Research Article
BibTex RIS Cite

Çimento esaslı harçlarda kolemanit konsantratör atığı (CW) ikamesinin gama ışını kalkanlama performansı, mekanik ve fiziksel özellikler üzerine etkisi

Year 2025, Volume: 13 Issue: 4, 1661 - 1675, 30.10.2025
https://doi.org/10.29130/dubited.1695973

Abstract

Mevcut çalışma, çimento esaslı harçlarda kolemanit konsantratör atığı (CW) ikamesinin gama ışını kalkanlama performansı, mühendislik ve mikro yapısal özellikler üzerindeki etkilerini sunmaktadır. Çimento harçları, çimentonun ağırlıkça %20'sine kadar farklı oranlarda CW parçacıkları ikame edecek şekilde hazırlanmıştır. Mühendislik özelliklerini karakterize etmek için priz süresi, kıvam, basınç dayanımı, geçiş hızı, toplam ve kılcal su emilimi ve taramalı elektron mikroskobu (SEM) analizi gerçekleştirilmiştir. Gama ışını (Cs-137-662 keV) kalkanlama performansı deneysel bir çalışma ile araştırılmıştır. CW ikamesinin artması, basınç dayanımında bir azalmaya ve toplam su emiliminde, kıvamda ve priz süresinde bir artışa neden olmuştur. Malzeme kalınlığındaki artış, Cs-137 gama enerjisinin radyasyona nüfuz etme yeteneği ile birlikte kolemanit ilavesinin zayıflatma üzerindeki etkisini maskelemektedir. CW katkılı malzemeler ile benzer kalınlıktaki kontrol numunelerinin kurşun eşdeğer seviyeleri, özellikle en düşük kalınlıktaki malzemelerde yapılan ölçümlerde radyasyon zayıflatma etkisini açıkça ortaya koymaktadır.

