https://doi.org/10.7763/IJCCE.2013.V2.262
  • Mazzer, H., Cardozo-Filho, L., & Fernandes, P. R. G. (2018). Broadband dielectric spectroscopy of protic ethylammonium-based ionic liquids synthetized with different anions. Journal of Molecular Liquids, 269, 556–563. https://doi.org/10.1016/j.molliq.2018.08.076
  • Nguyen, Q. H., & Nguyen, N. D. (2012). Incompressible Non-Newtonian fluid flows. In Continuum mechanics –Progress in fundamentals and engineering applications (pp. 47–72). InTech. https://doi.org/10.5772/26091
  • Okutan, M., Coşkun, R., Yalçın, O., Babuçoğlu, A. C., & Demir, A. (2023). Investigation of the dielectric and optic properties of rosehip seed extract loaded hydrogels. Journal of Molecular Structure, 1274(2), Article 134480. https://doi.org/10.1016/j.molstruc.2022.134480
  • Okutan, M., Coşkun, R., Öztürk, M., Yalçın, O., & Toker, C. (2021). Equivalent circuit properties of organic food extracts doped hydrogels and their applications in bioelectronics. Journal of Molecular Liquids, 337, Article 116401. https://doi.org/10.1016/j.molliq.2021.116401
  • Okutan, M., Öztürk, M., Okutan, S., Yesilot, G., Yalçın, O., Bablich, A., & Bolívar, P. H. (2024). Impedance characterization of hydrothermally synthesized nickel zinc ferrite nanoparticles for electronic application. Physica E: Low-dimensional Systems and Nanostructures, 158, Article 15900. https://doi.org/10.1016/j.physe.2024.115900
  • Owen, T. (1996). Fundamentals of UV-visible spectroscopy: A primer (Technical Publication No. 12:5965-5123E, pp. 14–25). Hewlett-Packard Company.
  • Öztürk, M. (2021a). Evaluation of quality the pumpkin, wild plum, pear, cabbage traditional homemade vinegars using the spectroscopy and rheology methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 259, Article 119896. https://doi.org/10.1016/j.saa.2021.119896
  • Öztürk, M. (2021b). Determination of quality in homemade vinegars by spectroscopy and rheology methods. Düzce University Journal of Science & Technology, 9, 1493–1506. https://doi.org/10.29130/dubited.882634
  • Öztürk, M., Yalçın, O., Tekgündüz, C., & Tekgündüz, E. (2022). Origin of the effects of optical spectrum and flow behaviour in determining the quality of dry fig, jujube, pomegranate, date palm and concentrated grape vinegars. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 270, Article 120792. https://doi.org/10.1016/j.saa.2021.120792
  • Padmamalini, N., & Ambujam, K. (2016). Impedance and modulus spectroscopy of ZrO2– TiO2–V2O5 nanocomposite. Karbala International Journal of Modern Science, 2, 271–275. https://doi.org/10.1016/j.kijoms.2016.10.001
  • Rayleigh, L. (1900). LIII. Remarks upon the law of complete radiation. Philosophical Magazine, 49(301), 539–540. https://doi.org/10.1080/14786440009463878
  • Ríos-Reina, R., Callejón, R. M., Oliver-Pozo, C., Amigo, J. M., & García-González, D. L. (2017). ATR-FTIR as a potential tool for controlling high quality vinegar categories. Food Control, 78, 230–237. https://doi.org/10.1016/j.foodcont.2017.02.065
  • Routray, W., & Orsat, V. (2014). Variation of dielectric properties of aqueous solutions of ethanol and acids at various temperatures with low acid concentration levels. Physics and Chemistry of Liquids, 52, 209–232. https://doi.org/10.1080/00319104.2013.812022
  • Singh, A., Singh, A., Singh, S., Tandon, P., Yadav, B. C., & Yadav, R. R. (2015). Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. Journal of Alloys and Compounds, 618, 475–483. https://doi.org/10.1016/j.jallcom.2014.08.190
  • Smith, P. H. (1939). Transmission line calculator. Electronics, 12, 29–41.
  • Tauc, J. (1968). Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3, 37–46. https://doi.org/10.1016/0025-5408(68)90023-8
  • Ubeda, C., Callejón, R. M., Hidalgo, C., Torija, M. J., Mas, A., Troncoso, A. M., & Morales, M. L. (2011). Determination of major volatile compounds during the production of fruit vinegars by static headspace gas chromatography–mass spectrometry method. Food Research International, 44, 259–268. https://doi.org/10.1016/j.foodres.2010.10.025
  • Vu, T. T. N., Teyssedre, G., Roy, S. L., & Laurent, C. (2017). Maxwell–wagner effect in multi-layered dielectrics: Interfacial charge measurement and modelling. Technologies, 5, 1–15. https://doi.org/10.3390/technologies5020027
  • Wagner, K. W. (1914). Erklarung der dielektrischen nachwirkungsvorgange auf grund maxwellscher vorstellungen. Archiv für Elektrotechnik, 2, 371–387. https://doi.org/10.1007/BF01657322
  • Wang, L., Yang, J., Lin, Q., Xiang, L., Song, Z., Zhang, Y., & Chen, L. (2019). Determination of 10 organic acid contents in tea using high performance liquid chromatography-diode array detector. Journal of Zhejiang University: Agriculture and Life Sciences, 45, 47–53. https://doi.org/10.3785/j.issn.1008-9209.2017.12.192
  • Williams, D. H., & Fleming, I. (1989). Spectroscopic methods in organic chemistry (pp. 12–85). McGraw Hill Inc. Yalçın, O., Öztürk, M., & Görgülüer, Ö. (2022). Investigation of optical and flow properties of avocados by spectroscopy and rheology methods. Acta Physica Polonica A, 141, 481−486. https://doi.org/10.12693/aphyspola.141.481
  • Yalçın, O., Tekgündüz, C., Öztürk, M., & Tekgündüz, E. (2021). Investigation of the traditional organic vinegars by UV–VIS spectroscopy and rheology techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, Article 118987. https://doi.org/10.1016/j.saa.2020.118987

