Research Article
BibTex RIS Cite

Silindirle Sıkıştırılmış Betonlarda Su/Çimento Oranının Etkileri

Year 2021, Volume: 10 Issue: 1, 73 - 84, 10.06.2021

Abstract

Deneysel çalışmada, C30/37 sınıfı silindirle sıkıştırılmış beton (SSB) tasarımı yapılmıştır. Karışımda, CEM I 42,5 R portland çimentosu, dört farklı boyutta agrega ve şebeke suyu kullanılmıştır. Su/çimento oranları 0,32, 0,35, 0,38 ve 0,41 olarak belirlenmiştir. Farklı su/çimento ile yapılan karışımlarda su miktarı sabit tutulmuş, çimento ve agrega miktarlarında değişiklik yapılmıştır. 7 ve 28 günlük basınç dayanımlarının tespiti için 15 cm çapında ve 30 cm yüksekliğinde silindir, 28 günlük eğilme dayanımları için 15 cm x 15 cm x 75 cm boyutlarında prizmatik kiriş, basınç altında su işleme derinliği ve aşınma için ise 15 cm x 15 cm x 15 cm küp SSB örnekleri üretilmiştir. Elde edilen veriler sonucunda, silindirle sıkıştırılmış betonlarda su/çimento oranının, basınç dayanımı, eğilme dayanımı, basınç altında su işleme derinliği ve aşınma gibi betonun özelliklerine etkileri belirlenmiştir.