Project Number

MMF.A3.22.011

References

  • Aksoğan, O., Binici, H., & Ortlek, E. (2016). Durability of concrete made by partial replacement of fine aggregate by colemanite and barite and cement by ashes of corn stalk, wheat straw and sunflower stalk ashes. Construction and Building Materials, 106, 253–263. https://doi.org/10.1016/j.conbuildmat.2015.12.102
  • Al-Saadi, A. J., & Saadon, A. K. (2014). Gamma ray attenuation coefficients for lead oxide and iron oxide reinforced in silicate glasses as radiation shielding windows. Ibn Al-Haitham Journal for Pure & Applied Sciences, 27(3), 201–214. https://jih.uobaghdad.edu.iq/index.php/j/article/view/282
  • Binici, H., Aksogan, O., Sevinc, A. H., & Kucukonder, A. (2014). Mechanical and radioactivity shielding performances of mortars made with colemanite, barite, ground basaltic pumice and ground blast furnace slag. Construction and Building Materials, 50, 177–183. https://doi.org/10.1016/j.conbuildmat.2013.09.033
  • Castro, J., Bentz, D., & Weiss, J. (2011). Effect of sample conditioning on the water absorption of concrete. Cement and Concrete Composites, 33(8), 805–813. https://doi.org/10.1016/j.cemconcomp.2011.05.007
  • Demir, D., & Keleş, G. (2006). Radiation transmission of concrete including boron waste for 59.54 and 80.99 keV gamma rays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 245(2), 501–504. https://doi.org/10.1016/j.nimb.2005.11.139
  • Demir, F., Budak, G., Sahin, R., Karabulut, A., Oltulu, M., & Un, A. (2011). Determination of radiation attenuation coefficients of heavyweight-and normal-weight concretes containing colemanite and barite for 0.663 MeV γ-rays. Annals of Nuclear Energy, 38(6), 1274–1278. https://doi.org/10.1016/j.anucene.2011.02.009
  • El-Sayed Abdo, A. (2002). Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields. Annals of Nuclear Energy, 29(16), 1977–1988. https://doi.org/10.1016/S0306-4549(02)00019-1
  • Ersundu, A. E., Büyükyıldız, M., Ersundu, M. Ç., Şakar, E., & Kurudirek, M. (2018). The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Progress in Nuclear Energy, 104, 280–287. https://doi.org/10.1016/j.pnucene.2017.10.008
  • Han, B., Zhang, L., & Ou, J. (2017). Smart and multifunctional concrete toward sustainable infrastructures. Springer.
  • International Atomic Energy Agency. (2011). Radiation protection and safety of radiation sources: International basic safety standards (N.G. Part, Interim ed.). https://regelwerk.grs.de/sites/default/files/cc/dokumente/dokumente/DS379%20Draft5.0-21Mar2011.pdf
  • International Commission on Radiological Protection. (2007). The 2007 recommendations of the International Commission on Radiological Protection (ICRP Publication 103). Annals of the ICRP, 37(2–4), 1–133.
  • International Organization for Standardization. (2019). Radiological protection — X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy – Part 1: Radiation characteristics and production methods (ISO 4037-1 :2019(E)). https://cdn.standards.iteh.ai/samples/66872/21db762a1fc9481fb9a84f765cc27afc/ISO-4037-1-2019.pdf
  • Kavas, T., Olgun, A., Erdogan, Y., & Once, G. (2007). The effect of pectin on the physicochemical and mechanical properties of cement containing boron. Building and Environment, 42(4), 1803–1809. https://doi.org/10.1016/j.buildenv.2006.01.018
  • Kavaz, E., Ekinci, N., Tekin, H. O., Sayyed, M. I., Aygün, B., & Perişanoğlu, U. (2019). Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Progress in Nuclear Energy, 115, 12–20. https://doi.org/10.1016/j.pnucene.2019.03.029
  • Khan, F. M., & Gibbons, J. P. (2014). Khan's the physics of radiation therapy (5th ed.). Lippincott Williams & Wilkins.
  • Lotti, P., Comboni, D., Gigli, L., Carlucci, L., Mossini, E., Macerata, E., Mariani, M., & Gatta, G. D. (2019). Thermal stability and high-temperature behavior of the natural borate colemanite: An aggregate in radiation-shielding concretes. Construction and Building Materials, 203, 679–686. https://doi.org/10.1016/j.conbuildmat.2019.01.123
  • Mehta, P. K., & Monteiro, P. J. (2006). Concrete: Microstructure, properties, and materials (3rd ed.). McGraw-Hill.
  • Mutuk, T., & Mesci, B. (2014). Analysis of mechanical properties of cement containing boron waste and rice husk ash using full factorial design. Journal of Cleaner Production, 69, 128–132. https://doi.org/10.1016/j.jclepro.2014.01.051
  • Olgun, A., Kavas, T., Erdogan, Y., & Once, G. (2007). Physico-chemical characteristics of chemically activated cement containing boron. Building and Environment, 42(6), 2384–2395. https://doi.org/10.1016/j.buildenv.2006.06.003
  • Oto, B., Gür, A., Kaçal, M. R., Doğan, B., & Arasoğlu, A. (2013). Photon attenuation properties of some concretes containing barite and colemanite in different rates. Annals of Nuclear Energy, 51, 120–124. https://doi.org/10.1016/j.anucene.2012.06.033
  • Oto, B., Madak, Z., Kavaz, E., & Yaltay, N. (2019). Nuclear radiation shielding and mechanical properties of colemanite mineral doped concretes. Radiation Effects and Defects in Solids, 174(9–10), 899–914. https://doi.org/10.1080/10420150.2019.1668390
  • Ouda, A. S. (2015). Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding. Progress in Nuclear Energy, 79, 48–55. https://doi.org/10.1016/j.pnucene.2014.11.009
  • Öztürk, B. C., Kızıltepe, C. Ç., Ozden, B., Güler, E., & Aydın, S. (2020). Gamma and neutron attenuation properties of alkali-activated cement mortars. Radiation Physics and Chemistry, 166, Article 108478. https://doi.org/10.1016/j.radphyschem.2019.108478
  • Rezaei-Ochbelagh, D., & Azimkhani, S. (2012). Investigation of gamma-ray shielding properties of concrete containing different percentages of lead. Applied Radiation and Isotopes, 70(10), 2282–2286. https://doi.org/10.1016/j.apradiso.2012.06.020
  • Saudi, H. A. (2013). Lead phosphate glass containing boron and lithium oxides as a shielding material for neutron and gamma radiation. Applied Mathematics and Physics, 1(4), 143–146. https://doi.org/10.12691/amp-1-4-7
  • International Electrotechnical Commission. (2014). Protective devices against diagnostic medical X-radiation – Part 1: Determination of attenuation properties of materials (IEC 61331-1). https://cdn.standards.iteh.ai/samples/19083/028b83ae94cd4877bfdd8c081dfbf1b2/IEC-61331-1-2014.pdf
  • Tyagi, G., Singhal, A., Routroy, S., Bhunia, D., & Lahoti, M. (2020). A review on sustainable utilization of industrial wastes in radiation shielding concrete. Materials Today: Proceedings, 32(4), 746–751. https://doi.org/10.1016/j.matpr.2020.03.474
  • Ustabas, I. (2024). Effect of boron minerals colemanite and ulexite on physical, chemical and mechanical properties of cement. Sustainability and Clean Building, 1(1), 66–78. https://doi.org/10.37256/scb.1120244960
  • Yadollahi, A., Nazemi, E., Zolfaghari, A., & Ajorloo, A. M. (2016). Optimization of thermal neutron shield concrete mixture using artificial neural network. Nuclear Engineering and Design, 305, 146–155. https://doi.org/10.1016/j.nucengdes.2016.05.012
  • Yaltay, N., Ekinci, C. E., Çakır, T., & Oto, B. (2015). Photon attenuation properties of concrete produced with pumice aggregate and colemanite addition in different rates and the effect of curing age to these properties. Progress in Nuclear Energy, 78, 25–35. https://doi.org/10.1016/j.pnucene.2014.08.002