Dielectric, UV-vis, FTIR Spectroscopic and Rheological Studies on the Quality of Traditional Homemade Vinegars

Year 2025, Volume: 13 Issue: 4, 1476 - 1493, 30.10.2025
https://doi.org/10.29130/dubited.1607245

Abstract

This study aimed to determine the quality differences of the apple, blended apple, grape, blended grape, hawthorn and blended hawthorn homemade vinegars produced by the traditional method. These vinegars were analyzed by using a combination of the dielectric spectroscopy, UV-vis spectroscopy, Fourier transform infrared spectroscopy and rheological techniques. Dielectric properties were analyzed as frequency dependent and behaviors consistent with Maxwell-Wagner theory were demonstrated. The complex impedance plane plots corresponding to the impedance circuit on the Smith chart, which is the equivalent resistor-capacitor (RC) circuit for vinegar, were found to be compatible with the Cole-Cole relaxation model. It was determined that the UV-vis spectra of vinegars differ depending on the concentration of organic acids and phenolic compounds in their content. By obtaining the optical band gaps (Eg) for all samples, we observed that most blended vinegars had lower the Eg values than pure ones. According to flow behaviours, it was revealed that all vinegars whose quality characteristics we analyzed, have non-Newtonian shear-thickening (dilatant) fluid behavior.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited

Supporting Institution

This work was financially supported by Scientific Research Projects Coordination Unit of Niğde Ömer Halisdemir University with Project No.: FMT 2022/1-LÜTEP