References

  • D. Harrington, F. Abdo, W. Adaska, C. Hazaree, Guide for Roller Compacted Concrete Pavements, National Concrete Pavement Technology Center, Institute for Transportation, Iowa State University, 2010.
  • N. Ağıralioğlu, Baraj Planlama ve Tasarımı, Su Vakfı Yayınları, c.2, s.259, İstanbul, 2005.
  • D. Luhr, Roller Compacted Concrete Applications for Pavements, Portland Cement Association, 2008.
  • M. Adamu, B.S. Mohammed and M.S. Liew, “Mechanical properties and performance of high volume fly ash roller compacted concrete containing crumb rubber and nano silica”. Construction and Building Materials, vol. 171, pp.521–538, 2018, https://doi.org/10.1016/j.conbuildmat.2018.03.138.
  • C. D. Atiş, “Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition”, Cement and Concrete Research, vol. 35, no. 6, pp.1112–1121, 2005, https://doi.org/10.1016/j.cemconres.2004.07.037.
  • C. Cao, W. Sun and H. Qin, “Analysis on strength and fly ash effect of roller-compacted concrete with high volume fly ash”, Cement and Concrete Research, vol. 30, no. 1, pp. 71–75, 2000, https://doi.org/10.1016/S0008-8846(99)00203-3.
  • M. Chi and R. Huang, “Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete”, Cement and Concrete Composites, vol. 45, pp. 148–156, 2014, https://doi.org/10.1016/j.cemconcomp.2013.10.001.
  • L. Courard, F. Michel and P. Delhez, “Use of concrete road recycled aggregates for Roller Compacted Concrete”, Construction and Building Materials, vol. 24, no. 3, pp. 390–395, 2010, https://doi.org/10.1016/j.conbuildmat.2009.08.040.
  • F. Debieb, L. Courard, S. Kenai and R. Degeimbre, “Roller compacted concrete with contaminated recycled aggregates”, Construction and Building Materials, vol. 23, no. 11, pp. 3382–3387, 2009, https://doi.org/10.1016/j.conbuildmat.2009.06.031.
  • K. Jingfu, H. Chuncui and Z. Zhenli, “Strength and shrinkage behaviors of roller-compacted concrete with rubber additives”, Materials and Structures/Materiaux et Constructions, vol. 42, no. 8, pp. 1117–1124, 2009, https://doi.org/10.1617/s11527-008-9447-x.
  • A. Mardani-Aghabaglou, Ö. A. Çakır and K. Ramyar, “Freeze-thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method”, Cement and Concrete Composites, vol. 37, no. 1, pp. 259–266, 2013, https://doi.org/10.1016/j.cemconcomp.2013.01.009.
  • A. Meddah, M. Beddar and A. Bali, “Use of shredded rubber tire aggregates for roller compacted concrete pavement”, Journal of Cleaner Production, vol. 72, pp. 187–192, 2014 https://doi.org/10.1016/j.jclepro.2014.02.052.
  • A. Modarres and Z. Hosseini, “Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material”, Materials and Design, vol. 64, pp. 227–236, 2014, https://doi.org/10.1016/j.matdes.2014.07.072.
  • C. Wang, W. Chen, H. Hao, S. Zhang, R. Song and X. Wang, “Experimental investigations of dynamic compressive properties of roller compacted concrete (RCC)”, Construction and Building Materials, vol.168, pp.671–682, 2018, https://doi.org/10.1016/j.conbuildmat.2018.02.112.
  • X. Wang, S. Zhang, C. Wang, F. Liu, R. Song and P. Wei, “Initial damage effect on dynamic compressive behaviors of roller compacted concrete (RCC) under impact loadings”, Construction and Building Materials”, vol. 186, pp.388–399, 2018, https://doi.org/10.1016/j.conbuildmat.2018.07.141.
  • X. Wang, S. Zhang, C. Wang, R. Song, C. Shang and X. Fang, “Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading”, Construction and Building Materials, vol. 165, pp. 45–57, 2018, https://doi.org/10.1016/j.conbuildmat.2018.01.03.
  • PCA, Guide Specification for Construction of Roller Compacted Concrete Pavements, Portland Cement Association, Haziran, 2004.
  • İ. Ö. Yaman, H. Ceylan, "Silindirle Sıkıştırılmış Beton Yollar", TMH, 480, 60/2015-4, s:44-61, 2015.