Effect of Colemanite Concentrator Waste (CW) Substitution in Cement-Based Mortars on the Gamma-Ray Shielding Performance, Mechanical and Physical Properties

Year 2025, Volume: 13 Issue: 4, 1661 - 1675, 30.10.2025
https://doi.org/10.29130/dubited.1695973

Abstract

This study investigates the influence of colemanite concentrator waste (CW) as a cement substitute on the gamma-ray shielding performance, mechanical, and physical properties of mortars. Mortar mixtures were prepared with varying CW proportions, and their consistency, setting time, compressive strength, pulse velocity, and water absorption were determined. Microstructural analysis using SEM and experimental gamma-ray (Cs-137-662 keV) shielding tests were also conducted.
Results indicate that increasing CW substitution generally led to decreased compressive strength and increased total water absorption, consistency, and setting time. Notably, mixtures with CW content exceeding 5 wt% experienced disintegration during curing, primarily attributed to the significant retardation of cement hydration by boron compounds. For radiation shielding, despite the lower density of CW influencing overall bulk density, the presence of higher atomic number elements in colemanite demonstrated a positive contribution to gamma-ray attenuation. Specifically, at the lowest material thicknesses, the lead equivalent levels for CW2.5 and CW5 mortars were measured as 0.64 mmPb and 0.70 mmPb, respectively, revealing a clear radiation attenuation effect compared to the control. These findings highlight the potential of colemanite concentrator waste as a promising lead-free material for radiation shielding applications in cement-based composites.

Supporting Institution

This work was supported by the Scientific Research Projects Coordination Unit of Kırşehir Ahi Evran University (Grant number: MMF.A3.22.011).