References

  • Adams, M. R. (1998). Microbiology of fermented foods: Vinegar. In Microbiology of fermented foods (pp. 1–44). Springer. http://doi.org/10.1007/978-1-4613-0309-1_1
  • Aleixandre-Tudo, J. L., & du Toit, W. (2019). The role of UV-visible spectroscopy for phenolic compounds quantification in winemaking. IntechOpen. https://doi.org/10.5772/intechopen.79550
  • Ali, A., Alabbosh, K. F. S., Naveed, A., Uddin, A., Chen, Y., Aziz, T., Moradian, J. M., Imran, M., Yin, L., Hassan, M., Qureshi, W. A., Ullah, M. W., Fan, Z., & Guo, L. (2022). Evaluation of the dielectric and insulating properties of newly synthesized ethylene/1-hexene/4-vinylcyclohexene terpolymers. ACS Omega, 7(35), 31509–31519. https://doi.org/10.1021/acsomega.2c04123
  • Bao, J. Z., Davis, C. C., & Schmukler, R. E. (1992). Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition. Biophysical Journal, 61, 1427–1434. https://doi.org/10.1016/S0006-3495(92)81948-3
  • Batchelor, G. K. (1967). An Introduction to Fluid Dynamics (Cambridge Mathematical Library series). Cambridge University Press.
  • Beer, A. (1852). Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Annalen der Physik, 162, 78–88. https://doi.org/10.1002/andp.18521620505
  • Beisl, S., Binder, M., Varmuza, K., Miltner, A., & Friedl, A. (2018). UV-Vis spectroscopy and chemometrics for the monitoring of organosolv pretreatments. Chemical Engineering Transactions, 2(4), Article 45. https://doi.org/10.3390/chemengineering2040045
  • Bottéro, J. (2004). The oldest cuisine in the world: Cooking in Mesopotamia. University of Chicago Press.
  • Bouguer, P. (1760). Traité d’optique sur la gradation de la lumière. Guerin and Delatour.
  • Bourgeois, J. F., & Barja, F. (2009). The history of vinegar and of its acetification systems. Archives des sciences, 62, 147-160. http://doi.org/10.5169/seals-738455
  • Budak, N. H., Aykin, E., Seydim, A. C., Greene, A. K., & Guzel-Seydim, Z. B. (2014). Functional properties of vinegar. Journal of Food Science, 79, 757–764. https://doi.org/10.1111/1750-3841.12434
  • Caron-Decloquement, A. (2010). Extractives from sitka spruce. [Doctoral dissertation, University of Glasgow].
  • Chand, P., Vaish, S. & Kumar, P. (2017). Structural, optical and dielectric properties of transition metal (MFe2O4; M= Co, Ni and Zn) nanoferrites. Physica B, 524, 53–63. https://doi.org/10.1016/j.physb.2017.08.060
  • Chen, H., Chen, T., Giudici, P., & Chen, F. (2016). Vinegar functions on health: constituents, sources, and formation mechanisms. Comprehensive Reviews in Food Science and Food Safety, 15, 1124–1138. https://doi.org/10.1111/1541-4337.12228
  • Cheng, Z., Ran, Q., Liu, J., Deng, X., Qiu, H., Jia, Z., & Su, X. (2020). Rapid determination for benzoic acid, sorbic acid, phenyllactic acid, phenylalanine, and saccharin sodium in vinegar by high-performance liquid chromatography–UV. Food Analytical Methods, 13, 1673–1680. https://doi.org/10.1007/s12161-020-01784-6
  • Chhabra, R. P., & Richardson, J. F. (1999). Non-Newtonian flow and applied rheology: Engineering applications. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-7506-8532-0.X0001-7
  • Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9, 341–351. https://doi.org/10.1063/1.1750906
  • Coşkun, R., Okutan, M., Öztürk, M., & Yalçın, O. (2019). Experimental model to describe the dielectric response of different dye and nanoparticles doped hydrogels for biological cell membranes and biological systems. Journal of Molecular Liquids, 296, Article 112072. https://doi.org/10.1016/j.molliq.2019.112072
  • de Oliveira, S. R., & Neto, J. A. G. (2007). Evaluation of Bi as internal standard to minimize matrix effects on the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru permanent modifier with co-injection of Pd/Mg(NO3)2. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 1046–1050. https://doi.org/10.1016/j.sab.2007.06.007
  • Debye, P. (1929). Polar molecules. The Chemical Catalog Company Inc.