  • K. Jingfu, H. Chuncui, and Z. Zhenli, “Strength and shrinkage behaviors of roller-compacted concrete with rubber additives”, Materials and Structures/Materiaux et Constructions, vol. 42, no. 8, pp. 1117–1124, 2009, https://doi.org/10.1617/s11527-008-9447-x.
  • K.D. Hansen and W.G. Reinhardt, Roller Compacted Concrete Dams, Mc Graw-Hill, pp. 298, 1991.
  • W. Adaska, Roller Compacted Concrete (RCC), PCA Research & Development Information Serial No. 2975, Skokie, IL: Portland Cement Association, 2006.
  • G. Topličić-Ćurčić, D. Grdić, N. Ristić, and Z. Grdić, “Properties, materials and durability of rolled compacted concrete for pavements”, Zaštita materijala, vol. 56, no. 3, pp. 345-353, 2015.
  • ACI Committee, Guide to Roller-Compacted Concrete Pavements (ACI 327R-14), Farmington Hills, MI: American Concrete Institute, 2014.
  • R. F. Andriolo, The Use of Roller Compacted Concrete, Past-Press, ISSMFE, pp.554, Sao Paulo, 1998.
  • TÇMB, Silindirle Sıkıştırılmış Beton (SSB) Yollar Teknik Şartnamesi, Ankara, 2017.
  • K. H. Khayat, N. A. Libre and Z. Wu, Roller Compacted Concrete for Rapid Pavement Construction. Technical Report, 2019.
  • A. Benouadah, M. Beddar and A. Meddah, “Physical and mechanical behaviour of a roller compacted concrete reinforced with polypropylene fiber”, Journal of Fundamental and Applied Sciences, vol. 9, no. 2, pp. 623, 2017, https://doi.org/10.4314/jfas.v9i2.1
  • S. M. Hejazi, S. M. Abtahi and F. Safaie, “Investigation of thermal stress distribution in fiber-reinforced roller compacted concrete pavements”, Journal of Industrial Textiles, vol. 45, no. 5, pp. 896–914, 2016, https://doi.org/10.1177/1528083714542827
  • P. Sukontasukkul, U. Chaisakulkiet, P. Jamsawang, S. Horpibulsuk, C. Jaturapitakkul and P. Chindaprasirt, “Case investigation on application of steel fibers in roller compacted concrete pavement in Thailand”, Case Studies in Construction Materials, vol. 11, no. e00271, 2019, https://doi.org/10.1016/j.cscm.2019.e00271
  • KGM, Beton Yol Kaplamaları Teknik Şartnamesi, Karayolları Genel Müdürlüğü, Ankara, 2016.
  • D. Harrington, F. Abdo, W. Adaska and C. Hazaree, Guide for Roller Compacted Concrete Pavements, National Concrete Pavement Technology Center, Institute for Transportation, Iowa State University, 2010.
  • ASTM C 1435, “Standard Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a Vibrating Hammer”, American Society for Testing and Materials, ASTM International, USA, 2014.
  • TS EN 933-1, “Agregaların Geometrik Özellikleri İçin Deneyler- Bölüm 1: Tane Büyüklüğü Dağılımının Tayini - Eleme Yöntemi”, Türk Standartları Enstitüsü, Ankara, 2012.
  • TS EN 1097-6, “Agregaların Mekanik ve Fiziksel Özellikleri İçin Deneyler - Bölüm 6: Tane Yoğunluğunun ve Su Emme Oranının Tayini”, Türk Standartları Enstitüsü, Ankara, 2013.
  • TS EN 12350-2, “Beton- Taze Beton Deneyleri - Bölüm 2: Çökme (Slump) Deneyi”, Türk Standartları Enstitüsü, Ankara, 2010.
  • TS EN 12350-6, “Beton- Taze Beton Deneyleri - Bölüm 6: Yoğunluk”, Türk Standartları Enstitüsü, Ankara, 2010.
  • TS EN 12390-3, “Sertleşmiş Beton Deney Numunelerinde Basınç Dayanımının Tayini”, Türk Standartları Enstitüsü, Ankara, 2003.
  • TS EN 12390-5, “Sertleşmiş Beton Deney Numunelerinde Eğilme Dayanımının Tayini”, Türk Standartları Enstitüsü, Ankara, 2002.
  • TS EN 12390-8, “Beton - Sertleşmiş beton deneyleri - Bölüm 8: Basınç altında su işleme derinliğinin tayini”, TSE, Ankara, 2019.
  • BS EN 1342, “Setts of natural stone for external paving –Requirements and test methods”, British Standard, 2000.
  • TÇMB, Silindirle Sıkıştırılmış Beton Yollar Tasarım Rehberi, Ankara, 2018.
  • TS EN 206, “Beton - Özellik, performans, imalat ve uygunluk”, TSE, Ankara, 2017.