Project Number

MMF.A3.22.011

Thanks

This work was supported by the Scientific Research Projects Coordination Unit of Kırşehir Ahi Evran University (Grant number: MMF.A3.22.011). The authors appreciate the Scientific Research Projects Coordination Unit of Kırşehir Ahi Evran University that supported this study

References

  • Aksoğan, O., Binici, H., & Ortlek, E. (2016). Durability of concrete made by partial replacement of fine aggregate by colemanite and barite and cement by ashes of corn stalk, wheat straw and sunflower stalk ashes. Construction and Building Materials, 106, 253–263. https://doi.org/10.1016/j.conbuildmat.2015.12.102
  • Al-Saadi, A. J., & Saadon, A. K. (2014). Gamma ray attenuation coefficients for lead oxide and iron oxide reinforced in silicate glasses as radiation shielding windows. Ibn Al-Haitham Journal for Pure & Applied Sciences, 27(3), 201–214. https://jih.uobaghdad.edu.iq/index.php/j/article/view/282
  • Binici, H., Aksogan, O., Sevinc, A. H., & Kucukonder, A. (2014). Mechanical and radioactivity shielding performances of mortars made with colemanite, barite, ground basaltic pumice and ground blast furnace slag. Construction and Building Materials, 50, 177–183. https://doi.org/10.1016/j.conbuildmat.2013.09.033
  • Castro, J., Bentz, D., & Weiss, J. (2011). Effect of sample conditioning on the water absorption of concrete. Cement and Concrete Composites, 33(8), 805–813. https://doi.org/10.1016/j.cemconcomp.2011.05.007
  • Demir, D., & Keleş, G. (2006). Radiation transmission of concrete including boron waste for 59.54 and 80.99 keV gamma rays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 245(2), 501–504. https://doi.org/10.1016/j.nimb.2005.11.139
  • Demir, F., Budak, G., Sahin, R., Karabulut, A., Oltulu, M., & Un, A. (2011). Determination of radiation attenuation coefficients of heavyweight-and normal-weight concretes containing colemanite and barite for 0.663 MeV γ-rays. Annals of Nuclear Energy, 38(6), 1274–1278. https://doi.org/10.1016/j.anucene.2011.02.009
  • El-Sayed Abdo, A. (2002). Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields. Annals of Nuclear Energy, 29(16), 1977–1988. https://doi.org/10.1016/S0306-4549(02)00019-1
  • Ersundu, A. E., Büyükyıldız, M., Ersundu, M. Ç., Şakar, E., & Kurudirek, M. (2018). The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Progress in Nuclear Energy, 104, 280–287. https://doi.org/10.1016/j.pnucene.2017.10.008
  • Han, B., Zhang, L., & Ou, J. (2017). Smart and multifunctional concrete toward sustainable infrastructures. Springer.
  • International Atomic Energy Agency. (2011). Radiation protection and safety of radiation sources: International basic safety standards (N.G. Part, Interim ed.). https://regelwerk.grs.de/sites/default/files/cc/dokumente/dokumente/DS379%20Draft5.0-21Mar2011.pdf
  • International Commission on Radiological Protection. (2007). The 2007 recommendations of the International Commission on Radiological Protection (ICRP Publication 103). Annals of the ICRP, 37(2–4), 1–133.
  • International Organization for Standardization. (2019). Radiological protection — X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy – Part 1: Radiation characteristics and production methods (ISO 4037-1 :2019(E)). https://cdn.standards.iteh.ai/samples/66872/21db762a1fc9481fb9a84f765cc27afc/ISO-4037-1-2019.pdf
  • Kavas, T., Olgun, A., Erdogan, Y., & Once, G. (2007). The effect of pectin on the physicochemical and mechanical properties of cement containing boron. Building and Environment, 42(4), 1803–1809. https://doi.org/10.1016/j.buildenv.2006.01.018
  • Kavaz, E., Ekinci, N., Tekin, H. O., Sayyed, M. I., Aygün, B., & Perişanoğlu, U. (2019). Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Progress in Nuclear Energy, 115, 12–20. https://doi.org/10.1016/j.pnucene.2019.03.029
  • Khan, F. M., & Gibbons, J. P. (2014). Khan's the physics of radiation therapy (5th ed.). Lippincott Williams & Wilkins.
  • Lotti, P., Comboni, D., Gigli, L., Carlucci, L., Mossini, E., Macerata, E., Mariani, M., & Gatta, G. D. (2019). Thermal stability and high-temperature behavior of the natural borate colemanite: An aggregate in radiation-shielding concretes. Construction and Building Materials, 203, 679–686. https://doi.org/10.1016/j.conbuildmat.2019.01.123
  • Mehta, P. K., & Monteiro, P. J. (2006). Concrete: Microstructure, properties, and materials (3rd ed.). McGraw-Hill.
  • Mutuk, T., & Mesci, B. (2014). Analysis of mechanical properties of cement containing boron waste and rice husk ash using full factorial design. Journal of Cleaner Production, 69, 128–132. https://doi.org/10.1016/j.jclepro.2014.01.051
  • Olgun, A., Kavas, T., Erdogan, Y., & Once, G. (2007). Physico-chemical characteristics of chemically activated cement containing boron. Building and Environment, 42(6), 2384–2395. https://doi.org/10.1016/j.buildenv.2006.06.003
  • Oto, B., Gür, A., Kaçal, M. R., Doğan, B., & Arasoğlu, A. (2013). Photon attenuation properties of some concretes containing barite and colemanite in different rates. Annals of Nuclear Energy, 51, 120–124. https://doi.org/10.1016/j.anucene.2012.06.033
  • Oto, B., Madak, Z., Kavaz, E., & Yaltay, N. (2019). Nuclear radiation shielding and mechanical properties of colemanite mineral doped concretes. Radiation Effects and Defects in Solids, 174(9–10), 899–914. https://doi.org/10.1080/10420150.2019.1668390
  • Ouda, A. S. (2015). Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding. Progress in Nuclear Energy, 79, 48–55. https://doi.org/10.1016/j.pnucene.2014.11.009
  • Öztürk, B. C., Kızıltepe, C. Ç., Ozden, B., Güler, E., & Aydın, S. (2020). Gamma and neutron attenuation properties of alkali-activated cement mortars. Radiation Physics and Chemistry, 166, Article 108478. https://doi.org/10.1016/j.radphyschem.2019.108478
  • Rezaei-Ochbelagh, D., & Azimkhani, S. (2012). Investigation of gamma-ray shielding properties of concrete containing different percentages of lead. Applied Radiation and Isotopes, 70(10), 2282–2286. https://doi.org/10.1016/j.apradiso.2012.06.020
  • Saudi, H. A. (2013). Lead phosphate glass containing boron and lithium oxides as a shielding material for neutron and gamma radiation. Applied Mathematics and Physics, 1(4), 143–146. https://doi.org/10.12691/amp-1-4-7
  • International Electrotechnical Commission. (2014). Protective devices against diagnostic medical X-radiation – Part 1: Determination of attenuation properties of materials (IEC 61331-1). https://cdn.standards.iteh.ai/samples/19083/028b83ae94cd4877bfdd8c081dfbf1b2/IEC-61331-1-2014.pdf
  • Tyagi, G., Singhal, A., Routroy, S., Bhunia, D., & Lahoti, M. (2020). A review on sustainable utilization of industrial wastes in radiation shielding concrete. Materials Today: Proceedings, 32(4), 746–751. https://doi.org/10.1016/j.matpr.2020.03.474
  • Ustabas, I. (2024). Effect of boron minerals colemanite and ulexite on physical, chemical and mechanical properties of cement. Sustainability and Clean Building, 1(1), 66–78. https://doi.org/10.37256/scb.1120244960
  • Yadollahi, A., Nazemi, E., Zolfaghari, A., & Ajorloo, A. M. (2016). Optimization of thermal neutron shield concrete mixture using artificial neural network. Nuclear Engineering and Design, 305, 146–155. https://doi.org/10.1016/j.nucengdes.2016.05.012
  • Yaltay, N., Ekinci, C. E., Çakır, T., & Oto, B. (2015). Photon attenuation properties of concrete produced with pumice aggregate and colemanite addition in different rates and the effect of curing age to these properties. Progress in Nuclear Energy, 78, 25–35. https://doi.org/10.1016/j.pnucene.2014.08.002
There are 30 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Articles
Authors