  • Di Capua, R., Offi, F., & Fontana, F. (2014). Check the Lambert–Beer–Bouguer law: A simple trick to boost the confidence of students toward both exponential laws and the discrete approach to experimental physics. European Journal of Physics, 35, Article 045025. https://doi.org/10.1088/0143-0807/35/4/045025
  • Dogan, M., Kayacier, A., Toker, Ö. S., Yilmaz, M. T., & Karaman, S. (2013). Steady, dynamic, creep, and recovery analysis of ice cream mixes added with different concentrations of xanthan gum. Food and Bioprocess Technology, 6, 1420–1433. https://doi.org/10.1007/s11947-012-0872-z
  • Doolittle, A. K. (1951). Studies in Newtonian flow. I. The dependence of the viscosity of liquids on temperature. Journal of Applied Physics, 22, 1031-1035. https://doi.org/10.1063/1.1700096
  • El Khaled, D., Castellano, N. N., Gázquez, J. A., Perea-Moreno, A. J., & Manzano-Agugliaro, F. (2016). Dielectric spectroscopy in biomaterials: Agrophysics. Materials, 9(5), Article 310. https://doi.org/10.3390/ma9050310
  • Elwakil, A. S., & Maundy, B. (2010). Extracting the Cole-Cole impedance model parameters without direct impedance measurement. Electronics Letters, 46(20), 1367–1368. https://doi.org/10.1049/el.2010.1924
  • Entani, E., Asai, M., Tsujihata, S., Tsukamoto, Y., & Ohta, M. (1998). Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli 0157:H7. Journal of Food Protection, 61(8), 953–959. https://doi.org/10.11150/kansenshogakuzasshi1970.71.451
  • Falcone, P. M., Chillo, S., Giudici, P. A., & Del Nobile, M. (2007). Measuring rheological properties for applications in quality assessment of traditional balsamic vinegar: Description and preliminary evaluation of a model. Journal of Food Engineering, 80(1), 234–240. https://doi.org/10.1016/j.jfoodeng.2006.05.023
  • Feng, S., Yuan, Z., Leitch, M., Shui, H., & Xu, C. C. (2016). Effects of bark extraction before liquefaction and liquid oil fractionation after liquefaction on bark-based phenol formaldehyde resoles. Industrial Crops and Products, 84, 330–336. https://doi.org/10.1016/j.indcrop.2016.02.022
  • Fernandes, P. R. G., da Silva, K. A., Mukai, H., & Muniz, E. C. (2017). Optical, morphological and dielectric characterization of MBBA liquid crystal-doped hydrogels. Journal of Molecular Liquids, 229, 319–329. https://doi.org/10.1016/j.molliq.2016.12.080
  • García-Parrilla, M. C., Camacho, M. L., Heredia, F. J., & Troncoso, A. M. (1994). Separation and identification of phenolic acids in wine vinegars by HPLC. Food Chemistry, 50, 313–315. https://doi.org/10.1016/0308-8146(94)90140-6
  • Görgülüer, Ö., Coşkun, R., Yalçın, O., Okutan, M., Uslu, H., & Doğanay, B. Ş. (2024). Structural, morphological and dielectrical properties of acorn cupule extract doped hydrogels. Journal of Molecular Structure, 1309, 138120. https://doi.org/10.1016/j.molstruc.2024.138120
  • Guerrero, E. D., Mejías, R. C., Marín, R. N., Lovillo, M. P., & Barroso, C. G. (2010). A new FT-IR method combined with multivariate analysis for the classification of vinegars from different raw materials and production processes. Journal of the Science of Food and Agriculture, 90, 712–718. https://doi.org/10.1002/jsfa.3873
  • Gunasekaran, S., & Ak, M. M. (2000). Dynamic oscillatory shear testing of foods—selected applications. Trends in Food Science & Technology, 11, 115–127. https://doi.org/10.1016/S0924-2244(00)00058-3
  • Ho, C. W., Lazim, A. M., Fazry, S., Zaki, U. K. H. H., & Lim, S. J. (2017). Varieties, production, composition and health benefits of vinegars: A review. Food Chemistry, 221, 1621–1630. https://doi.org/10.1016/j.foodchem.2016.10.128
  • Jana, P. K., Sarkar, S., & Chaudhuri, B. K. (2007). Maxwell–Wagner polarization mechanism in potassium and titanium doped nickel oxide showing giant dielectric permittivity. Journal of Physics D: Applied Physics, 40, 556–560. https://doi.org/10.1088/0022-3727/40/2/033