The Effects of Water/Cement Ratio on Properties of Roller Compacted Concretes

Year 2021, Volume: 10 Issue: 1, 73 - 84, 10.06.2021

Abstract

In the experimental study, roller compacted concrete (RCC) with concrete class of C 30/37 was designed. CEM I 42.5 R Portland cement, four different sizes of aggregate and tap water were used in the mixtures. Water/cement ratios were determined as 0.32, 0.35, 0.38 and 0.41. The water amount was kept constant where the cement and aggregate amounts were changed in concretes having different water/cement ratios. Cylindrical specimens with a diameter of 15 cm and a height of 30 cm were produced for the determination of the compressive strengths at the ages of 7 and 28 days. 15 cm × 15 cm × 75 cm sized prismatic beams were produced to determine the flexural strengths at the age of 28 days while 15 cm × 15 cm × 15 cm cubic RCC specimens were produced to determine the depth of water penetration under pressure and wear resistance. According to the results of the data obtained, the effects of water/cement ratio on properties of concrete were determined.


References

  • D. Harrington, F. Abdo, W. Adaska, C. Hazaree, Guide for Roller Compacted Concrete Pavements, National Concrete Pavement Technology Center, Institute for Transportation, Iowa State University, 2010.
  • N. Ağıralioğlu, Baraj Planlama ve Tasarımı, Su Vakfı Yayınları, c.2, s.259, İstanbul, 2005.
  • D. Luhr, Roller Compacted Concrete Applications for Pavements, Portland Cement Association, 2008.
  • M. Adamu, B.S. Mohammed and M.S. Liew, “Mechanical properties and performance of high volume fly ash roller compacted concrete containing crumb rubber and nano silica”. Construction and Building Materials, vol. 171, pp.521–538, 2018, https://doi.org/10.1016/j.conbuildmat.2018.03.138.
  • C. D. Atiş, “Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition”, Cement and Concrete Research, vol. 35, no. 6, pp.1112–1121, 2005, https://doi.org/10.1016/j.cemconres.2004.07.037.
  • C. Cao, W. Sun and H. Qin, “Analysis on strength and fly ash effect of roller-compacted concrete with high volume fly ash”, Cement and Concrete Research, vol. 30, no. 1, pp. 71–75, 2000, https://doi.org/10.1016/S0008-8846(99)00203-3.
  • M. Chi and R. Huang, “Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete”, Cement and Concrete Composites, vol. 45, pp. 148–156, 2014, https://doi.org/10.1016/j.cemconcomp.2013.10.001.
  • L. Courard, F. Michel and P. Delhez, “Use of concrete road recycled aggregates for Roller Compacted Concrete”, Construction and Building Materials, vol. 24, no. 3, pp. 390–395, 2010, https://doi.org/10.1016/j.conbuildmat.2009.08.040.
  • F. Debieb, L. Courard, S. Kenai and R. Degeimbre, “Roller compacted concrete with contaminated recycled aggregates”, Construction and Building Materials, vol. 23, no. 11, pp. 3382–3387, 2009, https://doi.org/10.1016/j.conbuildmat.2009.06.031.
  • K. Jingfu, H. Chuncui and Z. Zhenli, “Strength and shrinkage behaviors of roller-compacted concrete with rubber additives”, Materials and Structures/Materiaux et Constructions, vol. 42, no. 8, pp. 1117–1124, 2009, https://doi.org/10.1617/s11527-008-9447-x.
  • A. Mardani-Aghabaglou, Ö. A. Çakır and K. Ramyar, “Freeze-thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method”, Cement and Concrete Composites, vol. 37, no. 1, pp. 259–266, 2013, https://doi.org/10.1016/j.cemconcomp.2013.01.009.
  • A. Meddah, M. Beddar and A. Bali, “Use of shredded rubber tire aggregates for roller compacted concrete pavement”, Journal of Cleaner Production, vol. 72, pp. 187–192, 2014 https://doi.org/10.1016/j.jclepro.2014.02.052.
  • A. Modarres and Z. Hosseini, “Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material”, Materials and Design, vol. 64, pp. 227–236, 2014, https://doi.org/10.1016/j.matdes.2014.07.072.
  • C. Wang, W. Chen, H. Hao, S. Zhang, R. Song and X. Wang, “Experimental investigations of dynamic compressive properties of roller compacted concrete (RCC)”, Construction and Building Materials, vol.168, pp.671–682, 2018, https://doi.org/10.1016/j.conbuildmat.2018.02.112.
  • X. Wang, S. Zhang, C. Wang, F. Liu, R. Song and P. Wei, “Initial damage effect on dynamic compressive behaviors of roller compacted concrete (RCC) under impact loadings”, Construction and Building Materials”, vol. 186, pp.388–399, 2018, https://doi.org/10.1016/j.conbuildmat.2018.07.141.
  • X. Wang, S. Zhang, C. Wang, R. Song, C. Shang and X. Fang, “Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading”, Construction and Building Materials, vol. 165, pp. 45–57, 2018, https://doi.org/10.1016/j.conbuildmat.2018.01.03.