Şevki Eren 0000-0003-0773-4034

Doğan Yaşar 0000-0002-1421-1680

Selahattin Güzelküçük 0000-0003-2115-5821

Gökhan Ekincioğlu 0000-0001-9377-6817

Yunus Karataş 0000-0002-3826-463X

Project Number MMF.A3.22.011
Publication Date October 30, 2025
Submission Date May 13, 2025
Acceptance Date September 2, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Eren, Ş., Yaşar, D., Güzelküçük, S., … Ekincioğlu, G. (2025). Effect of Colemanite Concentrator Waste (CW) Substitution in Cement-Based Mortars on the Gamma-Ray Shielding Performance, Mechanical and Physical Properties. Duzce University Journal of Science and Technology, 13(4), 1661-1675. https://doi.org/10.29130/dubited.1695973
AMA Eren Ş, Yaşar D, Güzelküçük S, Ekincioğlu G, Karataş Y. Effect of Colemanite Concentrator Waste (CW) Substitution in Cement-Based Mortars on the Gamma-Ray Shielding Performance, Mechanical and Physical Properties. DUBİTED. October 2025;13(4):1661-1675. doi:10.29130/dubited.1695973
Chicago Eren, Şevki, Doğan Yaşar, Selahattin Güzelküçük, Gökhan Ekincioğlu, and Yunus Karataş. “Effect of Colemanite Concentrator Waste (CW) Substitution in Cement-Based Mortars on the Gamma-Ray Shielding Performance, Mechanical and Physical Properties”. Duzce University Journal of Science and Technology 13, no. 4 (October 2025): 1661-75. https://doi.org/10.29130/dubited.1695973.
EndNote Eren Ş, Yaşar D, Güzelküçük S, Ekincioğlu G, Karataş Y (October 1, 2025) Effect of Colemanite Concentrator Waste (CW) Substitution in Cement-Based Mortars on the Gamma-Ray Shielding Performance, Mechanical and Physical Properties. Duzce University Journal of Science and Technology 13 4 1661–1675.
IEEE Ş. Eren, D. Yaşar, S. Güzelküçük, G. Ekincioğlu, and Y. Karataş, “Effect of Colemanite Concentrator Waste (CW) Substitution in Cement-Based Mortars on the Gamma-Ray Shielding Performance, Mechanical and Physical Properties”, DUBİTED, vol. 13, no. 4, pp. 1661–1675, 2025, doi: 10.29130/dubited.1695973.
ISNAD Eren, Şevki et al. “Effect of Colemanite Concentrator Waste (CW) Substitution in Cement-Based Mortars on the Gamma-Ray Shielding Performance, Mechanical and Physical Properties”. Duzce University Journal of Science and Technology 13/4 (October2025), 1661-1675. https://doi.org/10.29130/dubited.1695973.
JAMA Eren Ş, Yaşar D, Güzelküçük S, Ekincioğlu G, Karataş Y. Effect of Colemanite Concentrator Waste (CW) Substitution in Cement-Based Mortars on the Gamma-Ray Shielding Performance, Mechanical and Physical Properties. DUBİTED. 2025;13:1661–1675.
MLA Eren, Şevki et al. “Effect of Colemanite Concentrator Waste (CW) Substitution in Cement-Based Mortars on the Gamma-Ray Shielding Performance, Mechanical and Physical Properties”. Duzce University Journal of Science and Technology, vol. 13, no. 4, 2025, pp. 1661-75, doi:10.29130/dubited.1695973.
Vancouver Eren Ş, Yaşar D, Güzelküçük S, Ekincioğlu G, Karataş Y. Effect of Colemanite Concentrator Waste (CW) Substitution in Cement-Based Mortars on the Gamma-Ray Shielding Performance, Mechanical and Physical Properties. DUBİTED. 2025;13(4):1661-75.