  • Jeans, J. H. (1905). On the partition of energy between matter and Æther. Philosophical Magazine, Series 6, 6(10), 91–98. https://doi.org/10.1080/14786440509463348
  • Kadiroğlu, P. (2018). FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. Journal of the Science of Food and Agriculture, 98(11), 4121–4127. https://doi.org/10.1002/jsfa.8929
  • Kassim, M. S., & Sarow, S. A. (2020). Flows of viscous fluids in food processing industries: A review. Materials Science and Engineering, 870, Article 012032. https://doi.org/10.1088/1757-899X/870/1/012032
  • Lambert, J. H. (1760). Photometria, sive de mensura et gradibus luminis, colorum et umbrae. Leipzig: Engelmann.
  • Laun, M., Auhl, D., Brummer, R., Dijkstra, D. J., Gabriel, C., Mangnus, M. A., Rüllmann, M., Zoetelief, W., & Handge, U. A. (2014). Guidelines for checking performance and verifying accuracy of rotational rheometers: Viscosity measurements in steady and oscillatory shear. Pure and Applied Chemistry, 86(12), 1945–1968. https://doi.org/10.1515/pac-2013-0601
  • Liu, Q., Tang, G. Y., Zhao, C. N., Gan, R. Y., & Li, H. B. (2019). Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants, 8, Article 78. https://doi.org/10.3390/antiox8040078
  • Liu, Q., Zhong, Z., Wang, S., & Luo, Z. (2011). Interactions of biomass components during pyrolysis: A TG-FTIR study. Journal of Analytical and Applied Pyrolysis, 90, 213–218. https://doi.org/10.1016/j.jaap.2010.12.009
  • Londonio, A., Morzán, E., & Smichowski, P. (2019). Determination of toxic and potentially toxic elements in rice and rice-based products by inductively coupled plasma-mass spectrometry. Food Chemistry, 284, 149–154. https://doi.org/10.1016/j.foodchem.2019.01.104
  • Lynch, K. M., Zannini, E., Wilkinson, S., Daenen, L., & Arendt, E. K. (2019). Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. Comprehensive Reviews in Food Science and Food Safety, 18, 587–625. https://doi.org/10.1111/1541-4337.12440
  • Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20, 289–305. https://doi.org/10.1007/BF02368532
  • Mach, E. (2003). The principles of physical optics: An historical and philosophical treatment (Original work published 1926). Dover Publications.
  • Malisuwan, S., & Sivaraks, J. (2013). Frequency-dependent smith-chart model as applied to integrated circuit package antenna design. International Journal of Computer and Communication Engineering, 2, Article 625. https://doi.org/10.7763/IJCCE.2013.V2.262
  • Mazzer, H., Cardozo-Filho, L., & Fernandes, P. R. G. (2018). Broadband dielectric spectroscopy of protic ethylammonium-based ionic liquids synthetized with different anions. Journal of Molecular Liquids, 269, 556–563. https://doi.org/10.1016/j.molliq.2018.08.076
  • Nguyen, Q. H., & Nguyen, N. D. (2012). Incompressible Non-Newtonian fluid flows. In Continuum mechanics –Progress in fundamentals and engineering applications (pp. 47–72). InTech. https://doi.org/10.5772/26091
  • Okutan, M., Coşkun, R., Yalçın, O., Babuçoğlu, A. C., & Demir, A. (2023). Investigation of the dielectric and optic properties of rosehip seed extract loaded hydrogels. Journal of Molecular Structure, 1274(2), Article 134480. https://doi.org/10.1016/j.molstruc.2022.134480
  • Okutan, M., Coşkun, R., Öztürk, M., Yalçın, O., & Toker, C. (2021). Equivalent circuit properties of organic food extracts doped hydrogels and their applications in bioelectronics. Journal of Molecular Liquids, 337, Article 116401. https://doi.org/10.1016/j.molliq.2021.116401
  • Okutan, M., Öztürk, M., Okutan, S., Yesilot, G., Yalçın, O., Bablich, A., & Bolívar, P. H. (2024). Impedance characterization of hydrothermally synthesized nickel zinc ferrite nanoparticles for electronic application. Physica E: Low-dimensional Systems and Nanostructures, 158, Article 15900. https://doi.org/10.1016/j.physe.2024.115900
  • Owen, T. (1996). Fundamentals of UV-visible spectroscopy: A primer (Technical Publication No. 12:5965-5123E, pp. 14–25). Hewlett-Packard Company.
  • Öztürk, M. (2021a). Evaluation of quality the pumpkin, wild plum, pear, cabbage traditional homemade vinegars using the spectroscopy and rheology methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 259, Article 119896. https://doi.org/10.1016/j.saa.2021.119896
  • Öztürk, M. (2021b). Determination of quality in homemade vinegars by spectroscopy and rheology methods. Düzce University Journal of Science & Technology, 9, 1493–1506. https://doi.org/10.29130/dubited.882634
  • Öztürk, M., Yalçın, O., Tekgündüz, C., & Tekgündüz, E. (2022). Origin of the effects of optical spectrum and flow behaviour in determining the quality of dry fig, jujube, pomegranate, date palm and concentrated grape vinegars. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 270, Article 120792. https://doi.org/10.1016/j.saa.2021.120792
  • Padmamalini, N., & Ambujam, K. (2016). Impedance and modulus spectroscopy of ZrO2– TiO2–V2O5 nanocomposite. Karbala International Journal of Modern Science, 2, 271–275. https://doi.org/10.1016/j.kijoms.2016.10.001
  • Rayleigh, L. (1900). LIII. Remarks upon the law of complete radiation. Philosophical Magazine, 49(301), 539–540. https://doi.org/10.1080/14786440009463878
  • Ríos-Reina, R., Callejón, R. M., Oliver-Pozo, C., Amigo, J. M., & García-González, D. L. (2017). ATR-FTIR as a potential tool for controlling high quality vinegar categories. Food Control, 78, 230–237. https://doi.org/10.1016/j.foodcont.2017.02.065
  • Routray, W., & Orsat, V. (2014). Variation of dielectric properties of aqueous solutions of ethanol and acids at various temperatures with low acid concentration levels. Physics and Chemistry of Liquids, 52, 209–232. https://doi.org/10.1080/00319104.2013.812022
  • Singh, A., Singh, A., Singh, S., Tandon, P., Yadav, B. C., & Yadav, R. R. (2015). Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. Journal of Alloys and Compounds, 618, 475–483. https://doi.org/10.1016/j.jallcom.2014.08.190
  • Smith, P. H. (1939). Transmission line calculator. Electronics, 12, 29–41.
  • Tauc, J. (1968). Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3, 37–46. https://doi.org/10.1016/0025-5408(68)90023-8
  • Ubeda, C., Callejón, R. M., Hidalgo, C., Torija, M. J., Mas, A., Troncoso, A. M., & Morales, M. L. (2011). Determination of major volatile compounds during the production of fruit vinegars by static headspace gas chromatography–mass spectrometry method. Food Research International, 44, 259–268. https://doi.org/10.1016/j.foodres.2010.10.025
  • Vu, T. T. N., Teyssedre, G., Roy, S. L., & Laurent, C. (2017). Maxwell–wagner effect in multi-layered dielectrics: Interfacial charge measurement and modelling. Technologies, 5, 1–15. https://doi.org/10.3390/technologies5020027
  • Wagner, K. W. (1914). Erklarung der dielektrischen nachwirkungsvorgange auf grund maxwellscher vorstellungen. Archiv für Elektrotechnik, 2, 371–387. https://doi.org/10.1007/BF01657322
  • Wang, L., Yang, J., Lin, Q., Xiang, L., Song, Z., Zhang, Y., & Chen, L. (2019). Determination of 10 organic acid contents in tea using high performance liquid chromatography-diode array detector. Journal of Zhejiang University: Agriculture and Life Sciences, 45, 47–53. https://doi.org/10.3785/j.issn.1008-9209.2017.12.192
  • Williams, D. H., & Fleming, I. (1989). Spectroscopic methods in organic chemistry (pp. 12–85). McGraw Hill Inc. Yalçın, O., Öztürk, M., & Görgülüer, Ö. (2022). Investigation of optical and flow properties of avocados by spectroscopy and rheology methods. Acta Physica Polonica A, 141, 481−486. https://doi.org/10.12693/aphyspola.141.481
  • Yalçın, O., Tekgündüz, C., Öztürk, M., & Tekgündüz, E. (2021). Investigation of the traditional organic vinegars by UV–VIS spectroscopy and rheology techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, Article 118987. https://doi.org/10.1016/j.saa.2020.118987
There are 69 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Articles
Authors

Orhan Yalçın 0000-0002-9551-982X

Muhittin Öztürk 0000-0003-1627-392X

Ömer Görgülüer 0000-0001-6955-7382

Mahmut Aydın 0009-0008-0739-9057

Publication Date October 30, 2025
Submission Date December 25, 2024
Acceptance Date June 3, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Yalçın, O., Öztürk, M., Görgülüer, Ö., Aydın, M. (2025). Dielectric, UV-vis, FTIR Spectroscopic and Rheological Studies on the Quality of Traditional Homemade Vinegars. Duzce University Journal of Science and Technology, 13(4), 1476-1493. https://doi.org/10.29130/dubited.1607245
AMA Yalçın O, Öztürk M, Görgülüer Ö, Aydın M. Dielectric, UV-vis, FTIR Spectroscopic and Rheological Studies on the Quality of Traditional Homemade Vinegars. DUBİTED. October 2025;13(4):1476-1493. doi:10.29130/dubited.1607245
Chicago Yalçın, Orhan, Muhittin Öztürk, Ömer Görgülüer, and Mahmut Aydın. “Dielectric, UV-Vis, FTIR Spectroscopic and Rheological Studies on the Quality of Traditional Homemade Vinegars”. Duzce University Journal of Science and Technology 13, no. 4 (October 2025): 1476-93. https://doi.org/10.29130/dubited.1607245.
EndNote Yalçın O, Öztürk M, Görgülüer Ö, Aydın M (October 1, 2025) Dielectric, UV-vis, FTIR Spectroscopic and Rheological Studies on the Quality of Traditional Homemade Vinegars. Duzce University Journal of Science and Technology 13 4 1476–1493.
IEEE O. Yalçın, M. Öztürk, Ö. Görgülüer, and M. Aydın, “Dielectric, UV-vis, FTIR Spectroscopic and Rheological Studies on the Quality of Traditional Homemade Vinegars”, DUBİTED, vol. 13, no. 4, pp. 1476–1493, 2025, doi: 10.29130/dubited.1607245.
ISNAD Yalçın, Orhan et al. “Dielectric, UV-Vis, FTIR Spectroscopic and Rheological Studies on the Quality of Traditional Homemade Vinegars”. Duzce University Journal of Science and Technology 13/4 (October2025), 1476-1493. https://doi.org/10.29130/dubited.1607245.
JAMA Yalçın O, Öztürk M, Görgülüer Ö, Aydın M. Dielectric, UV-vis, FTIR Spectroscopic and Rheological Studies on the Quality of Traditional Homemade Vinegars. DUBİTED. 2025;13:1476–1493.
MLA Yalçın, Orhan et al. “Dielectric, UV-Vis, FTIR Spectroscopic and Rheological Studies on the Quality of Traditional Homemade Vinegars”. Duzce University Journal of Science and Technology, vol. 13, no. 4, 2025, pp. 1476-93, doi:10.29130/dubited.1607245.
Vancouver Yalçın O, Öztürk M, Görgülüer Ö, Aydın M. Dielectric, UV-vis, FTIR Spectroscopic and Rheological Studies on the Quality of Traditional Homemade Vinegars. DUBİTED. 2025;13(4):1476-93.