  • PCA, Guide Specification for Construction of Roller Compacted Concrete Pavements, Portland Cement Association, Haziran, 2004.
  • İ. Ö. Yaman, H. Ceylan, "Silindirle Sıkıştırılmış Beton Yollar", TMH, 480, 60/2015-4, s:44-61, 2015.
  • K. Jingfu, H. Chuncui, and Z. Zhenli, “Strength and shrinkage behaviors of roller-compacted concrete with rubber additives”, Materials and Structures/Materiaux et Constructions, vol. 42, no. 8, pp. 1117–1124, 2009, https://doi.org/10.1617/s11527-008-9447-x.
  • K.D. Hansen and W.G. Reinhardt, Roller Compacted Concrete Dams, Mc Graw-Hill, pp. 298, 1991.
  • W. Adaska, Roller Compacted Concrete (RCC), PCA Research & Development Information Serial No. 2975, Skokie, IL: Portland Cement Association, 2006.
  • G. Topličić-Ćurčić, D. Grdić, N. Ristić, and Z. Grdić, “Properties, materials and durability of rolled compacted concrete for pavements”, Zaštita materijala, vol. 56, no. 3, pp. 345-353, 2015.
  • ACI Committee, Guide to Roller-Compacted Concrete Pavements (ACI 327R-14), Farmington Hills, MI: American Concrete Institute, 2014.
  • R. F. Andriolo, The Use of Roller Compacted Concrete, Past-Press, ISSMFE, pp.554, Sao Paulo, 1998.
  • TÇMB, Silindirle Sıkıştırılmış Beton (SSB) Yollar Teknik Şartnamesi, Ankara, 2017.
  • K. H. Khayat, N. A. Libre and Z. Wu, Roller Compacted Concrete for Rapid Pavement Construction. Technical Report, 2019.
  • A. Benouadah, M. Beddar and A. Meddah, “Physical and mechanical behaviour of a roller compacted concrete reinforced with polypropylene fiber”, Journal of Fundamental and Applied Sciences, vol. 9, no. 2, pp. 623, 2017, https://doi.org/10.4314/jfas.v9i2.1
  • S. M. Hejazi, S. M. Abtahi and F. Safaie, “Investigation of thermal stress distribution in fiber-reinforced roller compacted concrete pavements”, Journal of Industrial Textiles, vol. 45, no. 5, pp. 896–914, 2016, https://doi.org/10.1177/1528083714542827
  • P. Sukontasukkul, U. Chaisakulkiet, P. Jamsawang, S. Horpibulsuk, C. Jaturapitakkul and P. Chindaprasirt, “Case investigation on application of steel fibers in roller compacted concrete pavement in Thailand”, Case Studies in Construction Materials, vol. 11, no. e00271, 2019, https://doi.org/10.1016/j.cscm.2019.e00271
  • KGM, Beton Yol Kaplamaları Teknik Şartnamesi, Karayolları Genel Müdürlüğü, Ankara, 2016.
  • D. Harrington, F. Abdo, W. Adaska and C. Hazaree, Guide for Roller Compacted Concrete Pavements, National Concrete Pavement Technology Center, Institute for Transportation, Iowa State University, 2010.
  • ASTM C 1435, “Standard Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a Vibrating Hammer”, American Society for Testing and Materials, ASTM International, USA, 2014.
  • TS EN 933-1, “Agregaların Geometrik Özellikleri İçin Deneyler- Bölüm 1: Tane Büyüklüğü Dağılımının Tayini - Eleme Yöntemi”, Türk Standartları Enstitüsü, Ankara, 2012.
  • TS EN 1097-6, “Agregaların Mekanik ve Fiziksel Özellikleri İçin Deneyler - Bölüm 6: Tane Yoğunluğunun ve Su Emme Oranının Tayini”, Türk Standartları Enstitüsü, Ankara, 2013.
  • TS EN 12350-2, “Beton- Taze Beton Deneyleri - Bölüm 2: Çökme (Slump) Deneyi”, Türk Standartları Enstitüsü, Ankara, 2010.
  • TS EN 12350-6, “Beton- Taze Beton Deneyleri - Bölüm 6: Yoğunluk”, Türk Standartları Enstitüsü, Ankara, 2010.
  • TS EN 12390-3, “Sertleşmiş Beton Deney Numunelerinde Basınç Dayanımının Tayini”, Türk Standartları Enstitüsü, Ankara, 2003.
  • TS EN 12390-5, “Sertleşmiş Beton Deney Numunelerinde Eğilme Dayanımının Tayini”, Türk Standartları Enstitüsü, Ankara, 2002.
  • TS EN 12390-8, “Beton - Sertleşmiş beton deneyleri - Bölüm 8: Basınç altında su işleme derinliğinin tayini”, TSE, Ankara, 2019.
  • BS EN 1342, “Setts of natural stone for external paving –Requirements and test methods”, British Standard, 2000.
  • TÇMB, Silindirle Sıkıştırılmış Beton Yollar Tasarım Rehberi, Ankara, 2018.
  • TS EN 206, “Beton - Özellik, performans, imalat ve uygunluk”, TSE, Ankara, 2017.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Architecture, Engineering, Civil Engineering
Journal Section Research Articles
Authors

İsmail Kılıç 0000-0001-5556-512X

Saadet Gökçe Gök 0000-0002-7879-1610

Publication Date June 10, 2021
Submission Date February 3, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

IEEE İ. Kılıç and S. G. Gök, “Silindirle Sıkıştırılmış Betonlarda Su/Çimento Oranının Etkileri”, DUFED, vol. 10, no. 1, pp. 73–84, 2021.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx